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Abstract
Background  Inflammatory bowel disease (IBD) and systemic lupus erythematosus (SLE) are autoimmune diseases 
that often coexist clinically. This phenomenon might be due to shared genetic components.

Methods  Genome-wide association study (GWAS) data for IBD and SLE were analyzed to determine both global 
and local genetic correlations using three methodologies: linkage disequilibrium score regression (LDSC), genetic 
covariance analyzer (GNOVA), and SUPERGNOVA. The genetic overlap and risk loci were subsequently examined using 
the conditional/conjunctional false discovery rate (cond/conjFDR) statistical framework. Furthermore, a multi-trait 
analysis of MTAG was employed to validate the loci, followed by an LDSC analysis focusing on tissue-specific gene 
expression.

Results  GWAS findings demonstrated a marked global genetic correlation between IBD (including Crohn’s 
disease and ulcerative colitis) and SLE. Locally, SLE showed a strong association with IBD and Crohn’s disease on 
chromosomes 10, 19, and 22. ConjFDR analysis confirmed the genetic overlap and identified relevant genetic risk loci. 
MTAG further validated several shared susceptibility genes. Additionally, the LDSC-SEG analysis results indicate that 
IBD (including CD and UC) and SLE are jointly enriched in the tissues of Spleen and Whole Blood.

Conclusion  This study confirms a genetic overlap between IBD and SLE, identifying marked comorbid genes and 
offering new insights for treating these diseases.
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disease
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Introduction
Inflammatory bowel disease (IBD) is an immune-medi-
ated disorder characterized by inflammatory alterations 
in the intestinal tract, primarily classified into Crohn’s 
disease (CD) and ulcerative colitis (UC) [1]. The global 
incidence and prevalence of IBD are significant, with cur-
rent rates exceeding 0.3%. Projections suggest that the 
global incidence could reach 1% by 2030 [2]. Although 
the precise etiology of IBD remains undetermined, it is 
widely accepted to result from the interplay of genetic, 
immune, and environmental factors [3]. Common symp-
toms of IBD include persistent diarrhea, abdominal pain, 
weight loss, and fever [4]. Clinically, IBD has been found 
to be closely associated with other autoimmune diseases, 
particularly systemic lupus erythematosus (SLE), war-
ranting considerable attention [5]. SLE, a prototypical 
autoimmune disease, often presents with dermatologi-
cal manifestations such as polymorphous light eruption, 
rosacea, and hair loss, and in severe cases, it can impact 
the musculoskeletal system, kidneys, and central ner-
vous system, necessitating prompt diagnosis and treat-
ment [6]. Current clinical research on the comorbidity 
of IBD and SLE remains limited, and existing treatment 
approaches have yet to fully address the complex relation-
ship between these two conditions. Conducting genome-
wide genetic correlation analyses to identify shared genes 
between IBD and SLE could enhance diagnostic methods 
and provide a critical foundation for developing more 
effective, personalized treatment strategies.

Numerous studies have investigated the genetic cor-
relation analysis of different traits, employing novel sta-
tistical methods to determine genetic overlap between 
two diseases and identify high-confidence genetic risk 
loci [7–9]. To fulfill the objectives of this study, these 
methods were utilized to comprehend the shared genetic 
architecture and comorbid genes between IBD and SLE.

This study investigates the fundamental genetic basis 
between IBD and SLE through a longitudinal, progres-
sive approach. The specific steps include: ① Assessing the 
genetic correlation between IBD and SLE using linkage 
disequilibrium score regression (LDSC) [10] and genetic 
covariance analyzer (GNOVA) [11] for global aspects, 
and SUPERGNOVA [12] for local aspects; ② Conduct-
ing conditional/conjunctional false discovery rate (cond/
conjFDR) analysis to examine genetic overlap and loci 
between different traits [13]; ③ Performing genome-wide 
association study (GWAS) multi-trait analysis (MTAG) 
[14] for the two diseases to identify shared risk loci; and 
④ Applying LDSC specifically expressed gene (LDSC-
SEG) analysis in determining tissues markedly associated 
with both diseases [15].

Methodologies and materials
GWAS data selection and characteristics
In order to ensure greater accuracy in our research, we 
should select GWAS data with the largest sample size 
and the highest number of SNPs, as well as those with a 
publication date that is relatively recent. Following these 
criteria, we have chosen the IBD and subtype (CD and 
UC) GWAS data provided by de Lange KM et al. [16], 
which correspond to patient numbers of 25,042, 12,366, 
and 12,194 respectively.For SLE, the GWAS by Bentham J 
et al. [17] was utilized, and it included 5,201 patients. All 
participants in these studies were of European descent.

Global and local genetic correlation analyses
Pairwise genetic correlation analysis was performed 
using linkage disequilibrium score regression (LDSC) 
and genetic covariance analyzer (GNOVA). For the for-
mer, pre-computed linkage disequilibrium (LD) scores 
were used, derived from approximately 1.2 million com-
mon SNPs (excluding the human leukocyte antigen 
region) from the HapMap3 reference panel of European 
ancestry [18]. GNOVA served as a complementary analy-
sis. Quality control for both analyses was ensured using 
the munge_sumstats.py script. The genetic correlation 
estimate (rg) ranges from − 1 to + 1, where − 1 indicates 
a complete negative correlation and + 1 indicates a com-
plete positive correlation. Bonferroni-corrected P-values 
were employed to determine statistical significance in 
both analyses.

SUPERGNOVA was utilized to estimate pairwise local 
genetic correlations. This method divides the entire 
genome into approximately 2,353 blocks, calculates the 
similarity between pairs of traits driven by genetic varia-
tion in each region, and identifies loci with local genetic 
correlations [12]. Throughout this process, Bonferroni 
correction was applied to the P-values (P < 0.05/2,353).

Genetic overlap analysis
Conditional quantile-quantile (QQ) plots are instru-
mental in visualizing the enrichment of polygenic sig-
nals across different phenotypes. A leftward shift in the 
proportion of SNPs associated with one phenotype (e.g., 
IBD) in the QQ plot, as the P-value of another phenotype 
(e.g., SLE) decreases, indicates a marked enrichment phe-
nomenon and substantial genetic overlap between the 
two phenotypes [19]. The P-values in all QQ plots are 
categorized into three intervals: “P < 0.10”, “P < 0.01”, and 
“P < 0.001”. The precimed/mixer package in Python 3.11 
(https://github.com/precimed/mixer) was employed to 
generate these QQ plots.

https://github.com/precimed/mixer
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Conducting conditional/conjunctional false discovery rate 
(cond/conjFDR) analysis
The conditional false discovery rate (condFDR) and 
conjunctional false discovery rate (conjFDR) methods 
within the empirical Bayesian statistical framework have 
recently gained popularity for identifying genetic risk 
variants associated with comorbidities across different 
traits [20]. These methods ensure high confidence in 
the results and identify loci that may not exceed tradi-
tional significance thresholds [20]. The FDR value serves 
as a reference for evaluating pleiotropy. The condFDR 
method identifies gene loci associated with one trait 
(e.g., IBD) by referencing the gene loci of another trait 
(e.g., SLE) [21]. This approach re-ranks the test statistics 
using the association between variants and one trait (e.g., 
SLE) and then recalculates the association with another 
trait (IBD). A reverse study is also conducted to obtain 
the reverse condFDR value. The maximum condFDR 
value from the bidirectional analysis is used as conjFDR, 
which then determines the genetic loci shared by the two 
traits, with the significance level set at “condFDR ≤ 0.05”. 
Detailed conjFDR analysis procedures are available on 
the website (https://github.com/precimed/pleiofdr). The 
SNPs associated with the identified loci were uploaded 
to the SNP2Gene module of FUMA (https://fuma.ctglab.
nl/) [22] for gene annotation.

Cross-trait meta-analysis
A cross-trait meta-analysis was conducted using multi-
trait analysis (MTAG) [14] through Python 3.11.5, focus-
ing on IBD (including Crohn’s disease and ulcerative 
colitis) and SLE. MTAG enhances the power of statisti-
cal analysis and offers broader applications compared 
to other meta-analysis methods. It can further identify 
SNPs markedly associated with the comorbidity risk of 
both traits [14]. Additionally, MTAG mitigates potential 
sample overlap between GWAS by leveraging the shared 
variance-covariance matrix of effect sizes across different 
traits [14]. The GWAS results from the MTAG analysis 
between the two traits were submitted to FUMA [22] to 
obtain common genetic risk loci and tissue enrichment 
results.

Tissue enrichment analysis
To identify tissues with marked trait enrichment, LDSC 
specifically expressed gene (LDSC-SEG) analysis was 
conducted [15, 23]. The principle of LDSC-SEG involves 
several steps: first, the t-statistic of each gene’s expres-
sion in 53 human tissues is calculated for the trait; sec-
ond, genes are ranked from high to low based on their 
t-statistic scores. The top 10% of genes, considered mark-
edly associated with the trait, are identified. To ensure 
linkage disequilibrium (LD), a 100  kb window position 
is set on both sides of the transcription region. The final 
step involves evaluating the role of key genomic annota-
tions in the genetic heritability of the trait by combining 
GWAS summary statistics. Genome annotation refer-
ences the gene expression data of 53 tissue types provided 
by Finucane et al. [23]. Detailed LDSC-SEG analysis pro-
cedures are available on the website (https://github.com/
bulik/ldsc/wiki/Cell-type-specific-analyses).

Results
Global and local genetic correlation
LDSC analysis demonstrated marked positive correla-
tions between SLE and IBD (rg = 0.1878, P = 0.0004), CD 
(rg = 0.1319, P = 0.0141), and UC (rg = 0.2199, P = 0.0010) 
(Table  1), with the correlation between SLE and UC 
being higher than that with CD. GNOVA results, exclud-
ing CD, also showed marked positive correlations for IBD 
and UC (Table 1).

In local genetic correlation analysis, marked nega-
tive correlations were identified between SLE and both 
IBD and CD on chromosome 19 (PSLE−IBD−19=1.99E-
06,PSLE−CD−19=4.88E-06), while positive correlations 
were observed on chromosomes 10 (PSLE−IBD−10=1.30E-
05,PSLE−CD−10=5.04E-08) and 22 (PSLE−IBD−22=8.69E-
06,PSLE−CD−22=1.22E-05)(Table  2). No local correlations 
were detected between UC and SLE. Detailed analysis 
results are provided in Supplementary Tables S1-3.

Based on the genetic correlation analysis above, we 
have reached the following conclusions: ① IBD (including 
CD and UC) is positively correlated with SLE overall; ② 
IBD and CD also exhibit local correlations with SLE.

ConjFDR analysis identifies shared genomic loci between 
IBD (including CD and UC) and SLE
According to the Q-Q plots (Fig. 1A-F), as the P-value for 
one trait (e.g., SLE) increases from 0.001 to 0.1, the curve 
for another trait (e.g., IBD) shifts rightward. This pattern 
indicates a strong correlation between the two traits, sug-
gesting genetic overlap and shared genetic risk loci.

ConjFDR analysis identifies overlapping genes between 
two traits, ultimately yielding high-quality shared risk 
loci. When conjFDR < 0.05, 41 shared risk loci were 
identified between IBD GWAS and SLE GWAS, with 
18 genes exhibiting consistent effects in both diseases 

Table 1  Genetic correlation of SLE and IBD(including CD and 
UC).SLE, systemic Lupus Erythematosus; IBD, inflammatory bowel 
disease; CD, Crohn’s disease; UC, ulcerative colitis
Trait1 Trait2 LSDC-Genetic 

correlation
LSDC-P GNOVA-

Genetic 
correlation

GNO-
VA-P

IBD SLE 0.1878 0.0004 0.1029 0.0018
CD SLE 0.1319 0.0141 0.0724 0.1189
UC SLE 0.2199 0.0010 0.1162 1.5347e-

06

https://github.com/precimed/pleiofdr
https://fuma.ctglab.nl/
https://fuma.ctglab.nl/
https://github.com/bulik/ldsc/wiki/Cell-type-specific-analyses
https://github.com/bulik/ldsc/wiki/Cell-type-specific-analyses
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(Fig. 2A, Supplementary Table S4). For CD and UC, there 
are 40 and 20 genetic risk loci corresponding to SLE, 
respectively. Of these, CD shares 18 loci with consistent 
effects, while UC shares 7 (Fig.  2B-C, Supplementary 
Table S5-S6).

The conclusions of the ConjFDR analysis indicate that: 
① IBD (including CD and UC) and SLE have a genetic 
overlap; ② IBD, CD, and UC share 41, 40, and 20 risk loci 
with SLE, respectively.

MTAG
MTAG analysis on the GWAS data for IBD and SLE 
produced a new two-trait-related GWAS dataset, which 
was annotated using Fuma. The analysis identified 93 
shared risk loci between IBD and SLE (Fig. 3A, Supple-
mentary Table S7), with five genes (Fc Gamma Recep-
tor IIa(FCGR2A), RP11-95M15.1, Janus Kinase 2(JAK2), 
IFNG Antisense RNA 1(IFNG-AS1), and Ubiquitin 
Conjugating Enzyme E2 L3(UBE2L3)) emerging as com-
mon intersections between conjFDR and MTAG analy-
ses (Fig. 3B). Subsequently, GeneMania [24] was utilized 
to construct a detailed gene-gene interaction network 
based on these genetic risk genes and their neighboring 

Table 2  The results of local genetic correlation between SLE and IBD and CD.h2: represents the observed genetic contribution, 
the larger the better .P: the statistically significant association is defined to be p < 0.05/2353 = 2.12495E-05.SLE, systemic Lupus 
Erythematosus; IBD, inflammatory bowel disease; CD, Crohn’s disease
Trait1 Trait2 chr start end Genetic correlation h2_1 h2_2 p
IBD SLE 19 759,261 1,089,241 -0.968336359 0.000760744 0.003248501 1.99E-06

22 21,866,569 23,015,302 1.011759486 0.001401821 0.005635341 8.69E-06
10 33,656,119 36,017,592 0.814827581 0.002406945 0.003465586 1.30E-05

CD SLE 10 33,656,119 36,017,592 0.778488833 0.004467251 0.003458251 5.04E-08
19 759,261 1,089,241 -1.068656772 0.000989874 0.003247391 4.88E-06
22 21,866,569 23,015,302 0.980541931 0.002186972 0.005636462 1.22E-05

Fig. 1  Conditional quantile-quantile plot. The dashed line indicates the expected line under the null hypothesis, and the deflection to the left indicates 
the degree of pleiotropic enrichment. (A) IBD-SLE. (B) SLE-IBD. (C) CD-SLE. (D) SLE-CD. (E) UC-SLE. (F) SLE-UC.SLE, Systemic Lupus Erythematosus; IBD, 
inflammatory bowel disease; CD, Crohn’s disease; UC, ulcerative colitis
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Fig. 2  (A) ConjFDR Manhattan plot of IBD and SLE. (B) ConjFDR Manhattan plot of CD and SLE. (C) ConjFDR Manhattan plot of UC and SLE.The shared risk 
loci between SLE and IBD, CD and UC were marked. The statistically significant causality is defined to be conjFDR < 0.05. SLE, Systemic Lupus Erythemato-
sus; IBD, inflammatory bowel disease; CD, Crohn’s disease; UC, ulcerative colitis
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genes (Fig.  3C). This network analysis identified 20 fre-
quently mutated genes closely associated with the target 
genes, revealing several key biological pathways shared 
by both diseases. These pathways include Fc receptor 
signaling, peptidyl-tyrosine phosphorylation, peptidyl-
tyrosine modification, response to growth hormone, cel-
lular response to growth hormone stimulus, regulation 
of innate immune response, and hemostasis. The com-
prehensive network analysis offers valuable insights into 
the roles these mapped genes play in the progression of 
comorbidities.

For CD, MTAG analysis identified 73 risk loci (Fig. 4A, 
Supplementary Table S8). The overlapping genes 
between conjFDR and MTAG analyses were UBE2L3, 
RP1-15D23.2, AC020743.4, Fucosyltransferase 2(FUT2), 
and JAK2 (Fig. 4B), with their corresponding functional 
enrichment results depicted in Fig. 4C. In the case of UC, 
MTAG analysis revealed 52 risk loci (Fig.  5A, Supple-
mentary Table S9). FCGR2A, RP11-95M15.1,Interferon 

Regulatory Factor 5(IRF5), JAK2, and IFNG-AS1 were 
the overlapping genes identified between conjFDR and 
MTAG analyses (Fig. 5B), and their enrichment status is 
presented in Fig. 5C.

In conclusion, the analysis using MTAG has provided 
valuable insights: ① Genes associated with risk loci 
such as FCGR2A, UBE2L3, FUT2, JAK2, and IRF5 have 
been validated and warrant attention; ② These genes are 
enriched in multiple pathways, including the Fc receptor 
signaling pathway.

Trait-related tissue
To identify tissues markedly associated with the traits, 
LDSC-SEG analysis was conducted, referencing tis-
sue expression data from GTEx. At a coefficient of 
P < 0.05, ten tissues were found to be associated with IBD 
(Fig. 6A). The tissues showing marked associations with 
SLE included Epstein-Barr virus (EBV)-transformed lym-
phocytes, spleen, pituitary, and whole blood (Fig.  6B). 

Fig. 3  (A) Manhattan map of genetic risk loci for IBD and SLE by MTAG. (B) Intersection gene map of IBD and SLE after conjfdr and MTAG analysis. (C) 
Gene-gene interaction network of comorbidity genes between IBD and SLE.SLE, Systemic Lupus Erythematosus; IBD, inflammatory bowel disease
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Eight tissues were markedly associated with CD, while 
seven tissues were associated with UC (Fig. 6C-D). Nota-
bly, the spleen and whole blood were common to both 
IBD and its subtypes, as well as SLE, suggesting shared 
tissue origins. Detailed analysis results are provided in 
Supplementary Tables S10-S13. Additionally, MAGMA 
tissue expression analysis was performed using Fuma to 
annotate the MTAG results (Fig.  7A-C). The enriched 
tissues included the spleen and whole blood, as well as 
the small intestine terminal ileum, colon transverse, 
adipose visceral omentum, lung, and EBV-transformed 
lymphocytes.

The results of the LDSC-SEG analysis demonstrate 
enrichment of IBD (including CD and UC) and SLE in 
both Spleen and Whole Blood tissues. This finding is fur-
ther validated by MAGMA results.

Discussion
This study demonstrated a marked global genetic cor-
relation between IBD (including CD and UC) and SLE 
at the genome-wide level. Local genetic analysis high-
lighted marked associations between SLE and IBD, as 
well as CD, particularly on chromosomes 10, 19, and 22. 
Quantile-quantile (QQ) plots at the SNP level suggested 
genetic overlap between these disorders. ConjFDR and 
MTAG analyses identified shared genetic risk loci and 
overlapping genes between the corresponding traits. Fur-
thermore, LDSC-SEG analysis revealed that IBD and its 
subtypes (CD and UC) share common tissue origins with 
SLE, specifically in the spleen and whole blood, providing 
evidence for a tissue-level connection. The MTAG-based 
MAGMA tissue expression analysis confirmed these 
findings. Overall, the study enhances understanding of 
the genetic architecture of IBD (including CD and UC) 
and SLE, revealing gene overlap, shared susceptibility 
genes, and enriched pathways.

Fig. 4  (A) Manhattan map of genetic risk loci for CD and SLE by MTAG. (B) Intersection gene map of CD and SLE after conjfdr and MTAG analysis. (C) Gene-
gene interaction network of comorbidity genes between CD and SLE.SLE, Systemic Lupus Erythematosus; CD, Crohn’s disease
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The close genetic association between IBD and SLE 
has been suggested in previous studies, confirming their 
shared genetic susceptibility [25, 26]. The beneficial 
effects of overlapping therapies further support this cor-
relation [27]. Historically, literature on the association 
between SLE and IBD has primarily been based on case 
reports and series. Brown et al. reported the first case of 
SLE combined with UC in 1956 [28]. Previous studies 
indicated that the prevalence of UC in the SLE popula-
tion is 0.4%, higher than in the general population [29]. 
A multicenter study in Israel involving 5,018 SLE patients 
and 25,090 controls found that the prevalence of CD in 
the SLE population was twice that of the control group 
[5]. A meta-analysis reported prevalence rates for IBD, 
CD, and UC in SLE populations as 1.19%, 0.85%, and 
0.69%, respectively [30]. While these studies avoided con-
founding factors such as environmental exposure, their 
results were not entirely convincing. The genetic per-
spective of this study avoids such confounding factors, 

providing new insights into the shared pathogenesis of 
the two diseases and confirming their genetic overlap.

The comorbid genes identified in this study are marked. 
UBE2L3, also known as UBcH7, is a component of the 
ubiquitin-conjugating enzyme E2. UBE2L3 is involved 
in the ubiquitination of numerous substrate proteins 
and regulates various signaling pathways, such as NF-κB, 
GSK3β/p65, and DNA double-strand break repair path-
ways. It exhibits abnormal expression in immune dis-
eases, tumors, Parkinson’s disease, and other conditions, 
promoting their occurrence and progression [31]. The 
conjFDR analysis results also indicate that UBE2L3 has 
a positive regulatory effect on IBD and SLE (Z > 0), with 
the smallest corresponding conjFDR value. The patho-
physiology of IBD, including its subtypes, is complex, 
and ubiquitination and post-translational modifications 
are crucial in its pathogenesis and development. As a 
representative of ubiquitin-modifying enzymes, UBE2L3 
can influence intestinal inflammation, function, and 
immune responses by regulating various aspects, such as 

Fig. 5  (A) Manhattan map of genetic risk loci for UC and SLE by MTAG. (B) Intersection gene map of UC and SLE after conjfdr and MTAG analysis. (C) Gene-
gene interaction network of comorbidity genes between UC and SLE.SLE, Systemic Lupus Erythematosus; UC, ulcerative colitis
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Fig. 7  The tissue expression analysis of MAGMA was obtained by MTAG. (A) SLE-IBD. (B) SLE-CD. (C) SLE-UC.SLE, Systemic Lupus Erythematosus; IBD, 
inflammatory bowel disease; CD, Crohn’s disease; UC, ulcerative colitis

 

Fig. 6  Tissues enrichment results of IBD (A), SLE (B), CD (C), and UC (D) using gene expression data of 53 tissues from GTEx.SLE, Systemic Lupus Erythe-
matosus; IBD, inflammatory bowel disease; CD, Crohn’s disease; UC, ulcerative colitis
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the intestinal barrier [32]. In a study on the gene expres-
sion profile of inflammatory pathway-related media-
tors in intestinal tissues of patients with UC, UBE2L3 
expression in the colonic mucosa (both quiescent and 
active) of patients was markedly higher than that in the 
control group (P < 0.05) [33]. Several GWAS analyses 
have reported UBE2L3 as a susceptibility gene for IBD 
[34–36]. UBE2L3 is also closely related to SLE, as it can 
regulate TLR7-induced B cell autoreactivity in SLE [37]. 
The UBE2L3 risk haplotype and variations can increase 
the risk of developing SLE [38, 39]. Fucosyltransfer-
ase 2 (FUT2) gene polymorphism affects the composi-
tion of the gut microbiota, which plays a crucial role in 
the pathogenesis of IBD [40]. FUT2 may influence the 
secretory status of ABO blood group antigens in the 
coagulation cascade, thereby increasing the probabil-
ity of developing SLE in the population [41, 42]. JAK2 
polymorphism and its interaction with other genes can 
increase susceptibility to IBD and its subtypes [43]. JAK2 
can stimulate the expression of pro-inflammatory and 
anti-inflammatory cytokines in monocyte-derived mac-
rophages, thereby affecting the pathogenesis of IBD [44]. 
In a mouse model, targeted inhibition of JAK2 was found 
to affect the IL-6 signal transduction pathway, ultimately 
improving SLE [45]. In cohort studies of Caucasian and 
Korean populations, FCGR2A was identified as a suscep-
tibility locus for IBD [46, 47]. Platelet transcriptome stud-
ies also found that FCGR2A polymorphism affects SLE 
disease activity [48]. Interferon regulatory factor 5 (IRF5) 
is a key transcription factor in the toll-like receptor sig-
naling pathway and is associated with autoimmune dis-
eases [49]. The insertion-deletion polymorphism of IRF5 
confers a risk of IBD [50]. IRF5 can influence IBD disease 
activity by regulating Th1 and Th17 immune responses 
and cytokines, making it a potential therapeutic marker 
for IBD [51]. The loss of negative regulation by IRF5 can 
lead to excessive production of type I interferon and 
other cytokines, ultimately leading to the development of 
SLE. To date, all studied SLE mouse models have shown 
that IRF5 can affect the progression of SLE by influenc-
ing dendritic cells and B cells [52]. To the best of our 
knowledge, these genes are being identified for the first 
time as playing pleiotropic roles in both IBD and SLE. 
This discovery not only aids in understanding the shared 
pathological mechanisms of these two conditions but 
may also contribute to the development of new biomark-
ers, improving early detection and disease prediction for 
these complex diseases.

The Fc receptor signaling pathway is notably enriched 
among the intersection genes of IBD and SLE, warrant-
ing significant attention. As part of the immunoreceptor 
tyrosine-based activation motif-associated receptor fam-
ily, Fc receptors play a crucial role in regulating humoral 
and innate immunity, which is crucial for effectively 

responding to infections and preventing chronic inflam-
mation or autoimmune diseases [53]. Targeting FcγR 
signaling can enhance colonic immunoglobulin G lev-
els and activate the FcγR receptor transcript pathway to 
treat IBD. Additionally, manipulation of FcγR signaling 
and the use of inhibitors have proven effective in treat-
ing IBD [54]. The Fc receptor signaling pathway controls 
the immune functions of monocytes and B cells, influ-
encing inflammatory factors such as tumor necrosis fac-
tor α, interleukin-10, and interleukin-13, which increases 
susceptibility to SLE [55]. Given the involvement of the 
Fc receptor signaling pathway in the long-term progres-
sion of chronic inflammation and autoimmune diseases, 
we recommend designing longitudinal cohort studies in 
the future to observe the dynamic changes of this path-
way during disease onset and progression. This approach 
will help identify critical time points and propose optimal 
intervention windows.

The LDSC-SEG enrichment in the spleen is a valu-
able finding. As the largest lymphoid organ, the spleen 
regulates the immune system throughout the body. The 
size of the spleen and the severity of IBD show a high 
degree of correlation, and spleen function is markedly 
impaired in patients with IBD [56, 57]. Celastrol, a bio-
active compound extracted from Tripterygium wilfordii, 
can improve SLE by preventing spleen and lymph node 
enlargement and reducing antinuclear antibodies and 
anti-double-stranded DNA antibody levels [58]. The 
inclusion of the small intestine terminal ileum and colon 
transverse in the MAGMA tissue expression analysis 
results of MTAG also indirectly confirms the existence 
of the gut-skin axis. Targeted therapies focusing on the 
spleen and the gut-skin axis may offer patients more pre-
cise and effective treatment options.

This study conducted research using four aspects, 
employing methods such as LDSC, GNOVA, SUPER-
GNOVA, conjFDR, LDSC-SEG, and MTAG. IBD and 
SLE were analyzed from three levels (genome, SNP, and 
tissue), making the process comprehensive and thorough. 
However, certain limitations exist. First, it is impossible 
to achieve a complete absence of LD. Second, there is a 
possibility of sample overlap. Additionally, the influence 
of behavioral, social, and environmental factors can-
not be entirely avoided. The GWAS data involved in this 
study were all from European populations, which may 
limit the generalizability of the research results to other 
populations. Finally, the entire analysis is essentially a 
computer simulation process, and corresponding valida-
tions at the population level have not been conducted.

Conclusion
Our study demonstrates significant genetic overlap 
between IBD (including CD and UC) and SLE, highlight-
ing their close genetic relationship and providing new 
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evidence of shared genetic associations. However, these 
genetic insights require further validation across diverse 
populations to assess their generalizability and applicabil-
ity. Additionally, our multi-level evaluation of pleiotropy 
across loci, genes, and tissues may offer a crucial foun-
dation for developing novel precision therapies. Future 
research should focus on translating these findings into 
actionable therapeutic interventions to improve clinical 
outcomes for patients with IBD and SLE.

In summary, these discoveries not only offer new per-
spectives on the shared pathophysiological mechanisms 
of IBD and SLE but also point toward potential directions 
for future clinical interventions.
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