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prediction [3]. However, those spatial experiments are 
expensive and time-consuming to run. Thus, multiple 
efforts have been made to predict the spatial organisation 
of chromatin in the nucleus using various machine-learn-
ing models. The first ones relied on epigenetic signals 
(e.g. ChIP-Seqs, or ATAC-Seqs) or peaks [4–7]. However, 
the community wanted to use the most easily accessible 
genomic data, i.e. DNA sequence to identify in silico the 
spatial landscape of chromatin for specific cell lines. Mul-
tiple algorithms were proposed, providing end-to-end 
solutions from DNA-Seq to chromatin 3D interactions 
prediction. Such predictions, based only on the sequence, 
are of high interest because they allow the incorporation 
into the model genome sequence mutations that might 
cause changes in the spatial organisation [8], thus chang-
ing the expression or behaviour of genetic machinery 

Introduction
With the development of the experimental methods, the 
spatial organisation of the chromatin became of high 
importance and interest to the scientific community. The 
spatial landscape is vital for understanding how genetic 
machinery works [1] - and can be used in e.g. precision 
medicine [2], for example, by improving gene expression 

BMC Genomics

*Correspondence:
Dariusz Plewczynski
Dariusz.Plewczynski@pw.edu.pl
1Laboratory of Bioinformatics and Computational Genomics, Faculty of 
Mathematics and Information Science, Warsaw University of Technology, 
Warsaw 00-662, Poland
2Section for Computational and RNA Biology, Department of Biology, 
University of Copenhagen, Copenhagen, Denmark
3Laboratory of Functional and Structural Genomics, Centre of New 
Technologies, University of Warsaw, Warsaw 02-097, Poland

Abstract
Prediction of chromatin interactions from DNA sequence has been a significant research challenge in the 
last couple of years. Several solutions have been proposed, most of which are based on encoder-decoder 
architecture, where 1D sequence is convoluted, encoded into the latent representation, and then decoded using 
2D convolutions into the Hi-C pairwise chromatin spatial proximity matrix. Those methods, while obtaining high 
correlation scores and improved metrics, produce Hi-C matrices that are artificial - they are blurred due to the 
deep learning model architecture. In our study, we propose the HiCDiffusion, sequence-only model that addresses 
this problem. We first train the encoder-decoder neural network and then use it as a component of the diffusion 
model - where we guide the diffusion using a latent representation of the sequence, as well as the final output 
from the encoder-decoder. That way, we obtain the high-resolution Hi-C matrices that not only better resemble 
the experimental results - improving the Fréchet inception distance by an average of 11 times, with the highest 
improvement of 56 times - but also obtain similar classic metrics to current state-of-the-art encoder-decoder 
architectures used for the task.
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significantly. To account for that, differences between 
the reference genome and an individual one (obtained 
by reads from an experiment) can be calculated. Those 
include Single Nucleotide Polymorphisms (SNPs), short 
indels (insertions or deletions below 50-100bps), and 
Structural Variants (SVs; insertions, deletions, duplica-
tions, copy number variations and other complex rear-
rangements) - and they describe how an individual differs 
from the reference. Applying those variants to the ref-
erence creates a personalised genome of an individual. 
These statistical models allow to discover the spatial land-
scape of chromatin for a given individual using only DNA 
sequence - which is relatively easy to obtain and process. 
Multiple bioinformatics pipelines have been proposed to 
identify single nucleotide mutations and structural vari-
ants from raw DNA-seq data [9–11]. Those pipelines 
automate the whole variant discovery, taking as input in 
most cases either raw reads from DNA-Seq experiment 
(in the form of fastq files) or already-aligned data, and 
perform a series of calls to multiple algorithms for the 
variant discovery. The user is left with a list of variants, 
which can be used later for further analyses. We envi-
sion the entire in silico workflow for in-silico prediction 
of chromatin structure (Hi-C pairwise contact matrix) 
from DNA sequence, starting from DNA-Seq experi-
mental data, running sequence variant discovery, map-
ping the variants to the reference genome, and running 
the selected 3D predictive computational model on per-
sonalised DNA sequence. Those Hi-C prediction models 
include convolutional networks - e.g., ChiNN [12] uses 
DNA sequences from open chromatin regions to predict 
the chromatin interactions. The classifier (that uses the 
features discovered by CNN) was xgboost. The authors 
obtained high metrics; however, they did not report any 
heat maps, which are of interest to us the most. Another 
approach is using transfer learning-based convolutional 
networks - like the authors of DeepC [13]. In that case, 
the procedure is split into two stages - in the first train-
ing phase, the 1kbp sequence is taken as an input, and the 
fully connected layers predict chromatin features (936 
different tracks - primarily obtained from ENCODE). 
Afterwards, in the second phase, the learnt parameters 
of the convolutional layers are used for training the final 
model - in which the sequence of 1Mbp is taken, then 
transformed using convolutional layers trained in phase 
1, and then another dilated convolutional layers were 
applied, and the final output was in form of predicted 
interaction strengths, which could be then arranged 
as heatmaps. Another concept used is convolutional 
encoder-decoder architectures, which include Akita 
and Orca [14, 15]. The key concept there was to first use 
encoder, that takes 1D DNA sequence and processes it 
into hidden representation using 1D convolutions, and 
then decoder,, which then operates on 2D heatmaps 

(with addition of hidden dimensions). In case of Akita, 
the initial region was 1Mbp, and in caase of Orca, it was 
up to 256Mbp, depending on the resolution we are inter-
ested in. Such an approach was considered state-of-the-
art, till the transformer-based methods were established. 
Including transfer learning application of DNABERT [16] 
for prediction of chromatin interactions [17], that was 
able to recreate ChIA-PET interactions, however, as with 
ChINN, it was not used for production of HiC matri-
ces, only the point interactions. Finally, convolutional 
encoder-decoder, transformer-based architectures were 
introduced with the publication of C.Origami [18], which 
outperformed all the other models in various metrics. 
Those studies have achieved high metrics, including the 
Pearson correlation coefficient and the stratum-adjusted 
correlation coefficient (SCC) between the real and pre-
dicted heatmaps. In terms of their metrics, each architec-
tural improvement yielded improvement - starting with 
Akita and DeepC, which obtained very similar results 
and were developed simultaneously, one obtaining its 
power from the encoder-decoder architecture, and the 
other from transfer learning, going through Orca, which 
used and improved encoder-decoder architecture,, and 
finally arriving at C.Origami, that outperformed all the 
other models’ metric because of the use of a transformer. 
However, while highly informative, none of those studies 
addressed the visual quality of the predicted heatmaps - 
and because of that, they look artificially produced. The 
reason for that is in the common part of all the networks 
- namely, convolution layers. While they are extremely 
useful for the prediction of the genetic landscape, they 
are responsible for the smoothening effect, which makes 
the output highly informative but very distinct from the 
real heatmaps. Distinguishing between the real Hi-C 
matrix and one predicted by any of the presently available 
tools is not difficult - as they seem to be highly blurred. 
While those methods preserve the most critical parts of 
the matrices, they lack quality assessed easily by human 
perception.

To address this challenge, we have decided to use the 
recent theoretical achievements from the computer 
vision field. One of the many problems that computer 
vision is currently facing is generating images of high 
quality. However, in our problem, we want to strongly 
guide the generation in order to reflect the actual physi-
cal nature of the underlying polymer. Thus, we are pri-
marily interested in conditional architectures that allow 
us to improve the quality of the Hi-C matrices, not gen-
erate random pairwise contact maps. Multiple neural 
network architectures have been proposed to face this 
problem in computer vision - Generative Adversarial 
Network [19] being a prime example. However, lately, 
diffusion-based models [20] have gained tremendous 
popularity due to much higher performance. There have 
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been multiple implementations, each adding some value 
to the architecture and allowing to obtain even higher 
similarity metrics. Examples include Stable Diffusion [21] 
or DALL-E 2 [22]. However, those are still used primar-
ily for generating new images from text description - and 
not improving existing ones. That is why we have decided 
to implement the deblurring diffusion model [23–25] to 
guide the network in improving the quality of the given 
heatmap.

Using previously established encoder-decoder archi-
tectures, we aimed to improve the predicted heatmaps’ 
quality using transfer learning as a core to a deblurring, 
diffusion-based model. We have developed the HiCDif-
fusion model, which provides high metrics as obtained 
by other encoder-decoder-based algorithms and signifi-
cantly improves the predictions’ human-readable qual-
ity. Our approach makes the predicted heatmaps almost 
indistinguishable from the real data, which we have mea-
sured using Fréchet inception distance [26]. That metric, 
widely used in computer vision and image generation, 
decreases when the quality increases. The main advan-
tage of using FID is the fact that it does not compare 
the output with the input in a pixel-by-pixel way, like 
the traditional metrics (e.g., squared error), but rather it 
compares the mean and standard deviation of a specific 
function (in our case, and in most real usages - deepest 
layer of Inception v3 model) - allowing the comparisons 
to be made between the real distribution and the gen-
erated distribution (see Methods for formal introduc-
tion) in a computer vision-specific domain. To put it into 
perspective when dealing with the Hi-C experiments, 
we have blurred an example real Hi-C map and calcu-
lated FID scores of the original and augmented data. The 
results are shown in Fig. 1.

In the case of FID, we deal with two distributions - one 
real and one generated. In the case of the situation where 
the real distribution is equal to the generated one, we get 
FID equal to 0.0 - which is the highest possible FID score. 
That is also the case in our example - when we take real 
Hi-C data and compare it to itself, we get FID equal to 
0.0. The following steps are blurring the Hi-C matrix and 
comparing the real distribution (composed of the real 
data), with the blurred matrix. We have shown 3 exam-
ples with σ = (1, 3, 7). In the first case, where the blur 
is not that intense, as we are using σ = 1, the FID score 
equals 18.3. In the case of the higher blur, with σ = 3, we 
are getting a much more augmented matrix - and the 
FID score rises to 61.5. In the last example, we have used 
Gaussian blur with σ = 7, and the FID score is 70.6. We 
can clearly see that, indeed, with the higher blurring of 
the matrix, we are getting a higher FID score. That is why, 
in our study, the goal was to decrease the FID score, that 
is, to deblur the Hi-C matrix generated by convolutional 
encoder-decoder architectures.

Results
The Hi-C Diffusion model that we propose is com-
posed of multiple components (see Fig.  2). The first 
part, encoder-decoder architecture, is similar to the cur-
rent state-of-the-art tools [15, 18]. The input to the net-
work is a genomic sequence - one-hot encoded, and the 
final output is the Hi-C matrix. We first use an encoder 
composed of residual 1D convolutions that transfer 1D 
sequence into latent space; furthermore, we use a trans-
former encoder to allow the model to learn long-range 
context. Such latent representation is then cast into the 
2D matrix, and the decoder, composed of 2D convolu-
tions with exponentially growing dilation, produces the 

Fig. 1 FID score of the real and augmented data - example of chr8 8 600 000–10 600 000. The first example is the real data - we compare the real data 
distribution with the “generated” distribution, which is also the real data. We can see that the FID score is then 0.0 - because the distributions are precisely 
the same. We have applied Gaussian blur to this example - in the case of blur with σ = 1, the FID score increases to 18.3; in the case of the blur with σ = 3, 
it’s 61.5, and in the last case, when Gaussian blur is performed with σ = 7, we are getting FID equal to 70.6. We can clearly see that the blurring increases 
the FID score significantly while reducing the data quality
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Fig. 2 The architecture of HiC Diffusion. The example used to visualise the prediction & real data is chr8, position 8 600 000–10 600 000
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final matrix. The last part of the encoder-decoder archi-
tecture is a convolution that transfers the latent space’s 
final representation into a classic Hi-C matrix of size 
256 × 256 with one channel. The second network, which 
uses transfer learning (by taking pre-trained encoder-
decoder architecture), is the diffusion model. Based on 
the previous findings about diffusion networks, we have 
decided that the input to the network will be residual 
between the real Hi-C map and the final prediction of the 
encoder-decoder network. Then, we apply Gaussian noise 
to the residual Hi-C map, and the denoising U-Net is 
trained to predict the noise, making it easy to obtain the 
actual residual Hi-C (by subtracting predicted noise from 
the noised residual Hi-C). The network takes as input 
the noised residual (or, in case of inference - the random 
input) and the latent representation of the Hi-C heatmap 
predicted by encoder-decoder architecture. The latent 
representation stores the knowledge about the sequence 
and its meaning in the context of the whole genomic 
window. It can be used for multiple downstream tasks. 
In our case, it guides diffusion to create a heat map that 
is as close as possible; however, it can be easily applied 
to classification problems as well (see Supplementary 
Materials). Using hidden representation is necessary to 
guide the diffusion, thus creating a conditional diffusion 
model. For more information on the technical details of 
the architecture, see Methods and Fig. 2.

In our study, we have decided to use the context of 
2,097,152 nucleotides of sequence and predict the same 
Hi-C region. To validate the model thoroughly, we have 
performed 22-fold cross-validation - creating 22 models, 
each with one chromosome excluded for testing purposes 
(see Methods). Our primary motivation behind this 
approach was to ensure that the model works no mat-
ter which chromosomes are used for training and which 
for validation/testing. In a standard use case, one model 
is sufficient for downstream analysis. We have calculated 
the Pearson correlation coefficients for each of the exam-
ples in the testing set (for each model), SCC (Stratum-
adjusted correlation coefficient), and the FID score. To 
compare ourselves with the current state-of-the-art tool, 
C.Origami, we have trained the model ourselves, accord-
ing to the authors’ recommendations; we have used two 
approaches - in one, we have excluded the epigenetic 
signal that they used - to keep the results consistent with 
our findings (see Methods), and second one, with epi-
genetic signal that they presented as the final model. We 
calculated and compared the Pearson correlation coef-
ficients (as well as SCCs) to our model. The results are 
consistent and very similar - as in our work, we were aim-
ing to obtain similar metrics in terms of correlation, in 
our case, even more challenging, i.e. without epigenomic 
profiles used as an additional input apart from the DNA 
sequence. Then, we calculated the FID scores for all the 

datasets obtained using HiCDiffusion and C.Origami. 
We have obtained an average improvement of FID score 
by 12 times in case of comparison between sequence-
only models - with the highest improvement in chr7 (by 
88 times). In case of comparison of our sequence-only 
model to C.Origami enhanced with epigenetics, the aver-
age improvement of FID score was by 11 times, and the 
highest improvement was also obtained in chr11 (by 56 
times). The visualisation of those results can be seen in 
Fig.  3, and detailed per-chromosome statistics can be 
found in Supplementary Figs. 1–3.

The model was further tested in downstream analysis 
tasks. The first one was TAD calling. The obtained insu-
lation scores were very similar to those observed in the 
experimental data. The average Pearson correlation score 
for the insulation (predicted/real) was 0.63 for chromo-
some 8. The full results from the analysis, with the violin 
plot of the correlations, as well as two examples, can be 
seen in Fig. 4. In the presented examples, we can see that 
the algorithm correctly finds TAD boundaries in both 
cases - however, in the case of the real data, in chr8:130 
380 000-132 380 000, we detect two TAD boundaries - 
which are very close to each other and are seen as one in 
the predicted data. More sophisticated TAD calling algo-
rithms could also be applied to the output of the model, 
provided the algorithms work per heatmap (as the scope 
of interest in case of the predicted data is 2Mbps - and we 
are sliding across the diagonal for the prediction of each 
next heatmap).

Another analysis, as presented in Fig.  5, showed that 
it is possible to call loops from the predicted heatmaps. 
However, for the HiCDiffusion model, that task is much 
harder - as we are dealing with the sequence-only model, 
and epigenetic tracks that can indicate very strongly 
looping factors (e.g., CTCF) are not present in the input 
data.

To see the behaviour of the model in the case of the 
mutations, we have simulated the event of transduplica-
tion of a region resembling a small TAD. To do so, we 
have used the model to predict the genomic window of 
chr8:32 1000 000–34 100 000 - firstly, using wild type 
sequence, and secondly, applying a transduplication of 
chr8:33 450 000–33 650 000 to chr8:32 750 000–32 950 
000. The input to the model in the case of the wild type 
was the raw sequence, and in the case of the perturbed 
experiment - the sequence at chr8:32 750 000–32 950 
000 was replaced with the one present at chr8:33 450 
000–33 650 000. The results of such an operation can be 
seen in Fig. 6 (see Supplementary Materials for compari-
son with C.Origami model), where we can see that the 
change not only modified the region directly affected but 
also isolated the top-left corner more (which is shown as 
the increase of contacts within the top-left corner TAD, 
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as well as decrease of contacts downstream from it), and 
created a new TAD in the middle of the heatmap.

The final analysis that we have undertaken was the 
question - how well would our method perform on dif-
ferent organisms? To answer this question, we have taken 
a B cell derived cell line from a mouse [27], and tested 

our model on all the chromosomes. We have found that 
even if it’s a different organism, the strength of the model 
persisted - we obtained a genome-wide Pearson corre-
lation score of 0.847 and stratum-adjusted correlation 
coefficient of 0.761. The cumulative results of the analy-
sis, as well as an example heatmap, can be seen in Fig. 7. 
For detailed per-chromosome results, see Supplementary 
Fig. 4.

Methods
Data processing
The first step of processing the data is creating the 
genomic windows analysed in the study. The sliding 
window that is used for the processing of the chromo-
somes is set to 500kbp. We load the reference genome 
(GRCh38) and use pyranges [28] to exclude telomeres 
and centromeres from the analysis. Then, the sequence is 
onehot encoded. The Hi-C matrices used in this research 
are taken from C.Origami [18] paper - we used GM12878 
[29] cell line to allow us to compare our findings with that 
current state-of-the-art tool. We take precisely 2,097,152 
base pairs of sequence and predict the Hi-C matrix of the 
same region (resized to 256 × 256 region) - the resolutions 
were chosen to easily and straightforwardly use convolu-
tions in the network architecture.

Training, testing, and validation data
To show the predictive power of the method, we divided 
the dataset into training (used for training), valida-
tion (used for choosing the best models - both encoder/
decoder and diffusion), and testing (separate, used only 
for final testing) datasets. This division ensures that the 
deep learning model is generalising well and that we are 
unbiased toward examples occurring in the training data. 
To test the model entirely, we decided to create 22 models 
- in each, the training, validation, and testing datasets are 
composed of different chromosomes. Such an approach 
allows us to be sure that no matter which chromosomes 
we use for training/validation/testing, the model is still 
trained properly and maintains its generalisation power. 
For a standard use that does not require such thorough 
testing, one model is entirely sufficient. For each case, we 
take chromosome i as the testing chromosome, chromo-
some i + 1 as the validation, and the remaining chromo-
somes compose the training dataset. In the case of testing 
the last chromosome, chr22, the validation chromo-
some is chr21. We excluded sex chromosomes from the 
analysis.

Architecture of the model
The architecture of the model (see Fig. 2) uses the con-
cept of transfer learning. Firstly, we use encoder-decoder 
architecture very similar to the ones previously published 
- e.g. in C.Origami [18] or Akita [15]. The encoder first 

Fig. 3 In the upper part of the figure, an example output of the 3 models 
is presented - full HiCDiffusion, HiCDiffusion - only encoder and decoder, 
and C.Origami (version with epigenetics and sequence, and version with 
only sequence), along with the real Hi-C matrix. All example heatmaps are 
chr8, position 21 100 000–23 100 000. The lower part of the chart presents 
the Pearson correlation coefficient, based on data from all chromosomes, 
the stratum-adjusted correlation coefficient (SCC) - calculated in similar 
way, and an average FID obtained by the models (the average is taken 
from the per-chromosome metric)
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converts the 1D genomic sequence into a sequence of 
256, with 256 channels. That is done using 13 residual 
blocks, out of which each is composed of convolution 
(converting input channels into output channels, with 
the kernel of size 3 and padding of size 1), batch nor-
malisation, ReLU function, another convolution (this 
time preserving the number of channels, with kernel of 
size 3, and padding of size 1), batch normalisation, and 
maxpooling. Additionally, the initial data provided to the 

residual block is downscaled using convolution (convert-
ing input channels directly into output channels, with 
the kernel of size 3, and padding of size 1). That down-
scaled data is added to the result from the previously 
explained sequence of transformations. The final step of 
the residual block is applying the ReLU function to the 
output. The input channels of the residual blocks used in 
the encoder are: (5, 32, 32, 32, 64, 64, 64, 128, 128, 256, 
256, 256, 256), and the output channels are: (32, 32, 32, 

Fig. 4 TAD calling analysis in chromosome 8. The Pearson correlation coefficient between predicted and real insulation scores averaged 0.63. The two 
examples show TAD boundaries (orange squares) in chr8:20 100 000–22 100 000 and chr8:88 880 000–90 880 000
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Fig. 6 Modelled transduplication of chr8:32 100 000–34 100 000 region. The first heatmap is raw model output - with no changes in the sequence. The 
second heatmap shows the output of the model with chr8:32 750 000–32 950 000 replaced by a sequence of chr8:33 450 000–33 650 000

 

Fig. 5 Loops called on example regions - Chr8:29 100 000–31 100 000 and chr8:123 380 000-125 380 000 - on the real and predicted values
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64, 64, 64, 128, 128, 256, 256, 256, 256, 256). The encoder 
has one additional layer - the transformer encoder - that 
helps to learn the appropriate context of the latent rep-
resentation produced by convolutions. The transformer 
encoder used in our study uses 8 heads. However, we 
also use residual connections around the transformer to 
preserve original data and help with the vanishing gradi-
ent problem. Finally, we apply ReLU to the output and 
expand the result to the 2D matrix with 512 dimensions 
- by repeating the (256, 256) output vertically and hori-
zontally. That procedure leaves us with two outputs of 
(256, 256, 256) - one for repeating vertically and one for 
horizontally. We further concatenate it to the final output 
of the encoder of (512, 256, 256).

The decoder architecture is composed of 2D residual 
convolutions - each of which is composed of 2D con-
volution (with 512 input and output channels, kernel 
size of 3, and padding of 1), batch normalisation, ReLU 
function, and again exactly the same 2D convolution, 
and batch normalisation. The output of the 2D residual 
block is created by applying the ReLU function to the 

sum of the output of the previously explained sequence 
and the input to the residual block - this time, unlikely 
in the Encoder, without any downscaling. It is crucial 
in the decoder to use various options for the dilation 
parameter - it has been done in the previously mentioned 
papers. It is also done in our work to propagate informa-
tion through the whole heatmap. For each next layer, the 
dilation parameter is set to (2, 4, 8, 16, 32) and represents 
exponential growth. Finally, after the decoder is done, we 
apply an additional convolutional layer (kernel size of 3 
and padding of 1) that changes dimensions from 512 to 1, 
leaving us with the heatmap of size (256, 256). We apply 
L1 loss function to match the original heatmap.

The previously explained encoder-decoder architec-
ture is then used for further processing by using trans-
fer learning - we pre-train the encoder-decoder and use 
it for the final architecture based on diffusion models. 
The final architecture first computes the latent repre-
sentation (output of the encoder & decoder - with 512 
channel), and the final heatmap from the encoder-
decoder architecture. We compute the residual heatmap 

Fig. 7 Results of applying the human model to the mouse data. Pearson correlation coefficient and SCC were calculated for all heatmaps from all chro-
mosomes. The example shows chr1:29 500 000–31 500 000 from mouse predicted by the human model
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by taking the difference between the real heatmap and 
the one produced by the encoder-decoder architecture. 
The network’s target is predicting the residual heat-
map, which shows us how to improve the prediction of 
the encoder-decoder architecture. The diffusion mod-
els work in two steps - the first is the model’s training, 
and the second is inference. The training comes first so 
that it will be explained first as well. We take the residual 
heatmap and apply Gaussian noise multiple times - up to 
T. Then, we take such a noised image and use a denois-
ing U-Net network. We try to predict the noise added to 
the image. The implementation of the diffusion model is 
pytorch reimplementation [30] of the original paper [20]. 
We have made a few changes to make it work with the 
Hi-C data. Firstly, the U-Net is conditioned by taking 
latent encoder-decoder output (512, 256, 256). It is then 
converted in the initial phase of using U-Net to (32, 256, 
256) using convolution with a kernel equal to 7, and pad-
ding of 3. The original image provided to U-Net (noised 
image) is also processed using convolution to sizes of (32, 
256, 256). The condition and noised image upscaled to 32 
channels are then concatenated and fed into the network 
to represent the conditional diffusion process. We use 
then MSE loss function to match with the desired output. 
After training the diffusion model, we can predict the 
residual Hi-C matrix using inference mode - that is, in 
the form of guided diffusion using encoder-decoder out-
put from random noise, which allows us to obtain more 
realistically looking Hi-C matrices.

Testing the models
All the models were tested using independent chromo-
somes not used in the training or validation procedure. 
We have calculated the Pearson correlation coefficient 
and SCC for each example and Fréchet inception dis-
tance to compare the quality of the images. We have run 
a version of C.Origami that includes only sequence (with-
out CTCF and ATAC-Seq signals), and compared Pear-
son correlation coefficient scores, SCCs, and FID scores.

Fréchet inception distance (FID)
Fréchet inception distance is a metric used most often in 
computer vision to measure the quality of the images. It 
is formally defined [31] as:

 
FID = (infγ ∈ Γ (µ , υ )

∫

Rn×Rn
|| x− y

∣∣|2dγ
(
x, y ))

1
2

Where Γ (µ , υ ) is the set of all measures on Rn × Rn  
with µ  as first marginal factor, and υ  as the second. In 
our work, we are using torchmetrics [32], which solves 
the aforementioned equation for multidimensional 
Gaussian distributions as:

 FID = ||µ − µ w||2 + tr(Σ +Σ w − 2(Σ Σ w)
1
2 )

In which µ  is the mean, and Σ  is the variance of a mul-
tivariate normal distribution estimated from Inception v3 
[33] features calculated on real data (true Hi-C matrices) 
and µ w  and Σ w  are corresponding values for the mul-
tivariate normal distribution estimated on the generated 
data (predicted Hi-C matrices). Since this metric is tak-
ing images, we need to normalise our output to the [0, 1] 
range and add 2 additional channels - which is done by 
repeating the data. The output of the procedure is called 
the FID score, and the lower it is, the higher quality the 
image is - as it is comparing the distributions of the 
generated images to the real ones (or, in our case, Hi-C 
matrices).

Comparisons to other tools
To compare the results to the C.Origami, the current 
state-of-the-art tool for predicting 3D interactions, we 
have downloaded the original software with the data-
set. However, we have used two comparison models 
since our study focuses on pure sequence-to-interaction 
relationships. In the first one, we modified the tool to 
accept DNA sequence and train only on it. The second 
one was the full C.Origami architecture - the one that 
includes CTCF and ATAC-Seq epigenetic signals. Then, 
we trained both C.Origami models, with validation chro-
mosome chr10, and testing chromosome chr15. This 
approach allowed us to get accurate metrics for testing 
and validation chromosomes and the supremum of the 
metrics in the case of training chromosomes. Further-
more, this model was used to predict precisely the same 
windows as in our models. We have calculated the Pear-
son correlation coefficient and SCCs for all the predic-
tions and FID scores for all chromosomes.

Stratum-adjusted correlation coefficient (SCC)
The Pearson correlation coefficient, while used in many 
studies, is often criticised in the case of comparisons 
between Hi-C matrices. We have decided to use a stra-
tum-adjusted correlation coefficient (SCC) [34, 35] to 
show the usefulness of our algorithm. We have used 
Python implementation of the algorithm [36]. Since 
our matrices are in the form of 256 × 256, we have used 
h = 2 for smoothening and the maximum distance of 16 
(equivalent to more than 100kbp).

TADs calling
To call TADs, we used the engine of the TADBit [37]. We 
have implemented loading the numpy / tensor arrays into 
their data structures, as the original software takes as the 
input. cool files. We have then calculated the insulation 
score for each of the heatmaps independently, and trans-
formed it into TAD borders. We have calculated pearson 
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correlation of the insulation scores for all heatmaps (we 
have filtered out the ones that in real Hi-C data are start-
ing/ending with zeros, as well as the ones that contain 
more than 5% of zero values).

Loops calling
To show that, in principle the loop calling works on the 
modelled data, we have implemented a proof-of-concept 
algorithm similar to HiCCUPS/BH-FDR [29] algorithm. 
However, in our case we only considered the four regions 
(donut, top-bottom, left-right, and left-bottom), without 
applying any corrections for ease of implementation, and 
to show that the loop calling is actually possible on the 
predicted data. Additionally, since HiCDiffusion does not 
use any epigenetic information, it is at strong disadvan-
tage in comparison to methods that get CTCF-related 
information, like epigenetic tracks, or just regular peak 
callings.

Simulating trans-duplication
To simulate transduplication, a model trained on all 
chromosomes except chromosome 8 was taken into 
account. To illustrate that the model can correctly predict 
the effects of such a mutation, chr8:32 100 000–34 100 
000 region was taken as an example. We have then cop-
ied the sequence of 200kbp, precisely chr8:33 450 000–33 
650 000, and inserted it instead of sequence present at 
chr8:32 750 000–32 950 000. The model was then used to 
predict the in-sillico effect of such trans-duplication.

Testing on the mouse model
To test the human-derived model on the mouse data, 
we took the model trained on all chromosomes except 
chromosome 8 and tested it among all chromosomes of 
the mouse (as it is a completely different organism, the 
training/validation data is independent of the mouse). 
We used the mm10 reference genome and excluded cen-
tromeres and telomeres from the analysis. As the human 
model is trained on GM12878 data (which is lympho-
blastoid cells), we have decided to use a similar cell line 
in mouse. We have taken B cell derived cell line [27] 
from the 4DN database (mcool file accession number: 
4DNFIPNP9H9T, experiment accession number: 4DNE-
SYX7AQRY). We have calculated the correlation scores 
similarly as in the case of the human data.

Discussion
In our study, we have created a novel deep learning 
architecture, HiCDiffusion, that is based on the latest 
advances in the field of computer vision and Artificial 
Intelligence. The model, composed of an encoder, trans-
former encoder, decoder, and a diffusion network, has 
surpassed the quality metric - FID score on average by 
12 times (sequence-only comparison; by 11 times in case 

of C.Origami with epigenetics), while in the best-case 
chromosome, improvement was 88 times (sequence-only 
comparison as well; 56 in case of epigenetics-enhanced 
C.Origami version).

The level of the artificiality of the in silico HiC images 
(true quality) can also be seen with the human eye. In 
the case of the current models, like the aforementioned 
C.Origami or Akita, the model output is blurred. It can 
be easily distinguished from real data. In the case of our 
model, we have obtained quality that can be easily con-
fused with the experimental data while obtaining all the 
metrics that have made previously proposed models 
great. Our method is the next step towards obtaining a 
reliable and functional universal predictor of the spatial 
organisation of the chromatin within the nucleus, using 
purely DNA sequence - which would make connecting 
population studies with 3D genomics much easier and, 
foremost - cheaper.
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