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Abstract

Background: Genetic linkage maps are necessary for mapping of mendelian traits and quantitative
trait loci (QTLs). To identify the actual genes, which control these traits, a map based on gene-
associated single nucleotide polymorphism (SNP) markers is highly valuable. In this study, the SNPs
were genotyped in a large family material comprising more than 5,000 piglets derived from 12
Duroc boars crossed with 236 Danish Landrace/Danish Large White sows. The SNPs were
identified in sequence alignments of 4,600 different amplicons obtained from the 12 boars and
containing coding regions of genes derived from expressed sequence tags (ESTs) and genomic
shotgun sequences.

Results: Linkage maps of all 18 porcine autosomes were constructed based on 456 gene-
associated and six porcine EST-based SNPs. The total length of the averaged-sex whole porcine
autosome was estimated to |,711.8 cM resulting in an average SNP spacing of 3.94 cM. The female
and male maps were estimated to 2,336.1 and 1,441.5 cM, respectively. The gene order was
validated through comparisons to the cytogenetic and/or physical location of 203 genes, linkage to
evenly spaced microsatellite markers as well as previously reported conserved synteny. A total of
330 previously unmapped genes and ESTs were mapped to the porcine autosome while ten genes
were mapped to unexpected locations.

Conclusion: The linkage map presented here shows high accuracy in gene order. The pedigree
family network as well as the large amount of meiotic events provide good reliability and make this
map suitable for QTL and association studies. In addition, the linkage to the RH-map of
microsatellites makes it suitable for comparison to other QTL studies.
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Background

Genetic linkage maps are essential tools for locating genes
and quantitative trait loci (QTLs) that control important
traits. The first linkage map covering all 18 autosomes of
the pig was published in 1995 [1], followed by a large
map containing approximately 1,200 markers [2]. These
maps were primarily constructed on the basis of anony-
mous microsatellites and restriction fragment length pol-
ymorphism (RFLP) markers [1-3]. Other marker types
including amplified fragment length polymorphisms
(AFLP) and single nucleotide polymorphisms (SNPs)
have been added to online versions of the maps [4].

SNP-based genetic variation is found with high density
throughout the genome. Efficient technologies have been
developed, which allow for highly parallel and cost efficient
genotyping, SNPs have therefore become the markers of
choice for genetic mapping. This makes SNP maps highly
suitable for association studies, fine mapping of QTLs as well
as haplotype determination. Moreover, to identify the genes
underlying monogenic and quantitative traits, it is an advan-
tage if the maps are based on gene-associated markers, such
as genic SNPs. Genic SNPs, whether they are located in cod-
ing or in 5' and 3' untranslated regions are more likely to
cause a functional change than those that occur outside
genes [5]. Due to linkage disequilibrium intergenic SNPs
closely linked to causative mutations in genes of interest can
be of value [6]. The use of gene-associated SNPs implies an
increased knowledge of the genomic region of interest and
facilitates the possibility of identifying candidate genes and
the actual genes that underlie the trait. At present, more than
one million porcine expressed sequence tags (ESTs) are avail-
able [7], and tools to evaluate and select candidate SNPs in
coding regions for application as genetic markers have been
developed [8].

The pig genome has more conserved synteny with human
than with mouse [9] and many of the porcine ESTs are
orthologs of parts of human genes. Human-pig compara-
tive maps based on ESTs exclusively [10] as well as ESTs in
combination with bacterial artificial chromosome (BAC)
end sequences [11] have been constructed using the
INRA-Minnesota porcine Radiation Hybrid panel,
IMpRH,o, [12]. This panel is a valuable tool for map
refinement as it allows good precision in mapping. More-
over, a highly continuous BAC map of the pig genome has
been developed [13]. Gene annotation, map positions
and order of SNP markers developed from ESTs can be
verified using the information derived from the BAC maps
or from genes and sequences mapped in humans. In addi-
tion, comparison to human genes is a tool to link charac-
teristics to causative genes in future QTL studies.
Especially for insufficiently described regions, the com-
parative mapping provides the possibility of identifying
central genes through programmes like GeneDistiller
[14].
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Previously, SNPs have been used for mapping only
selected parts of the pig genome [15-17]. Here we present
a linkage map covering all 18 porcine autosomes. The
map is based on a large number of offspring and a high
number of meioses that is suitable to establish gene order
and genetic distances. In addition to application in gene-
based genome-wide QTL and association studies, a map
based on SNPs developed from EST sequence data is of
value for the porcine genome project, providing informa-
tion for validation of assembly and ordering of sequenced
regions. Furthermore, this SNP map is useful as an
anchoring map for future dense maps based on data from
the PorcineSNP60 Genotyping BeadChip [18] (WG-410-
1001-PRE, Illumina) due to marker overlap.

Results

SNP selection and genetic map

The 4,600 exons, from which the SNPs were identified,
were distributed on all 22 human chromosomes. A total
of 709 SNPs were initially detected in sequence align-
ments of the gene associated amplicons derived from EST
and shotgun sequences. If a SNP segregated in at least one
of the 12 Duroc boar families it was selected for further
analysis. Of these, 506 SNPs were annotated prior to the
mapping process. The remaining 203 SNPs were rejected
either because of failure in assay design or low call rate in
the genotyping assays. During the annotation six SNPs
were discarded due to similarity and artefact problems. Six
SNPs (Additional file 1) were not similar to any known
gene or EST in the human genome and were mapped as
porcine EST-based SNPs (designated as P followed by four
digits).

After annotation of the SNP surrounding sequence the
allelic structure of the SNPs were analysed. A between-
family analysis showed differences that could only be
accounted for by genotyping mistakes. Differences in how
the resulting clusters were interpreted emerged because it
was not always clear which cluster was heterozygote and
which was homozygote if only two clusters were present.
The data set was therefore reduced to 481 SNPs.

The two-point analysis resulted in 18 large linkage groups
(LOD > 75) each assigned to one of the porcine chromo-
somes using the comparative map from INRA [19]. In
addition, seven small linkage groups with an average of
three SNPs in each were produced. Comparative mapping
indicated that the largest of these, which comprised five
SNPs located in the genes USP24, EIF2B3, OMA1, CPT2,
and GPX7, was associated with the distal part of porcine
chromosome 6 (Sus scrofa chromosomes, SSC 6). A few
individual SNPs were assigned to linkage groups based on
slightly lower LOD scores (LOD > 55) together with com-
parative association, whereas the remaining small linkage
groups and singletons were rejected as a consequence of
low linkage ability. Finally, a total of 462 SNPs, distrib-
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uted on 440 different genes, and six EST sequences were
mapped to the 18 porcine autosomes (SSC 1 to 18).

The sex-averaged map covered 1,711.8 cM with an average
SNP distance of 3.94 cM, whereas the female map covered
2,336.1 <M and the male map 1,441.5 cM (Table 1). The
chromosome length of the sex-averaged maps ranged
from 15.7 <M for SSC 11 and 151.4 cM for SSC 1, and the
number of SNPs on each chromosome map varied
between six and 57 on SSC 11 and SSC 13, respectively
(Table 1). A comparison of the sex-averaged, female and
male maps is illustrated in Figure 1. The exact SNP posi-
tion on these maps as well as information regarding MAF
in the sows, number of meioses and heterozygous sires are
indicated in Additional file 2.

The BAC assembly sequence of each chromosome is
shown in relation to the genetic linkage maps as well as
human reference sequences (Figures 2, 3, 4, 5 and 6). Mic-
rosatellites linked to evenly spaced markers using the
IMpRH7000 on each SSC are also presented in the figures.

SNP localisation

A total of 97.8% of the sequences was matched to genes
by Blast analysis against the refGene database. The
remaining sequences were not matched to the available
human exon information and as a consequence the genic
status of these were classified as unknown (Table 2).

Validation through comparative mapping
Comparison of our linkage map and the RH-based com-
parative map from INRA indicated a high correlation with

Table I: Length of the sex-averaged, female and male linkage maps.
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the expected pattern of gene localisation. The marker gene
order of the genetic map was compared to the order of
previously physically and genetically mapped porcine
genes. Only one of the genetically mapped genes F13B dif-
fered from previous results by being mapped to chromo-
some SSC 10 instead of SSC 4 (Additional file 1). Some
genes or regions showed rearrangements on the porcine
map compared to the expected order. To verify the linkage
mapping the SNP-containing sequences in question were
mapped onto the IMpRH,,, panel (Additional file 1).

For a better comparison to the microsatellite map evenly
spaced SNP-containing sequences were mapped onto the
IMpRH;,, panel (Additional file 1). A few rearrange-
ments in the microsatellite order in relation to our SNP
map were found.

Comparisons to the available chromosomes of the BAC
assembly indicated a high similarity with the marker
order. A total of 119 SNP sequences were found to match
the chromosomes SSC 1, 4, 5, 7, 11, 13, 14, 15 and 17 by
Blast analysis against the BAC assembly (Additional file
1). The relation between distance of markers on the
assembly map and the genetic map was about 1:1 within
each chromosome (Figures 2, 3, 4, 5 and 6). However,
there was no obvious relation between the lengths of the
BAC assembly and the genetic map between chromo-
somes indicating a difference in recombination rate
between the individual chromosomes.

Markers were mapped to previously reported syntenic
regions [19] except for three large segmental regions that

SSC! Sex-averaged Female Male SNP2 count Average distance (cM)
length (cM) length (cM) length (cM)

| 151.4 181.7 170.2 26 5.82
2 150.7 201.2 127.7 41 3.68
3 100.5 121.9 87.3 20 5.03
4 137.6 183.8 109.9 40 3.44
5 534 89.7 384 14 3.81
6 148 177.9 121 50 2.96
7 64.2 88.5 43.7 29 221
8 107.4 126.9 92.4 19 5.65
9 116.6 138.9 98.4 27 4.32
10 139.5 208.1 102.5 20 6.98
I 15.7 12.1 20 6 2.62
12 69.8 107.9 39.1 17 4.11
13 128 124.5 131.3 57 2.25
14 96.3 103.3 89.9 28 3.44
15 100.3 156.2 774 31 3.24
16 38.1 57.6 18.5 13 2.93
17 60.2 205.8 42.6 17 3.54
18 34.1 50.1 31.2 7 4.87
Total 1711.8 2336.1 1441.5 462 3.94

I Sus scrofa chromosome 2 Single nucleotide polymorphisms
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Female, sex-averaged and male linkage maps of the 18 porcine autosomes. Each chromosome is presented showing
the relation in distance between the markers on the female, sex-averaged and male linkage maps.

was not identified in our study, two at SSC 1 from human
chromosomes (Homo sapiens, HSA) 18 and 14, and one at
SSC 5 equal to HSA 22q12-qter. None of the genes that
were located in the linkage group matching SSC 12 have
previously been mapped in pig and hence the verification
and orientation of this chromosome relies on the compar-
ative map and linkage to microsatellites located on SSC
12. All the genes showed homology to HSA 17p13.3-q24
indicating that these genes most likely should be located
on SSC 12. This was further indicated by IMpRH,,,, map-

ping of five SNP-containing sequences belonging to the
SSC 12 linkage group (Additional file 1 and Figure 4).

Through linkage to the RH-mapped microsatellites [20] it
was confirmed that the SNPs covered a large part of the
autosome. However, by comparison to the linkage map
[2] that relates to the RH-map, about 20% seems to be
missing. The map presented here is shorter due to missing
markers on parts of SSC5, SSC7, SSC11, SSC12, SSC16
and SSC18.
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Discussion

The map presented here is the first map of all 18 porcine
autosomes based on gene-associated SNPs and it contains
330 not previously located genes. The positions of 81
SNP-containing sequences representing these genes were
confirmed by Blast analysis against the newly assembled
BAC porcine sequence (Additional file 1).

A total of 456 gene-associated and six porcine EST-based
SNPs identified from re-sequenced exons were mapped to

Table 2: Single nucleotide polymorphism (SNP) status.

SNP information # SNP
3'-UTR 52
5'-UTR 3
Synonymous 121
Non-synonymous 53
Intragenic 223
Unknown 10
Total 462

the 18 porcine autosomes. The main selection of the SNPs
was unbiased as they were found randomly in the ampli-
cons containing the EST sequences, which were distrib-
uted across the 22 human autosomes. Almost all SNPs
showed heterozygosity in the sires except 14 SNPs that
were included because of interest to other projects. As the
SNPs were selected on linkage ability with a very high two-
point LOD score (>55) the number of informative mei-
oses is expected to be high. In the present study it ranges
from 401 to 6,898 allowing us to calculate a very robust
map. The family comprised Duroc sires crossed with Dan-
ish Landrace/Danish Large White sows and as the SNPs
were selected from alignments of re-sequenced exons in
the 12 Duroc sires this implies that most of the informa-
tive meioses arose from this population. For the sow pop-
ulation we considered instead the minor allele frequency
(MAF) of each SNP which gave us an idea of the distribu-
tion between male and female meiosis. The analysis did
not indicate that the difference in meiosis numbers
affected the results as the number generally was very high
(Additional file 2).
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The length of the averaged-sex linkage map was calculated
to be 1,711.8 cM, the female map was 2,336.1 cM and the
male map was 1,441.5 cM. As described in the result sec-
tion when comparing to the map of Rohrer and colleagues
[2] our map is about 20% shorter. The animal material
they used to create their linkage map is much smaller than
the material used here, which might influence the recom-
bination rates at the ends of the chromosomes and
thereby overestimate the length. We see this phenomenon
on the female map when the number of meioses is low
like on SSC 17p where the MCM8 marker is positioned
100 cM from MKKS (Figure 1). The first whole-genome
map estimated the female map to be about 21 Morgan
(M) and the male map around 16.5 M [1]. When these
female and male maps are compared a recombination
ratio of 1.3:1 is found. Another estimation of the ratio
suggests the recombination ratio to be 1.55:1 [3]. In our
case the ratio was even higher, approximately 1.65:1,
resembling the human recombination ratio of 1.7:1 [21].

When considering each chromosome map of the female
and male only three chromosomes separate from the rest
(Figure 1). The SSC 11 and the SSC 13 differ from the rest
by having a longer male map. Regarding SSC 11, this is in
accordance with previous work where a longer p-arm of
the SSC 11 male map was found [22]. However, these
authors also reported that the complete male map of SSC
11 was shorter than the female map, which could be the
case in the present study too if the entire map of SSC 11
was available. On SSC 1 there is a clear difference in how
the distance of the markers on the female and male maps
varies across the entire chromosome as reported previ-
ously [23]. However, the female map presented here is
longer than the male map, which is due to a single marker
(C90rf78) positioned at the telomeric end of SSC 1q. The
MAF found in the sow population of this marker is low
leading to few female informative meioses, which can
explain the high recombination rate between the markers
NDUFAS8 and C90r1f78 on the female map.

The linkage analysis showed that most synteny groups
were present and only few single gene and micro rear-
rangements were found. Three synteny regions at SSC 1
were not represented on the linkage map, i.e. the HSA
14921 region and both extremes of HSA 18. The HSA
22q12-qter, which mapped to SSC 5 [19], was also not
present on our map. In addition to the absence of these
regions, segments from four human chromosomes were
missing on SSC 2 (HSA 1), SSC3 (HSA 9) and SSC 17
(HSA 4 and 8) when comparing to the comparative seg-
ments identified by Meyers and colleagues [11]. These
regions were missing due to the fact that no SNPs were
identified in exons representing these genomic areas.
However, on SSC 3, 7, 8, 9, 10, 15 and 16 the map pre-
sented here contains nine additional regions. In addition,
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the telomeric ends of SSC 3 and 4 were divided in more
segments than the previous comparative map [11],
though in general the present map is divided in fewer seg-
ments, probably due to fewer markers. Apart from this,
the similarity concerning conserved synteny between
these two maps is very high.

All single gene rearrangements and SNPs denoting por-
cine ESTs were analysed to verify the linkage order. A total
of ten genes and six ESTs were mapped onto the
IMpRH,,,, panel and in all cases the location was con-
firmed (Figures 2, 3, 4, 5 and 6). The six ESTs were all
mapped to the human genomic sequence. In three cases
the location matched the expected synteny group but for
P0497, P0150 and P0337 the human homologous region
could not be determined.

The nine new regions discussed above were mapped onto
the IMpRH,,,, panel to confirm their locations. These
regions refer to the following genes: PCBD1 from HSA
10g22.1 on SSC 3; NDRG3 and RPL19 from HSA 20q11.23
and HSA 17q12, respectively, on SSC 7; OSTFI from HSA
9g21.3 on SSC 8; MYLIP from 6p22.3 on SSC 9; LIN37 from
HSA 19p13.12 on SSC 10; YWHAB from HSA 20q13.12 on
SSC 15 and finally IDH1 and UBL5 from HSA 2q34 and HSA
19p13.2, respectively, on SSC 16. None of these genes/
human regions have previously been mapped to these por-
cine chromosomal locations [11], but NDRG3, RPL19 and
YWHAB were confirmed by Blast of the SNP-containing
sequence against the recently assembled porcine map [13].
Moreover, all gene locations and orders in relation to other
markers were confirmed by linkage to the microsatellite RH-
map [20]. Most of the single gene rearrangements were
located in regions between larger synteny groups, which also
support the calculated marker order on this genetic map.

Of the 440 genes and ESTs located on the map, a total of
110 genes have previously been mapped either by linkage
or physically and all of these except one were mapped to
the expected chromosome. The F13B gene located at HSA
1gq31.3 deviated as it was formerly mapped by linkage
analysis to SSC 4 [24], but as this fragment of the human
genome is known to correspond to a region on SSC 10
[10] the difference is highly likely. The linkage result of
F13B to SSC 10 was confirmed by mapping the gene onto
the IMpRH,, panel.

Only two previously physically mapped genes were ordered
differently than expected. The first was the TPM4, which
was mapped to SSC 2q24-q29 [25]. In the present study it
was positioned further up on the linkage map than MEF2C
on SSC 2q21-q22 (Figure 2). On the comparative map of
this region, only TPM4 from HSA 19 is located among
genes from HSA 5 [19] which indicates that our positioning
of the TPM4 gene among other genes from HSA 19 might
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be correct. The other gene that was located at a different
position than expected was FUT1 from SSC 6q11 (Figure
3). This gene was previously cytogenetically mapped closer
to the centromeric region than the genes from SSC 6q12
[26]. In our analysis the gene was located more distal, close
to the XRCC1 gene from the same human chromosomal
region on HSA 19q13.31. The XRCC1 gene has previously
been mapped to SSC 6q12-22 [27] which might be the
actual position of the FUT1 gene as well.

A total of 81 genes were matched by Blast analysis of SNP-
containing sequences against the PreEnsembl porcine
BAC sequence. For nine short regions containing one to
three markers on the chromosomes, minor rearrange-
ments of the gene order occurred (marked in bold in
Additional file 1). Within these regions of minor rear-
rangements the distance between the markers was small
both on the linkage map and on the BAC assembly. The
discrepancies could be caused by rearrangements in the
BAC assembly of the porcine chromosomes or deviations
on the genetic map, due to missing segregations in some
boar families despite the SNP network resulting from
sows having litters with more than one boar. However,
these areas should be subject to further investigation.

This SNP map forms the basis for ongoing studies on
QTLs for meat quality, growth, osteochondrosis, lung dis-
eases and other traits. An advantage of the map is the abil-
ity to compare to previously reported QTL studies made
on microsatellite markers as well as the fact that 138 of the
SNPs is represented on the new Illumina PorcineSNP60
Genotyping BeadChip [18]. The actual SNP overlap can
be identified through the PorcineSNP60 name (Addi-
tional File 2). Therefore, the map can function as an
anchoring map for future maps created by use of Bead
Chip technology. Furthermore, new SNPs can be added to
this version of the map for fine-mapping.

Conclusion

Of the 462 genetically mapped SNPs, a total of 330 genes
were located for the first time on the porcine chromo-
somes. The linkage map of the porcine genome reported
here is based on a large number of meioses providing high
accuracy in the relative ordering of genes and in the esti-
mate of genetic distances. Only few discrepancies were
observed between the present and previous studies. As
this map was calculated on gene-associated SNPs the gen-
erated SNP map will be valuable for further QTL and asso-
ciation studies of porcine traits with importance for health
and production as well as for verifying the genome assem-
bly. In addition, it will be useful as a framework map.

Methods

The family material

A two-generation pedigree was produced by crossing 12
Duroc boars from the Danish breeding program (DanAvl)
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with 703 Danish Landrace/Danish Large White sows from
three different Danish pig production herds. Boars unre-
lated to at least the great-grandparent level were chosen
based on selection index. Some of the sows were related as
aunts or sisters. A total of 1,079 litters with an average of
ten piglets per litter were produced and offspring from all
boars were represented in all three stable environments. A
total of 150 disease and phenotypic traits were registered
for each pig. The calculations for this genetic map were
performed on 236 sow families since these sows had lit-
ters with more than one boar. This provided the possibil-
ity for generating accurate genetic maps, even though a
close network of SNPs segregating in some of the boar
families was missing. Blood samples from the sows were
collected in the stables. Tissue samples from tenderloin
(psoas major) were collected from the piglets and boars at
processing. Liver samples were collected from piglets that
died before slaughtering. Genomic DNA was isolated
from all specimens by treatment with proteinase K fol-
lowed by sodium chloride precipitation [28].

Exon re-sequencing and primer design

A total of 4,600 candidate exons for SNP detection were
selected from alignment of porcine EST sequences from
the Sino-Danish Pig Genome Sequencing Project [9]. The
human reading frame information was used to capture
the exons and the surrounding sequence [29]. PCR primer
pairs were designed using Primer3 [30] and purchased
from DNA Technology (Aarhus, Denmark). The exons
were PCR-amplified in a reaction mixture with a total vol-
ume of 10 pl containing 0.25 mM dNTP, 2.5 mM MgCl,,
10 x Buffer II Applied Biosystems, 0.5 U AmpliTaq Gold
DNA polymerase (PE, Applied Biosystems, Foster City,
California), 5 pmol primer and 20-100 ng of genomic
DNA. The cycling conditions were: 94°C for 12 minutes;
10 cycles at 94°C for 15 seconds, 65°C for 15 seconds
with a touchdown of 0.5°C per cycle, and 72°C for 15 sec-
onds, followed by 30 cycles with an annealing tempera-
ture reaching 60°C, and finally an extension step at 72°C
for 7 minutes and storage at 4°C.

DNA sequencing of the 12 Duroc boars was performed
using BigDye Terminator v.3.1 Cycle Sequencing with
AmpliTaq DNA polymerase FS (ABI PRISM™ Genetic Ana-
lyzer Model 3730xl, PE, Applied Biosystems). Automated
SNP detection was performed using PolyPhred v4.05 [31]
and candidate SNPs were selected after visual inspection
of the respective chromatograms. For mapped SNPs one
sequence for each allele were submitted to GenBank.
Information regarding the ID, primers and sequences sur-
rounding the SNP, sequence ID and GenBank Accession
numbers are listed in Additional file 2.

Genotyping
The SNPs were genotyped in the family material either by
TagMan oligo-displacement assay (Assay-by-Design) or
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SNPlex Genotyping System (PE, Applied Biosystems).
Reactions were carried out according to manufacturer's
protocols, using dried DNA in optical 384-well plates. The
TagMan assay fluorescent signals were detected on an ABI
PRISM SDS 7900 HT Sequence Detection System. Results
were analysed in the SDS 2.1 software for allelic discrimi-
nation. The SNPlex assay signals were detected on an
automated DNA sequencer (ABI PRISM™ Genetic Ana-
lyzer Model 3730x]) and the results were analysed using
the GeneMapper software v3.7. Most SNPs that were
selected for the map were heterozygous in at least one sire.
A total of 14 SNPs were only heterozygous in the sow pop-
ulation but included in the analyses because they were
expected to hold interesting characteristics in relation to
other projects. The number of informative meioses, the
MAFs of the SNPs in the sow population and the number
of heterozygous sires for each SNP was calculated and for
each SNP the applied assay is given (Additional file 2).

Annotation of the SNP-containing genes

Sequences surrounding the SNPs were subjected to blast
analysis on a DeCypher FPGA computer using the acceler-
ated BLASTNH algorithm (Timelogic/Active Motif). To get
the human homologous genes the refGene database
retrieved from the UCSC Genome Browser database was
used [29,32]. The hgl8 (NCBI build36.1) exon FASTA
sequences were retrieved from the UCSC Table Browser
[33,34] and used for SNP annotation. For SNP-containing
sequences with no match to any known genes the repre-
sentative EST sequence was used. For all sequences the
cytogenetic location and physical position of the human
homologue were obtained from Ensembl [35]. Informa-
tion on SNP-containing genes is available in Additional
file 2.

Linkage analysis

The averaged-sex, female and male linkage maps were cal-
culated using CRIMAP v. 2.50, which is a revised version
of CRIMAP v. 2.4 [36] modified by Jill Maddox and Ian
Evans (Jill Maddox, University of Melbourne, pers.
comm.). Pair-wise linkage analysis was performed with
the TWOPOINT function. The SNPs were initially divided
into linkage groups based on the LOD threshold (LOD >
75). However, a few SNPs were added to the linkage
groups with a LOD > 55. The BUILD option was used to
determine the best order of the SNPs in each linkage
group. Subsequently, multipoint linkage analysis was per-
formed to determine the most significant position of the
SNPs in each linkage group by sequential insertion of
SNPs using the ALL option. The FLIPS option was used to
ensure correctness of the order. The order of markers in
each linkage group was confirmed using the flips4 option.
The comparative map between human and porcine seg-
ments from INRA [19] was used as an initial guide to link
each linkage group to the 18 porcine autosomes.
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Literature study of gene position

A literature search was conducted to find the positions of
the SNP-containing genes previously located on the por-
cine autosomes. This was done to validate the marker
order that was calculated on our map. The previously
mapped genes (listed according to the map order) are:
PARK2 [37], ENPP1 [38], NTRK3 [39], VLDLR [40],
COL15A1 [41], ALDOB [42], C90rf78 [43], CAPN1 [25],
CAT [44], RPS13 [45], GNB2L1 [46], TPM4 [25], CKMT2
[47], MEF2C [48], SLC22A5 [16], SARIB [49], HBEGF
[50], HARS [51], NCF1 [52], UQCRC2 [53], ACTG2 [54],
KCNS3 [42], ZHX1 [55], EXT1 [56], OXRI [55], NDUFS2
[55], LMNA [57], CCT3 [58], PMF1 [59], GBA [60],
PRKAB2 [61], S100A6 [40], ATP5F1 [53], EDGI [62],
SLC35A3 [63], ATP5B [44], EMP1 [64], NELL2 [64], NFYB
[65], NFAT5 [66], TERF2 [53], SIRT2 [67], LGALS4 [67],
GMFG [67], FCGRT [68], XRCC1 [27], FUTI [26], PARK7
[69], MAD2L2 [69], EIF4G3 [69], RPA2 [69], TTR [70],
FUBP1 [71], FLOTI [72], BATI [19], HSPAIL [19],
ATPG6VIG2 [73], COL21A1 [74], RPS18 [75], STK38 [74],
MTCH]I [74], GLO1 [74], MUT [76], GSTA3 [74], GZMH
[19], CPE [77], FGA [1], UCP3 [44], CRYAB [44],
SERPINCI1 [78], F13B [24], CTSL2 [79], DCTN3 [80],
PTCHD3 [81], GAD2 [82], ITIH2 [83], AKRIC3 [84],
HMGB1 [19], MRPS31 [17], INTSG [85], TOP2B [86],
MITF [87], ARL8B [19], CAV3 [88], PPARG [89], RYK [90],
PCCB [86], RBP2 [19], AGTR1 [40], SI [86], MUC13 [91],
HCLSI [92], BTG3 [93], LPL [94], HNRPF [95], MYPN
[96], MBL2 [97], MYOM2 [47], SLC25A4 [19], SNX25
[10], STAR [98], TIN [47], FNI [99], DES [99], NNT
[100], RALY [101] and CHRM?2 [102]. The actual posi-
tions are given in Additional file 1.

Validation of the linkage map

After ordering the annotated SNP-containing genes, the
homologous genes were used to analyse the known con-
served synteny between human and pig of each porcine
chromosome [19]. Rearrangements in segments within
and between the chromosomes were registered. Single
SNP rearrangements were verified on the IMpRH,,y,
panel [12,103] Localisation of the genes was considered
according to genes mapped previously. Sequences were
analysed by blast [104] against the porcine BAC assembly
sequence (pig PreEnsembl, version 20071221142932)
[13] to identify potential discrepancies and finally vali-
date marker order.

Linkage to microsatellite markers

Since this is the first porcine SNP-map, a total of 104
evenly distributed markers from the 18 porcine linkage
groups were linked to microsatellites or genes using the
whole-genome radiation hybrid IMpRH,, panel. Mark-
ers were mapped to the panel comprising 118 hybrid
clones (90 clones plus 28 complementary clones) using
the IMpRH database [103]. In the two-point analysis the

Page 12 of 16

(page number not for citation purposes)



BMC Genomics 2009, 10:134

markers were linked to a chromosome by use of the LOD
option. The position on the RH map was determined by
use of the "linkage of markers to chromosome" option
[20]. This mapping facilitates the comparisons of the posi-
tions of future QTLs identified by the use of our gene-asso-
ciated SNP map with results from the whole-genome
porcine radiation hybrid map [20].

Authors' contributions

CB conceived the research and coordinated the project.
FP, HH and BZ contributed to annotation of exons, KL to
primer design and XW, RKKV, AH and LBM to SNP selec-
tion. FP, HH and VRG developed the data pipeline. AH,
RKKV and VRG performed the genotyping and VRG vali-
dated the data. RKKV and VRG made the linkage groups
and RKKYV constructed and outlined the linkage maps. BZ,
VRG and RKKV annotated the sequences. VRG retrieved
reference information for the gene position study, and
VRG, RKKV and KKS drafted the manuscript. All authors
have read and approved the final manuscript.

Additional material

Additional file 1

Gene location. Genes linked to the microsatellites on the IMpRH ;y,,,
mapped previously by linkage and physically either by RH panels, somatic-
cell hybrids or by Blast analysis of the reference sequence against the pig
BAC assembly. The genes are listed in chromosomal (SSC) order. Rear-
rangements according to the microsatellite map or BAC assembly positions
are indicated in bold.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-134-S1.xls]

Additional file 2

Data about the SNPs. The data file contains the following information
on each SNP used in the study: SSC number, SNP ID, SNP assays, gene
name, sex-averaged distance, female distance, male distance, number of
meioses, sow minor allele frequency, number of heterozygous sires, for-
ward and reverse primer sequences, human cytogenetic position, human
accession number, physical human location, SNP-containing sequences,
SNP status, accession number and name on the PorcineSNP60.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-134-S2 xls]
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