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Abstract
Background  Structural variations (SVs) are widespread across genome and have a great impact on evolution, 
disease, and phenotypic diversity. Despite the development of numerous bioinformatic tools, commonly referred to 
as SV callers, tailored for detecting SVs using whole genome sequence (WGS) data and employing diverse algorithms, 
their performance necessitates rigorous evaluation with real data and validated SVs. Moreover, a considerable 
proportion of these tools have been primarily designed and optimized using human genome data. Consequently, 
their applicability and performance in Avian species, characterized by smaller genomes and distinct genomic 
architectures, remain inadequately assessed.

Results  We performed a comprehensive assessment of the performance of ten widely used SV callers using 
population-level real genomic data with the validated five common types of SVs. The performance of SV callers varies 
with the types and sizes of SVs. As compared with other tools, GRIDSS, Lumpy, Wham, and Manta present better 
detection accuracy. Pindel can detect more small SVs than others. CNVnator and CNVkit can detect more medium and 
large copy number variations. Given the poor consistency among different SV callers, the combination calling strategy 
is not recommended. All tools show poor ability in the detection of insertions (especially with size > 150 bp). At least 
50× read depth is required to detect more than 80% of the SVs for most tools.

Conclusions  This study highlights the importance and necessity of using real sequencing data, rather than simulated 
data only, with validated SVs for SV caller evaluation. Some practical guidance and suggestions are provided for SV 
detection in future researches.
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Background
Structural variations (SVs) are an important source of 
genomic mutations, which are diverse in type and size, 
ranging anywhere from 50  bp to well over megabases 
(Mb) of sequence, affecting more size of the genome 
than single nucleotide polymorphisms (SNPs) and short 
insertions and deletions (INDELs) (≤ 50 bp) [1–4]. Gen-
erally, according to different types of variation, SVs can 
be classified into (a) deletion (DEL); (b) insertion (INS); 
(c) duplication (DUP), including tandem DUP and inter-
spersed DUP; (d) inversion (INV); and (e) translocation 
(BND) [3, 5]. DEL and DUP are also known as Copy 
Number Variation (CNV). Numerous studies have shown 
that SVs have a great impact on human evolution [6, 7] 
and diseases [8–11], and SVs also play important roles 
in domestication [12, 13] and artificial breeding pro-
cesses, which shape the phenotypic diversity of domes-
tic animals and plants [14–17]. For example, in domestic 
chickens, a 17.7 kb DEL and a 4.2 kb EAV-HP INS cause 
feathered legs [18] and blue eggshell phenotype [19, 20], 
respectively (Figure S1A-B). CNV of the EDN3 gene 
together with a complex SV rearrangement are respon-
sible for dermal hyperpigmentation [21] (Figure S1C-E).

Identifying SV is essential for genomic interpretation 
and functional verification. With the rapid accumulation 
of WGS data, a large number of SV detection tools (i.e., 
SV callers) have been developed [5, 22–24] using the fol-
lowing four methods alone or in combination [25, 26]: 
(a) Read Pair (RP) based tools use the insert size infor-
mation of pair-end reads to characterize the discordant 
alignment features; (b) Read Depth (RD) based tools 
refer to the read depth information to detect CNVs; (c) 
Split Read (SR) based tools utilize the split features to 
identify the breakpoints of SVs; and (d) Assembly (AS) 
based approaches detect SVs by assembling the sequenc-
ing reads into contigs. Previous studies have shown that 
the detection ability and accuracy were different between 
simulated and real data for various types and sizes of 

SVs [22, 23]. To date, no single SV caller can detect all 
types of SVs across a wide range of sizes [24, 27]. Studies 
have applied multiple SV callers and adopted overlapping 
results [28–31] to reduce false positive rates. Although 
SV callers have been widely used, their applicability and 
performance have not yet been evaluated based on popu-
lation-level WGS data with validated SVs (Table S1).

In this study, we investigated ten popular SV callers [30, 
32–40] based on different detection strategies (Table 1). 
We conducted a comprehensive evaluation of their per-
formance and applicability with real WGS data for pop-
ulations. Especially, the validated five common types of 
SVs (Figure S1) were contained. Our results showed that 
very high heterogeneity exists among different SV callers, 
and no one tool is qualified for the detection of all types 
and wide size ranges of SVs. The real dataset and vali-
dated SVs are essential for the evaluation of the perfor-
mance of various existing and underdeveloped SV callers.

Results
Population genomic SVs called by ten tools
We applied the ten SV callers (Table 1) to the WGS data 
for five chicken populations consisting of 48 samples 
(Table S2). The SV callers present powers as well as limits 
in the detection of five types of SVs as described in their 
original references (Table  1). DEL can be detected by 
all tools; nine of ten tools can detect DUP, while Break-
Dancer [32] has no ability to detect DUP. MetaSV [30], 
Wham [40], GRIDSS [36], and Pindel [39] show similar 
applicability but are unable to detect BNDs. Lumpy [37] 
and Manta [38] can detect BNDs but fail to identify INSs 
and INVs, respectively. BreakDancer [32] and Delly [35] 
present heterogeneity among samples in the detection of 
INS, INV, and BND (Table 1; Fig. 1 and Figure S2). For all 
tested tools, higher consistency was observed in detect-
ing DEL than the other types of SVs (Figure S2). Pindel 
[39] detected the most (on average, 0.81  million SVs 
per genome), while CNVkit [33] detected the least (on 

Table 1  The general information and the average detected SV number of ten selected SV detection tools
Tools Language Method(s) a Types of SVs and average numberb

DEL DUP INS INV BND
BreakDancer [32] C++ RP 1,154 NAc 96 217 632
CNVkit [33] Python RD 62 48 NA NA NA
CNVnator [34] C++ RD 1,166 77 NA NA NA
Delly [35] C++ RP + SR 363 22 23 14 6
GRIDSS [36] Java RP + SR + AS 26,092 200 19,339 169 NA
Lumpy [37] C RP + SR + RD 3,849 352 NA 36 342
Manta [38] C++ RP + SR + AS 4,103 216 2,481 NA 486
MetaSV [30] Python Merged 3,073 200 404 45 NA
Pindel [39] C++ SR 325,769 110,071 374,645 2,833 NA
Wham [40] C++ RP + SR 2,757 618 822 511 NA
a. RP: read pair; RD: read depth; SR: split read; AS: assembly; Merged: different methods were merged depending on the input files. b. the average number of SVs 
detected in 48 WGS datasets. c. “NA” represents the targeted type of SV that cannot be detected by the corresponding tools
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average, 110 SVs per genome) number of all SVs (Table 1; 
Fig.  1). In detail, Delly [35] called the least amount of 
DUP, INS, INV, and BND, and CNVkit [33] detected the 
least number of DEL (on average of 62 DELs per sample). 
Pindel [39] detected the most DEL, DUP, INS, and INV 
(Table  1; Fig.  1 and Figure S2). The genomes with low 
read depth (~ 5× for population e) present fewer SVs 
than other genomes with moderate or high read depths 
(other populations, average > 15×). For the proportions of 
each type of SV, except for Pindel [39] (DEL accounts for 
40.06% of all SVs), DEL accounts for the highest propor-
tion (ranging from 55.19% in BreakDancer [32] to 93.82% 
in CNVnator [34]) of all called SVs (Table 1; Fig. 1).

Overlapping SVs called by different tools
To evaluate the detection consistency between various 
tools, we applied the tools for one genome (sample33) 
randomly selected from the WGS dataset (Fig.  2). For 
INS and DUP, there was no overlap among all detect-
able tools (Fig.  2A-B). For INV and DEL, only a small 
proportion of SVs were detected by all detectable tools 
(Fig.  2C-D). The overlap region of INV detected by all 
INV detectable software is 3,719 bp, only accounting for 
0.51% (the highest proportion among all INV callers) in 
Lumpy [37] (Fig.  2C). In addition, the overlap region of 
DEL detected by all ten tools is 4,132 bp, accounting for 
0.02% (the highest proportion among all DEL callers) in 
MetaSV [30] (Fig.  2D). Most of the SVs are specific for 
each tool. Pindel [39] specific INS, DUP, and DEL are the 
largest in total length, and the Wham [40] specific INV is 
the largest (Fig. 2). Moreover, as most of the studies are 

more focused on SVs greater than 50 bp, and the detec-
tion ability and accuracy based on WGS data in detect-
ing SVs larger than 1 Mb is insufficient [3, 5], we further 
compared the SVs in size larger than 50 bp but less than 
1 Mb using chromosome 5 of the selected sample (Figure 
S3-S6). Consistent with the above analyses, the results 
showed that most of the SVs were tool specific, and only 
a small proportion of SVs were detected by more than 
one method (Figure S3-S6).

Size distribution of SVs detected by various software
Our results show that most SV callers can cover a wide 
range of sizes, but some tools are limited for SVs in cer-
tain size ranges (Fig. 3, Figure S7 and S8). The SVs called 
by CNVkit [33] and CNVnator [34] are larger than 1 Kb. 
Most of the SVs called by Pindel [39] and GRIDSS [36] 
are small in size (SV < 1 Kb). Most of the DELs and DUPs 
called by Delly [35], Lumpy [37], Manta [38], MetaSV 
[30], and Wham [40] range in size from 50 bp to 0.1 Mb 
(Fig.  3, Figure S7 and S8). For INV, large (SV > 0.1  Mb) 
INV accounted for a higher proportion of the total 
detected INVs, especially in Wham [40], MetaSV [30], 
and Delly [35] (Fig. 3 and Figure S7E). In addition, none 
of these tested tools has good ability and representative-
ness in detecting INS in medium and large sizes. Most 
INSs called by Pindel [39], GRIDSS [36], Delly [35], and 
Wham [40] are shorter than 50 bp, and the INSs detected 
by Manta [38] and BreakDancer [32] are also small in size 
(S, 50 bp < INS ≤ 1 Kb) (Fig. 3 and Figure S7D).

Fig. 1  The calling results of ten tools to detect different types of SVs in different populations.(A) The total number and proportion of different types of SVs. 
The numbers were log10 converted, and the values below the zero line represent the total number of all detected SVs. Different colors represent different 
types of SVs. The pie charts show the proportion of different types of SVs. For each tool, five populations (a-e) with different read depths were measured. 
(B) The read depth for each individual in the five populations

 



Page 4 of 12Ma et al. BMC Genomics          (2024) 25:970 

Detection capability and accuracy of SV callers
In terms of using WGS data with validated SVs, we evalu-
ated the detection capability (see Methods) for ten SV 
callers. For the detection rate (Fig. 4A), GRIDSS [36] has 
the highest detection rate (100%) in all five tested types of 
SVs. It is the only tool that can detect target INS, although 
the detection accuracy is poor (Figure S9). Wham [40], 
CNVnator [34], Lumpy [37], and Pindel [39] have higher 
detection rates in interspersed DUP + INV (Figure S1D), 
tandem DUP (Figure S1C), and DEL (Figure S1A). Delly 

[35], BreakDancer [32], and MetaSV [30] have higher 
detection rates in tandem DUP (Figure S1C). Manta [38] 
performed well at detecting interspersed DUP + INV 
(Figure S1D) and DEL (Figure S1A). CNVkit [33] shows 
poor detection rates for all targeted SVs. The positive 
rates were consistent with the detection rates (Fig.  4B 
and Figure S9). Except for CNVnator [34], CNVkit [33], 
and BreakDancer [32], the false positive rates of all other 
tools were zero in all five targeted SVs (Fig. 4C and Figure 
S9). The false positive rate for DEL (Figure S1A) detected 

Fig. 2  The consistency evaluation of different tools for (A) INS, (B) DUP, (C) INV, and (D) DEL. Petal figures show the total size distribution of different SVs 
detected by various tools, figures on the petals are the total size of SVs detected only by the target method, and figures on the core are the size share 
detected by all methods
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by CNVnator [34] (1.4%) was higher than that of the oth-
ers. CNVkit [33] detected interspersed DUP + INV (Fig-
ure S1D) with an approximately 1.2% false positive rate 
(Fig. 4C and Figure S9). In summary, GRIDSS [36] is the 
only tool that can comprehensively detect all five targeted 
types of SVs (Figure S1) with the highest positive rate and 
lowest false positive rate.

Impact of read depth
We evaluated the data saturation for SV calling based on 
WGS data with read depths ranging from 1× to 100×. For 
all tested tools, except for CNVkit [33], the detection rate 
improved with increasing average read depth (Fig.  5A 
and Figure S10). Our results show that at least 50× aver-
age read depth is needed for most of the tools to detect 

more than 80% of the total SVs (Fig. 5A and Figure S10). 
For Lumpy [37], MetaSV [30], and Wham [40], more 
than 70× read depth is needed. For CNVnator [34] and 
GRIDSS [36], the detection rate improved sharply with 
increasing read depth, and 20× and 30× read depths were 
sufficient for 80% of the SV calling, respectively (Fig. 5A 
and Figure S10). To detect SVs with larger sizes, an 
increase in read depth is necessary (Figure S11-S22). Low 
read depth data are not sufficient for some types of SV 
calling for some tools. For example, when the read depth 
is lower than 20×, Delly [35] cannot detect INV (Figure 
S12), and MetaSV [30] and Wham [40] cannot detect 
INS (Figure S13 and Figure S14). When the read depth 
is lower than 10×, Delly [35] cannot detect DUP and INS 

Fig. 3  The size distribution of different types of SVs detected by various tools. The size (length of SV) was log10 converted. Different background colors 
represent different categories of size. The red dashed line represents the size of the validated SV evaluated in this study (Figure S1)
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(Figure S12), and Lumpy [37] cannot detect INV (Figure 
S15).

Runtime and memory consumption
We calculated the CPU running time (Fig.  5B and Fig-
ure S23) and maximum memory (RAM) consumption 
(Fig. 5C and Figure S24) for the ten SV callers. Compared 
with other tools, Pindel [39] and Delly [35] are more 
time-consuming (Fig.  5B), but most of the calling can 
be done within one day. The running time of Pindel [39] 
is highly affected by the change in data size (Fig. 5B and 
Figure S23I). However, the running times of CNVKit [33] 

(Figure S23B) and CNVnator [34] (Figure S23C) increase 
slowly with increasing data size. When the data size is less 
than 20 Gb, the time consumption of Pindel [39] is less 
than that of Delly [35]. However, the runtime increased 
sharply with the data size increases in Pindel [39], and 
approximately two days were needed to finish SV call-
ing when the data size reached 60 Gb (Fig.  5B). Fortu-
nately, the other tools were fast, all of the tested data can 
be finished within 10 h, and some software (Wham [40], 
Lumpy [37], BreakDancer [32], CNVkit [33] and CNVna-
tor [34]) can finish the detection in less than one hour 
(Fig. 5B and Figure S23). Since MetaSV [30] requires the 

Fig. 4  The detection ability of SV detection tools. (A) Detection rate of various tools. (B) The positive rate of SV detected by various tools. (C) The false 
positive of detected SV
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results of several other programs as input, its calculation 
times are not included in the comparison. Among all the 
tested tools, the running time increases with increas-
ing data size, and the correlation coefficients (R2) are all 
higher than 0.7 (Figure S23). In addition, all tested tools 
were RAM consumption friendly, with a maximum RAM 
consumption of less than 20 GB (Fig. 5C and Figure S24). 
Except for CNVnator [34], the memory consumption of 
all tested software increases with increasing data size 
(Figure S24). For Manta [38] and BreakDancer [32], the 
maximum RAM consumption is less than 1 GB, and for 
Delly [35], Pindel [39] and GRIDSS [36], more than 10 
GB RAM is needed for SV calling (Figure S24).

Discussion
Selecting tools for their best uses
According to our comprehensive assessments, we 
showed that the performance of SV callers varies with the 
types and sizes of SVs. Selecting SV callers should rely on 
what types of SVs are of interest and what sizes of SVs are 
expected. In general, GRIDSS [36], Lumpy [37], Wham 
[40], Manta [38] and Pindel [39] are candidate tools with 
high detection accuracy. For BND detection, Lumpy 
[37] or Manta [38] are appropriate. For all other types of 
SVs, GRIDSS [36] or Wham [40] are recommended. Pin-
del [39] performs well for short (≤ 50  bp) SVs. To cover 
a wide range of sizes, GRIDSS [36] and Wham [40] are 
appropriate tools.

Fig. 5  The impacts of read depth on tool performance and detection results. (A-C) The influence of data quality on the detection rate (A), running time 
(B), and maximum memory usage (C) of various tools
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Caveats about the intersection strategy with multiple tools
The strategy of taking the intersection or union of SVs 
identified by multiple tools [8, 10, 15, 30, 41–44] has 
been applied in various studies. Herein, we argue that 
this simplified strategy deserves more attention. Our 
results show few SVs being shared by multiple SV callers. 
Using different combinations of SV callers can produce 
distinct results (Fig.  2 and Figure S3-S6). For example, 
GRIDSS [36] shares more INS with Pindel [39] but less 
with BreakDancer [32]. Pindel [39] shares more DUP 
with Wham [40] and MetaSV [30] (Figure S3). For most 
cases in practice, the combination of no more than three 
methods may generate some consensus results (Fig. 2 and 
Figure S3-S6).

High read depth is necessary for most tools.
Previous studies proposed that at least 30× read depth, 

that is, the benchmark adopted in population genomic 
investigations [43, 45–47], could afford SV analyses 
[48–50]. However, our results show that 30× read depth 
is still insufficient for all seven of ten SV callers to detect 
approximately 80% of the SVs, except for GRIDSS [36], 
CNVnator [34] and CNVkit [33] (Fig. 5 and Figure S10). 
For Wham [40], Lumpy [37], and MetaSV [30], a 30× 
read depth cannot support the detection of 30% or even 
less of the total SVs. Generally, 50× read depth is needed 
for representative (80%) SV calling for most tools.

INS detection needs improvement
Our results show that all the tested SV callers have no 
ability to accurately detect INSs, especially medium- or 
large-size INSs. This can be ascribed to the short-read 
length of WGS (~ 150  bp) and discarding unmapped 
reads during mapping to the reference genome. How-
ever, INS is common in the genome; for example, more 
than half of INSs are > 1  kb in the human genome [2]. 
With the rapid accumulation of WGS data, the develop-
ment of new strategies or algorithms for INS detection 
covering wide size ranges is urgently needed. Long-read 
sequencing technology, telomere-to-telomere and/or 
pangenome-based SV detection have potential [13, 15, 
16, 31, 51, 52]. The graph-based breakpoint connection 
assembly strategy is compatible with WGS data [53, 54]. 
For these under developing SV callers, further evaluation 
studies based on more real datasets and more types and 
sizes of validated SVs are also needed.

Limitation and future research directions
While this study offers valuable insights into genomic SV 
detection in chickens, it also serves as a reference for SV 
detection in other poultry (Aves) species. Despite provid-
ing a comprehensive evaluation of commonly used SV 
callers, future endeavors must address certain limitations 
to establish a more universally applicable SV detection 
framework and gold standard. This entails augmenting 

the dataset with additional validated SVs, broadening the 
scope to encompass diverse populations, and continu-
ously evaluating newly updated methodologies and soft-
ware tools, with a particular focus on machine learning 
or deep learning-based approaches [55, 56]. Such efforts 
will not only enhance the accuracy and reliability of SV 
detection but also pave the way for a deeper understand-
ing of genetic variation and its implications in poultry 
populations.

Materials and methods
Tools selection
According to the citation and the recommendation or 
suggestion of Kosugi et al. [23] and Cameron et al. [22], 
ten widely used tools (Table  1) were selected to cover 
four mainstream algorithms (RD, RP, SR and AS).

Targeted SVs
To evaluate the detection accuracy of the ten tools, five 
reported or validated SVs were measured, including three 
simple SVs and two complex combinations of these sim-
ple SV types (Figure S1). The DEL type was selected from 
[18], which is a 17.7 kb deletion associated with the feath-
ered legs in domestic chickens. In addition, an ~ 4.2 kb 
EAV-HP INS in the 5′ flanking region of SLCO1B3 causes 
blue eggshell phenotype in chickens [19, 20]. A complex 
genomic rearrangement involved in interspersed DUP 
and INV was reported to cause dermal hyperpigmen-
tation in chickens [21]. In addition, in another of our 
unpublished studies, a new tandem DUP and its com-
bination with the previously reported SV [21] were also 
associated with the hyperpigmentation phenotype in 
chickens. Based on these identified SVs, we further com-
pared and evaluated the detection capability of various 
methods with real WGS data containing validated SVs 
(Figure S1).

Sample collection and sequencing
Samples from five breeds of chicken with target SVs were 
newly collected (Table S2), for a total of 48 samples. DNA 
was extracted from the blood using phenol-chloroform 
method and sequenced. As the direct ancestor of domes-
tic chicken [57], the Gallus gallus spadiceus subspecies of 
Red junglefowl was selected as the control group (n = 20) 
for the CNVkit [33] and Delly [35] case‒control based 
algorithms. In addition, to evaluate the influence of the 
data quality (average read depth) on the detection results 
and tool performance, an additional high-quality (100×) 
WGS data (sample49) was added to the above datasets, 
and various qualities of data (read depth range from 0.1× 
to 98×) were generated using BamDeal (v.0.25, https://
github.com/BGI-shenzhen/BamDeal) based on these 
high-quality data.

https://github.com/BGI-shenzhen/BamDeal
https://github.com/BGI-shenzhen/BamDeal
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Sample collection and sequencing
The index sequences and low-quality reads with (a) 
more than 50% bases with Q ≤ 5 and (b) more than 10% 
“N” content were removed as previous work [58]. Low 
quality reads and adapters were removed using Trim-
momatic (v0.39) [59]. Using the BWA (version 0.7.17) 
[60] mem option with the default parameters, the clean 
reads of each sample were mapped to the chicken refer-
ence genome GRCg6a (Ensembl release 96). The mapped 
reads were sorted, the PCR duplications were marked 
with Picard tools (version 2.18.6) (https://broadinstitute.
github.io/picard/), and the final bam file of each sample 
was used for next SV calling.

SV calling
For each sample, ten selected tools were used to perform 
SV calling, and for each tool, the data processing pro-
cess was consistent, the bam file was used as input, and 
the vcf file was generated as the final output results. For 
MetaSV [30], which merges SV calling results from other 
multiple tools, four tools were used as sources for inte-
gration, including Pindel [39], Manta [38], Lumpy [37] 
and Wham [40]. The detailed usage and parameter set-
tings for each software are provided in the Supplemental 
Methods in the Additional file.

Comparison of the detected SV number and size
According to the types of SV detected by different meth-
ods, the number of different SVs were counted. In addi-
tion, the lengths of different types of SV detected by 
various methods were counted, and the values were log 
transformed for visualization. To evaluate the detec-
tion ability of various methods in detecting SVs at dif-
ferent sizes, we classified the length of SVs into five 
levels: (a) very small (1  bp ≤ length ≤ 50  bp), (b) small 
(50  bp < length ≤ 1 Kb), (c) medium (1 Kb < length ≤ 100 
Kb), (d) large (100 Kb < length ≤ 1 Mb) and (e) very large 
(length > 1 Mb). Because only four tools used in this study 
can detect BNDs (translocation), this type of SV was only 
included in the SV number evaluation process. First, to 
measure whether different breeds of data sources will 
make a difference in the results, we compared the size 
distribution of all four types of SV detected by the ten 
used tools based on five different breeds. After deter-
mining that the results would not be affected by different 
breed data, we counted the total number and length dis-
tribution of all detected SVs of all samples.

Evaluation of the SV detection capability
For each method, the SV detection capability was mea-
sured in (a) detectable rate, (b) positive rate and (c) false 
positive rate at the individual level, taking the average of 
each breed, and for individuals with multiple target SV 
segments, the average value was also taken. Detectable 

rate, which indicates the proportion of detected target 
SVs to the total target SVs. It is measured as:

	

Detectable rate =

The number of

target SV s detected

Total number

of target SV s

In addition, the positive rate was measured as the pro-
portion of the true SV fragment length of the detected 
target SV to the true length of the target SV, which is 
expressed as follows:

	
Positive rate =

The length of true part

of a target SV detected

The length of a target SV

In the same way, the false positive rate was measured as 
the proportion of false SV fragment length of detected 
target SVs to the true length of target SVs, which is 
expressed as:

	
False positive rate =

The length of false part

of a target SV detected

The length of a target SV

Comparison of the breakpoint detection accuracy
Alignment to the chicken reference genome (GRCg6a), 
the breakpoint was defined as the position where an SV 
occurred. Based on the physical position of the genome, 
each breakpoint has two incisions, one on the left (L) and 
the other on the right (R). For each specific SV type, we 
examined whether the breakpoint detected by various 
methods was shifted, and we counted the length of the 
shift and performed log10 conversion for the visualiza-
tion plot. To visually demonstrate the accuracy of various 
methods in detecting SV breakpoints, compared with the 
real SV segment length, if the shift causes the length of 
the detected SV segment to become longer, we marked it 
as positive (+). Otherwise, if the shift causes the length of 
the detected SV segment to become shorter, we mark it 
as negative (-). The greater the absolute value, the farther 
away from the true breakpoint, and the more inaccurate 
the result was. If any method failed to detect an SV type, 
the breakpoint shift size was set to -(target SV length)/2.

Evaluation of the detection consistency among 
methods.

One genomic dataset (sample33, Table S2) was ran-
domly selected to measure the consistency among four 
types (DEL, DUP, INS and INV) of SV detected by all ten 
tested tools. We counted the overlap size in base pairs 
(bp) among all target SV detectable tools. At the whole-
genome level, we compared the intersections of each 

https://broadinstitute.github.io/picard/
https://broadinstitute.github.io/picard/
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target SV detectable software and their specific SVs using 
the petal figure. Because there are so many sites involved 
in structural variation that it is difficult to display the 
whole genome dataset with the UpsetR [61] package, we 
chose chromosome 5 as an example to show the detailed 
intersection between any two or more tools. UpsSetR 
[61] and Venn [62] packages were used to plot the results.

Evaluation of the influence of data size on detection results
To evaluate the impact of read depth on SV calling and 
to provide guidance for future SV-related data prepara-
tion, we analyzed a wide range of datasets with varying 
read depths (from 1× to 100×) generated from a high 
read depth genome (sample49, Table S2). Different read 
depths were simulated using this high-quality data. The 
total number and size distribution of all SVs for different 
quality data were counted. The results were plotted using 
R script.

Evaluation of the runtime and maximum memory 
consumption
To measure the performance of each software for differ-
ent size data. The CPU runtime and maximum memory 
(RAM) consumption of each size of data called by all 
tested software were recorded. All the tools were running 
on a Linux system (version 3.10.0-862.el7.x86_64, Red 
Hat 4.8.5–28) with the configuration of Intel(R) Xeon(R) 
Gold 6132 CPU @ 2.60 GHz. For each tool, we use expo-
nential, linear, logarithmic and power methods to fit the 
data and then select the one with the largest correlation 
coefficient (R2) as the best fitting formula. For MetaSV 
[30], since it requires the detection results of other meth-
ods as input files, we only counted the running time of 
using this software and did not compare it with other 
methods.
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