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Abstract
Background  Huntington’s disease (HD) is a hereditary neurological disorder caused by mutations in HTT, leading 
to neuronal degeneration. Traditionally, HD is associated with the misfolding and aggregation of mutant huntingtin 
due to an extended polyglutamine domain encoded by an expanded CAG tract. However, recent research has also 
highlighted the role of global transcriptional dysregulation in HD pathology. However, understanding the intricate 
relationship between mRNA expression and HD at the cellular level remains challenging. Our study aimed to elucidate 
the underlying mechanisms of HD pathology using single-cell sequencing data.

Results  We used single-cell RNA sequencing analysis to determine differential gene expression patterns 
between healthy and HD cells. HD cells were effectively modeled using a residual neural network (ResNet), which 
outperformed traditional and convolutional neural networks. Despite the efficacy of our approach, the F1 score 
for the test set was 96.53%. Using the SHapley Additive exPlanations (SHAP) algorithm, we identified genes 
influencing HD prediction and revealed their roles in HD pathobiology, such as in the regulation of cellular iron 
metabolism and mitochondrial function. SHAP analysis also revealed low-abundance genes that were overlooked by 
traditional differential expression analysis, emphasizing its effectiveness in identifying biologically relevant genes for 
distinguishing between healthy and HD cells. Overall, the integration of single-cell RNA sequencing data and deep 
learning models provides valuable insights into HD pathology.

Conclusion  We developed the model capable of analyzing HD at single-cell transcriptomic level.
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Background
Huntington’s disease (HD) is a neurodegenerative dis-
order caused by a CAG-repeat expansion in the HTT 
gene, which leads to the progressive degeneration of 
nerve cells. The CAG mutation causes a polyglutamine 
expansion in huntingtin, which results in misfolding and 
aggregation of polyglutamine (polyQ)-huntingtin. These 
soluble aggregates disrupt various cellular processes 
through gain and loss of function, leading to transcrip-
tional dysregulation and other pathologies. Despite the 
crucial role of HTT in neurodevelopment, its precise 
function remains elusive [1]. HTT is intricately involved 
in various cellular activities associated with cytoplasmic 
and nuclear functions, including gene expression, intra-
cellular signaling, transport, metabolism, neurogenesis, 
and DNA repair [2]. The expansion of a CAG trinucleo-
tide DNA sequence, encoding a polyglutamine motif in 
HTT, is implicated in the pathogenesis of HD. Although 
the CAG-repeat expansion mutation within the Hunting-
ton locus (4p16.3) in Exon1 of the HTT gene is well-doc-
umented, the mechanisms underlying neuron apoptosis 
and brain susceptibility remain unclear [1–3].

Transcriptional dysregulation alters downstream cellu-
lar processes, as inferred from sequencing data [4]. Iden-
tifying the roles of various genes and their expression 
patterns over the course of disease onset and progression 
remains challenging. Nonetheless, evidence suggests that 
the polyQ protein in HTT exon 1 tends to form amyloid-
like fibrillar aggregates, potentially mediating toxicity [5]. 
Protein aggregation is common in neurodegenerative dis-
orders like Alzheimer’s disease, Parkinson’s disease, and 
amyotrophic lateral sclerosis, but in Huntington’s disease, 
this aggregation particularly involves polyQ HTT protein.

Recent research has revealed significant findings about 
HD. For instance, Snell and Handley discovered that 
urea metabolism is disrupted in both HD patients and a 
sheep model, detecting elevated urea levels early in the 
disease. This suggests a potential systemic issue and indi-
cates that targeting urea metabolism could be a viable 
therapeutic strategy for HD [6]. Similarly, Carroll and 
Bragg’s research on HttQ111/+ mice showed early, pro-
gressive, striatal-specific molecular changes and subtle 
behavioral alterations, emphasizing the importance of 
knock-in models for studying early therapeutic interven-
tions [7]. Hood and Ament also highlighted the value of 
HttQ111/+ mice in reflecting human HD pathology and 
testing neuroprotective therapies [8]. Furthermore, Car-
roll and Coffey demonstrated that these mice develop 
early molecular changes and behavioral alterations simi-
lar to early HD, underscoring their potential for early 
therapeutic intervention studies [9]. Price and Ament 
characterized HttQ111/+ mice as generally healthy dur-
ing their first year, with early striatal-specific changes, 
supporting their use in studying early therapeutic 

strategies and their better translatability to human 
HD compared to transgenic models [4]. Additionally, 
Ament and Malaiya identified core transcription factors 
involved in HD by reconstructing transcriptional regula-
tory networks in the mouse and human striatum, which 
could contribute to understanding and targeting HD 
[10]. Recent advances in single-cell transcriptomic data 
analysis have elucidated some pathogenic mechanisms 
underlying HD. Transcriptomic profiling revealed cell 
cycle–related signaling predominantly in the mitotic cell 
population, namely, neuronal stem cells (NSCs), rather 
than in coexisting striatal neurons [11]. Charlene et al. 
identified a sustained presence of NSCs due to aberrant 
WNT signaling, which could be ameliorated by WNT 
inhibition, thereby establishing a potential therapeutic 
target for future exploration [11].

These findings highlight the challenges associated with 
transcriptional data analysis and provide a rationale for 
implementing machine learning algorithms to improve 
the interpretation of sequencing data. State-of-the-art 
machine learning techniques, such as deep learning 
algorithms, are increasingly used to map transcriptomic 
profiles to phenotypic variations, such as those in tis-
sue types, cancer staging and grading, drug responses, 
disease outcomes, and glycan features, thereby facilitat-
ing a molecular system-level understanding and inter-
pretation of phenotypic outcomes [12–15]. In terms of 
model interpretation, the use of SHapley Additive exPla-
nations (SHAP) to elucidate deep learning models aids 
in addressing biological questions [16, 17]. Traditional 
differential expression analysis (DEA) exhibits two main 
drawbacks: (1) susceptibility to information loss due to 
the arbitrariness of p-values and fold change thresholds 
[18, 19] and (2) a bias toward highly expressed genes 
[18–20]. Using SHAP, Yap et al. discovered genes that 
were overlooked using DEA [14], thereby underscor-
ing the ability of SHAP to detect subtle yet significant 
differences.

Herein, we established a deep residual neural net-
work (ResNet) to differentiate between healthy and HD 
cells using single-cell transcriptomic data and applied 
SHAP to obtain biological insights into the early pro-
cesses involved in HD. To the best of our knowledge, 
deep learning algorithms using transcriptomes as input 
have not been previously employed in HD research. Our 
approach highlights the potential of interpretable deep 
learning models in revealing novel regulatory mecha-
nisms underlying HD, providing a new avenue for under-
standing the disease at a molecular level.

Methods
scRNA-seq data processing
Single-cell RNA sequencing (scRNA-seq) data were 
sourced from the Cellular Drug Response Atlas database 
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(Project ID is GEND000121) and the study “Single-
nucleus RNA-seq identifies Huntington disease astrocyte 
states” [21, 22]. Sequencing data preprocessing for each 
sample was conducted using Cell Ranger (version 7.1.0; 
10X Genomics) with default parameters and Seurat R 
package (version 4.1.3), providing gene expression matri-
ces [23]. Initial processing of the gene expression matri-
ces involved the following steps: (1) genes expressed in 
≤ 3 cells and cells expressing ≤ 200 genes were removed. 
The percentage of mitochondrial reads tolerated per cell 
was set at 15%. (2) Normalization was performed using 
SCTransform function. (3) Principal component analysis 
(PCA) on the 2000 most variable features was conducted 
using the FindVariableFeatures function, retaining 10 
dimensions. (4) Cells were clustered using the FindClus-
ters function, employing the Louvain algorithm with a 
resolution of r = 1.7. The neighbors used for clustering 
were identified using the FindNeighbors function. (5) 
Marker genes were determined using the FindAllMarkers 
function, performing the Wilcoxon rank-sum test with 
min.pct and logfc.threshold parameters set to 0.1.

Model training
We designed a residual neural network (ResNet) named 
DeepHD, which incorporates additional residual 

layers, enhancing its performance on imbalanced datas-
ets (Fig. 1).

The input data was randomly divided into a training set 
(80%) and a validation set (20%). Utilizing Python 3.10.9, 
we constructed the ResNet, deep neural network, and 
convolutional neural network, training each model with 
the same training, validation, and test sets.

For the model architecture in ResNet, models were 
trained using the PyTorch framework with mini-batches 
of size 64. The best-performing model featured one hid-
den convolutional layer, three hidden residual layers, 
and two hidden fully connected layers. The convolu-
tional layer (6 channels; kernel size: 1; stride: 1) was fol-
lowed by a batch normalization layer. The first residual 
layer comprised two plain convolutional layers (the first: 
6 channels; kernel size: 3; stride: 4; padding: 1, the sec-
ond: 6 channels; kernel size: 3; stride: 1; padding: 1), each 
followed by batch normalization and leaky ReLU activa-
tion layers (negative slope 0.01). Shortcut connections (6 
channels; kernel size: 1, stride: 4) were inserted to con-
vert this plain convolutional network into its residual 
counterpart. Another residual layer comprised two plain 
convolutional layers (6 channels; kernel size: 3; stride: 
1; padding: 1), each followed by batch normalization 
and leaky ReLU activation layers (negative slope 0.01). 
Furthermore, shortcut connections (6 channels; kernel 

Fig. 1  Graphical presentation of the residual neural network structure, a deep learning architecture for analyzing single-cell gene expression data, 
focuses on distinguishing between normal and Huntington’s disease samples. It consists of input layers, performer layers with CNN blocks, and residual 
blocks containing linear layers, activations, and convolutions. This network can classify samples as either normal or Huntington’s disease. Residual con-
nections help train deeper networks effectively
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size: 1, stride: 1) were inserted to transform this into its 
residual version. Each residual layer was followed by max 
pooling layers (filter size: 2; stride: 2). The first fully con-
nected layer (16 nodes) was followed by a leaky ReLU 
activation layer (negative slope 0.01) and a batch normal-
ization layer. The second fully connected layer was fol-
lowed by a sigmoid activation layer. Moreover, the initial 
learning rate was set to 0.001. The binary cross-entropy 
loss function and a cosine annealing learning rate sched-
uler were employed for model optimization.

The architectures for the deep neural network and 
convolutional neural network used for comparison were 
derived from Daniel Bojar’s previous research [15].

Differential gene expression analysis
We used the Seurat functions FindMarkers and FindAll-
Markers for differential gene expression analysis. Par-
ticularly, FindMarkers was used to identify marker genes 
between HD cells and normal cells, while FindAllMark-
ers was employed to identify marker genes between each 
cluster and other cells. We set the absolute log2(fold 
change) threshold to the default value of 0.25, and the 
Wilcoxon ranked sum test was used to determine p-val-
ues. All p-values for each cell type and analysis test were 
adjusted for multiple testing using the Benjamini–Hoch-
berg correction.

Model interpretation with SHAP
We uses the DeepExplainer function of the SHAP library 
(version 0.40.0) implementation to calculate SHAP values 
[24]. Based on our computational resources, SHAP val-
ues were computed for 2000 cells randomly selected from 
the entire dataset. The SHAP values used for biologi-
cal interpretation were the mean absolute values of the 
SHAP values for each feature.

Permutation feature importance analysis
Keeping the labels unchanged, each feature (gene) col-
umn was randomly permuted. The model made pre-
dictions using the permuted expression values, and 
prediction loss was calculated using the binary cross-
entropy loss function. A total of 25 permutations were 
performed, and the average loss from all permutations 
was computed for each gene. Permutation feature impor-
tance for a gene was defined as the mean model loss 
minus the original model loss (i.e., the model loss when 
making predictions with the original expression values).

Analysis of individual joint feature contributions
A SHAP dependence plot was created using the depen-
dence plot function from the SHAP library. This plot 
illustrated the relationship between the feature’s value 
(x-axis) and its corresponding SHAP value (y-axis). The 
color of the plot represented an interaction feature. The 

vertical dispersion of the data points indicated interac-
tion effects. Gray ticks along the y-axis represented data 
points where the feature’s value was NaN.

Pathway enrichment analysis and protein interaction 
network analysis
SHAP gene ontology pathway enrichment analysis was 
performed via the online portal of ShinyGo version 0.77 
(http://bioinformatics.sdstate.edu/go77/) [25]. Genes 
with the top 10% (90th percentile) median absolute 
SHAP values were compared to all genes in the dataset 
(background genes; top 10% genes included). The false 
discovery rate cutoff was set at 0.05. DEA Gene Ontology 
(GO) pathway enrichment analysis was performed using 
the R tool “clusterProfiler” [23, 26].

Results
Single-cell RNA sequencing analysis revealed differential 
expression between healthy and adult-onset HD cells
The analysis of single-cell transcriptomic data can mark-
edly enhance our understanding of the pathogenic 
mechanisms underlying HD. Therefore, we used recently 
accessible single-cell RNA sequencing data [11], which 
includes two datasets derived from induced pluripotent 
stem cells (iPSCs) of (i) unaffected control individu-
als and (ii) HD patients (Fig.  2, left panel). These iPSCs 
were differentiated into neuron cultures enriched with 
medium spiny neurons, the cell type predominantly 
impacted in HD. During differentiation, a persistently 
observed population of SCs positive for cell-cycle protein 
cyclin D1 (D1+) was selectively noted in adult-onset HD 
iPSC-derived neurons.

A list of upregulated marker genes was prepared for 
each cell type (Table S1). Using this list, we performed 
GO analysis and revealed specific enrichment of genes 
related to cell identity in different cell types (Fig. 3).

In line with the designated annotations, mature neu-
rons exhibit dominant enrichment in processes related 
to macroautophagy [27], proteasome-mediated ubiqui-
tin-dependent protein catabolic processes, Golgi vesicle 
transport [28, 29], proteasomal protein catabolic pro-
cesses, and endosomal transport [30]. These processes 
suggest a robust system for cellular maintenance, pro-
tein turnover, and trafficking. NSCs demonstrate potent 
enrichment in cytoplasmic translation [31], ribonucleo-
protein complex biogenesis [32], ribosome biogenesis, 
rRNA processing, and rRNA metabolic processes [33]. 
This profile indicates high activity in protein synthesis 
and regulation, necessary for future differentiation and 
specialization. Spiny neurons positive for cyclin D1 (D1+) 
and cyclin D2 (D2+) were notably enriched in sterol and 
cholesterol biosynthesis and metabolism as well as sec-
ondary alcohol metabolic processes [34]. This suggests 
an essential role of lipid metabolism in these neurons, 

http://bioinformatics.sdstate.edu/go77/
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which could be associated with their ability to modulate 
neuronal signals. Moreover, spiny and cholinergic stria-
tal neurons positive for cyclin D1 (D1+) were involved 
in regulating transsynaptic signaling [35], modulating 
chemical synaptic transmission, protein localization to 
the cell periphery, and axon development. These neurons 
might also play roles in neuronal communication and 
neural circuit formation. Immature neurons exhibit spe-
cific enrichment in response to endoplasmic reticulum 
stress [36], proteasomal protein catabolic process, prote-
asome-mediated ubiquitin-dependent protein catabolic 
process, in response to topologically incorrect protein 
[37], and Golgi vesicle transport [38]. These enrichments 
reflect responses to protein misfolding, indicative of 
early-stage adaptation mechanisms in HD neurons. 
Neural progenitor cells (NPCs), the neuron precursors, 
exhibited enrichment in cytoplasmic translation, axon 
development [39], and translational initiation, reflect-
ing their essential role in NPC development. Moreover, 
D1 + spiny neurons exhibit a specific signature of aero-
bic respiration, oxidative phosphorylation, cellular res-
piration [40], ATP metabolism [41], and ATP synthesis 
coupled with electron transport, suggesting a high energy 
demand and an important role in maintaining the elec-
trical activity of neural network. Overall, our preliminary 
analyses identified several biologically relevant cell clus-
ters (Fig. 2, right panel).

Training a deep residual model to predict HD or healthy 
phenotypes from the transcriptome
We used ResNet to model HD cells based on transcrip-
tome-wide gene expression data; Fig.  2 illustrates their 

distribution in the t-distributed stochastic neighbor 
embedding (t-SNE) plot. Next, we assigned binary labels 
to cells based on cell-type data. In particular, we labeled 
healthy cells as “label 0” and HD cells as “label 1” to 
establish robust labels comparable between datasets. This 
robustly separated biologically distinct populations and 
enabled subsequent analyses. Accordingly, we performed 
a binary classification, using gene expression values as 
input and the probabilities for the positive phenotype 
(label 1) of the corresponding cells as output.

We developed an artificial neural network classifier, 
including three residual layers (Fig. 1), whose workflow is 
shown in Fig. 4. In the test set, among the three artificial 
neural network architectures, our designed architecture 
surpassed the other two in terms of both AUC and F1 
score (Fig. 5a–d). This classifier achieved an accuracy of 
98.87% for predicting the label 0 phenotype and 96.54% 
for predicting the label 1 phenotype (AUC: 0.9967, F1 
score: 0. 9683; Fig.  5a and d). In the existing standard 
neural network, the F1 score was lower, only 0.8245 
(Fig. 5b). The prediction accuracies were 98.34% for the 
label 0 phenotype but only 73.07% for the label 1 phe-
notype, indicating a significant imbalance (Fig.  5e). The 
existing convolutional neural network performed even 
worse, with an accuracy of 98.39% for the label 0 pheno-
type and only 74.49% for the label 1 phenotype (Fig. 5e). 
This decline in performance was likely due to imbalanced 
training data, further demonstrating the robustness of 
our designed ResNet model in handling imbalanced data.

Figure  6 illustrates the training and validation accu-
racy (a–c) and loss curves (d–f) for the residual network 
based on three distinct datasets: iPSC-derived neurons, 

Fig. 2  t-SNE visualization of the integrated single-cell RNA sequencing data. The left panel depicts the distribution of healthy and Huntington’s disease 
samples within the t-SNE plot, while the right panel illustrates the distribution of various cell types in the same t-SNE plot
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astrocytes, and neurons. The training and validation 
accuracy curves for all three datasets rapidly stabilized 
around 98–99% after a few epochs, indicating high 
accuracy. The loss curves showed that the training loss 
steadily decreased and stabilized around 0.05, while the 
validation loss remained slightly higher and more vari-
able, stabilizing around 0.1 for iPSC-derived neurons and 
astrocytes datasets, and around 0.2 for the neuron data-
set. Despite fluctuations in validation loss, the overall 
performance of the residual network was consistent and 
robust across datasets.

Identification of genes with high Shapley value using SHAP
Subsequently, we used SHAP to identify significant 
genes for prediction. For every input sample (cell), the 
SHAP algorithm computes a SHAP value for each feature 
(gene), indicative of the feature’s influence on the antici-
pated model output for that particular input [24]. SHAP 
values may be positive or negative, denoting additive or 
subtractive impacts on the model output. The median 
absolute SHAP value is often used to evaluate global fea-
ture importance.

Next, we computed the median absolute SHAP val-
ues for all genes (Table S2) to obtain gene rankings. In 
both healthy and Huntington models, only a small sub-
set of genes had high importance. We selected genes 

Fig. 3  Enrichment in biological processes for marker genes in each cluster and associated p-values were generated using clusterProfiler. Each point in 
the plot corresponds to a specific biological process, and its size indicates the count of genes associated with that process. Each point is color-coded ac-
cording to the significance level (p.adjust) involved in that particular biological process, with darker red points representing more statistically significant 
enrichments. The x-axis labels represent different cell types or neuron subpopulations, including D1 and D2 + spiny neurons, D1 + cholinergic striatal neu-
rons, D1 + spiny neurons, immature neurons, mature neurons, NPCs (Neural Progenitor Cells), and NSCs (Neural Stem Cells). The y-axis lists the enriched 
biological processes. For a complete list of GO enrichment results, see Supplemental Table S1
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Fig. 5  Performance comparison of the three artificial neural network architectures (residual neural network, standard neural network, convolutional 
neural network). Figures a to c show the F1 score curves for the three architectures over epochs on the training set (blue curve) and validation set (or-
ange curve). Figure d displays the ROC curves on the validation set, with the blue solid line representing the ROC curve of the residual neural network, 
the green dashed line representing the ROC curve of the convolutional neural network, and the orange dashed line representing the ROC curve of the 
standard neural network. Figure e illustrates the accuracy of the three architectures in predicting labels for Huntington and Normal on the same dataset

 

Fig. 4  The workflow of an interpretable deep learning framework includes data preprocessing, model training, model evaluation, and model interpretation
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corresponding to the top 25 SHAP rankings (SHAP 
genes). For most SHAP genes (e.g., MALAT1, RPS2, and 
RPS6; Fig. 7), increased expression tended to hint toward 
HD prediction, while the reverse was true for a smaller 
subset (e.g., FTH1, EEF1A1, and VAMP2; Fig. 7).

Next, we performed pathway enrichment analysis on 
SHAP genes. The most enriched pathways (biological 
processes) included SRP-dependent cotranslational pro-
tein targeting to the membrane and protein targeting to 
the ER (Fig. 8, left panel), aligning with established roles 
in HD [42, 43].

SHAP genes explain the pathophysiology of HD
One of our goals was to determine whether the most 
predictive SHAP genes identified through this data-
driven approach were involved in the pathophysiology of 
HD. A highly predictive gene can be biologically associ-
ated with HD in several ways, including the following: 
(i) alternative splicing, transcriptional regulation, and 
posttranscriptional regulation [44]; (ii) HTT-mediated 
ribosome stalling [45, 46]; and (iii) direct impairment 
of mitochondrial function by mHTT as well as indirect 
dysregulation of transcriptional processes [47]. Indeed, 
many highly predictive SHAP genes (top 25 SHAP genes) 
have been implicated in HD, suggesting their high bio-
logical relevance. These genes were also enriched in 

ribosome-related and NADH-related functions, as previ-
ously shown [45, 48].

We first used a t-SNE plot to evaluate the expression 
levels of high-ranking SHAP genes and observed their 
consistent upregulation across HD cell populations 
(Fig. 9 and S1), which indicated their likely role in the cel-
lular response to HD. Among these genes, the metastasis-
associated lung adenocarcinoma transcript 1 (MALAT1) 
lncRNA is involved in alternative splicing, transcriptional 
regulation, and posttranscriptional regulation, acting as a 
miRNA sponge that interacts with RNA.

FTH1 encodes the ferritin heavy subunit, a major intra-
cellular iron storage protein in both prokaryotic and 
eukaryotic cells. At the expression level, specific FTH1 
upregulation was observed in HD cells (Fig. 9), suggest-
ing the importance of disrupted brain iron homeosta-
sis in the pathogenesis of neurodegenerative diseases 
and providing a novel perspective on the role of iron in 
neurodegeneration.

In our experiments, mitochondrial cytochrome c oxi-
dase genes (MT-CO3, MT-CO2, and MT-CO1) exhibited 
specific upregulation in HD cells (Fig.  9 and S1), as did 
genes encoding ribosomal proteins (RPs) (e.g., RPS2, 
RPS6, and RPS3A). Unlike MT-CO3, RP genes were pre-
dominantly expressed in NSCs and NPCs, with decreased 

Fig. 6  Performance of the residual neural network across three datasets. Figures a to c show the accuracy curves over epochs for the iPSC-derived 
neurons dataset, astrocytes dataset, and neurons dataset, respectively, with the blue curve representing performance on the training set and the orange 
curve representing performance on the validation set. Figures d to f display the BCELoss curves over epochs for the iPSC-derived neurons dataset, astro-
cytes dataset, and neurons dataset, respectively, with the blue curve representing performance on the training set and the orange curve representing 
performance on the validation set
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expression in mature neurons, consistent with previous 
research [49].

To examine the interaction of a prominent high-
ranking SHAP gene with other features, we plotted the 
prominent feature value against its SHAP value across 
the entire dataset. In addition, we colored the value of 

several other features with strong interactions on the 
prominent feature. Figure 10 and S2 show that, although 
most RPS6 values were < 25, the extent of RPS6 impact 
on the prediction varied, as evidenced by the vertical 
dispersion of dots at values < 25. This suggests that other 
features influence the contribution of RPS6. Conversely, 

Fig. 8  The left panel shows the Gene Ontology pathway enrichment analysis of the SHAP genes. The x-axis represents fold enrichment, indicating how 
much more likely the given biological process is represented among the genes of interest compared to the background population. The y-axis shows 
the biological processes themselves, sorted in decreasing order of significance. Each circle in the chart corresponds to a specific biological process, with 
the size of the circle representing the number of genes involved in each process, ranging from 100 to 350 genes. The color of the circles corresponds to 
the log10(FDR) values, which measure the statistical significance of the enrichment. Higher values indicate lower FDR, meaning greater confidence in the 
observed enrichment.The right panel displays a volcano plot showing differentially expressed genes between HD and healthy cells. Blue circles represent 
genes with significantly downregulated expression, red circles represent genes with significantly upregulated expression, and gray circles denote genes 
with nonsignificant differences. The significance threshold was set at P < 0.05

 

Fig. 7  SHAP summary plot containing the 25 features with the trained residual neural network across the three datasets. The SHAP contributions for each 
data point are summed for each computed gene score
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for values > 25, the interaction effect significantly dimin-
ished, as indicated by the lower vertical dispersion of the 
dots. The distribution of red dots above the y-axis 0.0 and 
the values of RPS3A, RPL10, RPL3, RPL13, and RPS14 on 
the sample dots imply that higher RPS3A, RPL10, RPL3, 
RPL13, and RPS14 expression levels correspond to a 
more positive contribution from RPS6. This indicates 
cooperative expression of RP genes. However, the color 
of dots representing MALAT1 suggests that MALAT1 
attenuates the contribution of RPS6 for values > 25. This 
implies that higher MALAT1 expression levels likely 
decrease RPS6 expression. Similarly, the colors of dots 
representing FTH1, MT-CO1, MT-CO2, and MT-CO3 
suggest that high expression levels of these genes posi-
tively influence the contribution of RPS6.

SHAP genes include low-abundance genes not captured 
through DEA
SHAP can reveal gene subsets overlooked by traditional 
DEA [14]. We tested this in our dataset as well as evalu-
ated whether any SHAP-exclusive genes had biological 
relevance. In our data, DEA between HD and healthy 
populations applying a false discovery rate threshold 
of 0.05, indicated 762 DEGs (3.7% of all genes; Table 
S3), significantly fewer than the number of SHAP genes 
detected (2047 genes or 10% of all genes).

DEA tends to favor highly expressed genes [18–20]. 
Among DEA genes, only a small subset overlapped with 
top-ranking SHAP genes, such as RPS3A, RPS2, and 
MALAT1 (Fig.  8, right panel). DEA predominantly cap-
tures highly abundant housekeeping genes, whereas 
SHAP exhibits less inclination toward high-abundance 

Fig. 9  Feature plot of cells that are positive for each of the four high-ranking SHAP genes, respectively, in the t-SNE projection
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genes. Notably, mitochondrial genes implicated in neuro-
degenerative diseases, such as the members of the cyto-
chrome C oxidase gene family (MT-CO1, MT-CO2, and 
MT-CO3), were absent among DEA genes. Overall, our 
findings suggest that SHAP is more effective than tradi-
tional DEA in identifying low-abundance genes of sig-
nificant biological relevance for distinguishing between 
healthy and HD cells.

Discussion
To the best of our knowledge, this is the first application 
of deep learning models in HD research at the transcrip-
tomic level. Currently, all applications of deep learning 
models in HD research are focused on radiomics or to 
predict macroscopic behaviors [50, 51]. Consequently, 
research on the underlying mechanisms of HD patho-
genesis has not yet significantly benefited from the rapid 
advancement of computational tools, which are used for 
predicting splicing from primary sequences [52]. Despite 
the wide use of state-of-the-art artificial intelligence tech-
nologies for single-cell sequencing data [15], they remain 
underutilized in HD research. Single-cell RNA has just 
started being used to investigate the pathogenesis of HD 
using deep learning, as demonstrated in this study.

Previous studies have explored the feasibility of pre-
dicting phenotypes using single-cell RNA data and 
deciphering biological processes through model inter-
pretation, with model classification accuracy of > 85% 
(AUC: 0.9123, F1 score: 0.8245) [15]. However, significant 
disparities in classification accuracy can arise with imbal-
anced training data. The accuracy of predicting healthy 
results in the standard neural network is 98.34%, whereas 

that of predicting HD is only 73.07% (Fig. 5e). Therefore, 
we refined our model by constructing a ResNet model 
for high-precision prediction. The accuracy of predicting 
healthy cells improved to 98.87%, whereas that of pre-
dicting HD increased to 96.54 (Fig. 5e).

Using SHAP, we further demonstrated that, in addition 
to predicting cell phenotypes, our model could be uti-
lized for large-scale extraction of biological correlations 
between transcriptomic data and disease mechanisms. 
Notably, the most crucial genes for predicting the HD 
phenotype significantly overlapped with those obtained 
through DEA. However, DEA tends to favor highly 
expressed genes [18–20]. SHAP allowed us to identify 
the role of mitochondrial genes, which was not detected 
with DEA. Existing evidence also indicates an increase 
in ribosomal occupancy of MT-CO1, MT-CO2, and 
MT-CO3 [53]. Previous research suggested an increase in 
mitochondrial oxidative phosphorylation (mt-OXPHOS) 
transcript (MT-CO3, MT-CO2, and MT-CO1) occu-
pancy in HD cells [54]. Furthermore, previous studies 
have hypothesized that the binding of mHTT to mito-
chondrial membranes can induce ribosomal occupancy 
in the matrix, thereby regulating mitochondrial protein 
synthesis through transmembrane mitochondrial signal-
ing [54].

Herein, we employed joint feature contribution analy-
sis based on SHAP values to investigate the collab-
orative contributions among RP genes, mitochondrial 
cytochrome c oxidase genes, FTH1, and MALAT1. High 
expression of mitochondrial cytochrome c oxidase genes 
and FTH1 promotes RPS6 expression, while MALAT1 
has the opposite effect. RP genes display similar 

Fig. 10  The SHAP value to feature value plot for the RPS6 gene, with the respective other gene (FTH1, MALAT1, MT-CO1, etc.) values color-coded. Positive 
SHAP values indicate an association with the high expression class, while negative SHAP values indicate an association with the low expression class of 
genes
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expression patterns. Recent studies have indicated that 
the lysosomal autophagy pathway plays a crucial role in 
iron distribution within cells, with defects in this pathway 
being often associated with the pathogenesis of neurode-
generative diseases [55]. MALAT1 is highly expressed in 
the brain and is involved in synaptic formation and other 
neurological pathways [44]. Furthermore, there is a close 
association between MALAT1 and the pathogenesis of 
Parkinson’s disease, where it may serve as a diagnostic 
biomarker [44]. In this study, MALAT1 was particularly 
upregulated in HD spiny neurons (Fig. 9), suggesting its 
potential relevance in HD pathogenesis.

Our study demonstrated that (i) cell phenotypes can 
be modeled through artificial neural networks using 
transcriptomic data, (ii) biological processes associated 
with HD pathology can be deciphered through ResNet 
model interpretation using SHAP, and (iii) this combined 
approach may help in the discovery of new pathogenic 
mechanisms and therapeutic strategies for HD.

Our study had some limitations. Notably, our model 
was trained on a specific cell type. Thus, it cannot be 
generalized to other cell types or diseases. For new cell 
types, the model must be trained on new data. Although 
the same model architecture can be used for this pur-
pose, some important genes with low expression may not 
always be measured. In addition, our joint contribution 
analysis did not reveal the actual regulatory relationships 
between genes. Future research should focus on collect-
ing as much data as possible on a wide range of diseases. 
In addition to transcriptomic data, integrating more 
data modalities, such as proteomics or miRNA data, 
into ResNet can enhance the robustness of experimen-
tal conclusions. Second, our findings were validated by 
knocking out SHAP genes, for instance, using morpho-
lino antisense oligos (MASOs) [56]. Finally, existing gene 
regulatory networks were explored to validate the results 
of the joint contribution analysis.

Conclusions
In summary, this study pioneers the application of 
deep learning models in HD research at the transcrip-
tomic level, differing from the conventional focus on 
radiomics or macroscopic behavior prediction. Our find-
ings highlight the potential of single-cell RNA data and 
advanced artificial intelligence techniques in elucidating 
the intricate mechanisms of HD pathogenesis. Notably, 
refinement of our model, specifically the construction 
of a ResNet model, substantially enhanced prediction 
accuracy, paving the way for precise understanding of 
cell phenotypes and disease processes. Through SHAP 
analysis, we demonstrated critical genes implicated in 
HD pathology, shedding light on previously undetected 
molecular pathways. Although our study contributes 
valuable insights, limitations such as cell-type specificity 

and incomplete regulatory understanding highlight ave-
nues for future research. Thus, by integrating diverse data 
modalities and expanding dataset breadth, we antici-
pate further advancements in unraveling HD pathogenic 
mechanisms and developing therapeutic strategies.
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