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Abstract
Background: The cell cycle machinery interprets oncogenic signals and reflects the biology of
cancers. To date, various methods for cell cycle phase estimation such as mitotic index, S phase
fraction, and immunohistochemistry have provided valuable information on cancers (e.g.
proliferation rate). However, those methods rely on one or few measurements and the scope of
the information is limited. There is a need for more systematic cell cycle analysis methods.

Results: We developed a signature-based method for indexing cell cycle phase distribution from
microarray profiles under consideration of cycling and non-cycling cells. A cell cycle signature
masterset, composed of genes which express preferentially in cycling cells and in a cell cycle-
regulated manner, was created to index the proportion of cycling cells in the sample. Cell cycle
signature subsets, composed of genes whose expressions peak at specific stages of the cell cycle,
were also created to index the proportion of cells in the corresponding stages. The method was
validated using cell cycle datasets and quiescence-induced cell datasets. Analyses of a mouse tumor
model dataset and human breast cancer datasets revealed variations in the proportion of cycling
cells. When the influence of non-cycling cells was taken into account, "buried" cell cycle phase
distributions were depicted that were oncogenic-event specific in the mouse tumor model dataset
and were associated with patients' prognosis in the human breast cancer datasets.

Conclusion: The signature-based cell cycle analysis method presented in this report, would
potentially be of value for cancer characterization and diagnostics.

Background
A fundamental characteristic of all cancers is cell cycle
deregulation [1]. Although diverse factors such as point
mutation, gene amplification, activation of oncogenes,
inactivation of tumor suppressors, and hypermethylation
are involved in cancer development, their influence ulti-
mately is on the cell cycle machinery. Therefore, various

methods of cell cycle phase estimation have been devel-
oped. The M phase indicator mitotic index, the number of
mitotic bodies in a microscopic field, and the S-phase frac-
tion, a DNA flow cytometry determination, are used to
measure the tumor proliferation rate and are predictive
for breast cancer prognosis [2-4]. Immunohistochemistry
(IHC) against cell cycle markers is another tool. For exam-
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ple, the expression of G1-S transition marker cyclin E, S-G2
marker cyclin A, or S-G2-M marker geminin are predictive
of poor prognosis of breast cancers [2-5]. However, these
methods rely on one or few measurements and conse-
quently provide a limited scope of information. There is a
need for more systematic methods of cell cycle phase anal-
ysis, such as microarray-based techniques [3,4].

Gene expression signatures, which are capable of predict-
ing the state of a sample from a given microarray dataset,
are the emerging technology for developing cancer thera-
peutics. The "70-gene signature" from a breast cancer
dataset has shown predictive power for the risk of recur-
rence [6]. The "pathway deregulation signature" has
shown the ability to predict pathway status and to charac-
terize breast, lung and ovarian cancers [7]. The "chemo-
therapy response signature" has accurately predicted
clinical response to cytotoxic drugs for breast and ovarian
cancers [8]. Here, we report the development of the "cell
cycle signature (CCS)" which indexes the cell cycle phase
distribution from microarray profiles considering both
cycling and non-cycling cells. The CCS method depicted
"buried" cell cycle phase distributions that were onco-
genic-event specific in a mouse tumor model dataset and
were associated with patients' prognosis in human breast

cancer datasets. The method has a potential to be of value
in the characterization and diagnosis of cancers.

Results
Algorithm
To analyze cell cycle phase distribution, a series of CCSs
were created as described in Methods (Fig. 1A, Additional
file 1). The CCS masterset, 252 genes that express prefer-
entially in cycling cells and in a cell cycle-regulated man-
ner, represents the entire cell cycle and is henceforth
denoted as CCScycling. Eighteen CCS subsets, each com-
posed of genes whose expressions peak at a specific stage
of the cell cycle, represent the phases of the cell cycle and
are denoted using the subscript naming convention of
CCSphase. For example, the CCS subsets for the G1 phase
are expressed as CCSG1, for the G2-M phase as CCSG2-M,
and so on.

Solid tumors are composed of various proportions of
cycling and non-cycling cells [9], and cell cycle phase dis-
tributions can be assessed as per total cells or as per
cycling cells. Since microarray measurements are the net
expression of all cells in the sample, the data is generally
per total cells. To obtain data per cycling cells from a given
microarray dataset (Fig. 1B, total gene dataset), a subdata-

Flow diagram of the cell cycle signature (CCS) methodFigure 1
Flow diagram of the cell cycle signature (CCS) method. (A) CCScycling consists of genes which preferentially express in 
cycling cells and in a cell cycle-regulated manner, representing the entire cell cycle. Each CCS subset consists of genes whose 
expressions peak at specific stages of the cell cycle, representing the corresponding stages. (B) From the given total gene data-
set, the cycling gene dataset is created by extracting the expression values of CCScycling genes. Both datasets are independently 
quantile normalized and the CCS scores are calculated for each.
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set is created by extracting the expression values of CCScy-

cling genes (Fig. 1B, cycling gene dataset). Then, both the
total and the cycling gene datasets undergo quantile nor-
malization which gives the same expression value distri-
bution for each sample [10]. In the total gene dataset,
normalization is done on all genes. On the other hand, in
the cycling gene dataset, normalization is done only on
the cycling genes. Because genes in the CCScycling preferen-
tially express in cycling cells, the influence of non-cycling
cells would be limited for the cycling gene dataset. Scores
for each CCS are calculated for both datasets. CCScycling
and CCSphase scores for the total gene dataset could index
the proportion of cycling cells and of cells at the desig-
nated cell cycle phase per total cells, respectively. Simi-
larly, CCSphase scores for the cycling gene dataset could
index the proportion of cells at the cell cycle phase per
cycling cells. CCScycling scores for the cycling gene dataset
could index the proportion of cycling cells per cycling cells
and thus would show constant values.

Validation
In the preliminary analysis of the Whitfiled et al. cell cycle
dataset [11], CCS indexed cell cycle phase distribution as
expected (Additional file 2). To confirm that the CCS
method is valid for independent datasets, a cell cycle data-

set of synchronized HCT116 cells was prepared and ana-
lyzed. As shown in Fig. 2A, similar heat map patterns were
observed for the total and the cycling gene datasets. Differ-
ences in the CCScycling scores for both the total and the
cycling gene datasets were slight in the situation where
most cells were expected to be in the cell cycle. Peaks in
the CCSphase scores shifted according to cell cycle progres-
sion (Fig. 2A, DMSO 0–10 h), and peaks ceased around
the M phase in cells treated with the mitosis inhibitor noc-
odazole (Fig. 2A, Ncz 7–10 h), consistent with DNA flow
cytometry measurements (Fig. 2B). The CCS method was
able to index cell cycle phase distribution even for an
independent cell cycle dataset derived from a different cell
line and a different platform.

Solid tumors are not solely composed of cycling cells but
contain various numbers of non-cycling cells [9]. Theoret-
ically, changes in the proportion of cycling cells in the
sample are expected to evenly change the proportion of
cells in all cell cycle phases. To examine the influence of
changes in the proportion of cycling cells on CCS scores,
analysis was conducted on the Fournier et al. dataset [12]
of profiles of human mammary epithelial cells (HMECs)
cultured in leucine-rich extra cellular matrix. In this sys-
tem, HMECs grow exponentially and then enter a quies-

Validation of the CCS method using datasets of the HCT116 cell cycle and quiescence-induced cellsFigure 2
Validation of the CCS method using datasets of the HCT116 cell cycle and quiescence-induced cells. (A) CCS 
score heat maps for the HCT116 cell cycle dataset. Synchronized HCT116 cells were profiled at 0, 2, 4, 6, 7, 8, 9 and 10 h after 
release (DMSO, 0–10 h). Nocodazole-treated cells were profiled in parallel (Ncz, 7–10 h). CCS scores were calculated for 
both the total (upper panel) and the cycling (lower panel) gene dataset. Each column represents an experimental sample and 
each row a CCS subset. Cell cycle phases for CCS are indicated by the colored bars on the left of each map (G1; cyan, S; pur-
ple, G2; yellow, and M; red). Red bars above the columns indicate estimated M phase. (B) Flow cytometric analysis of HCT116 
cells. Synchronized HCT116 cells were monitored by DNA flow cytometry after release with DMSO (upper panel) or nocoda-
zole (lower panel). (C) CCS score heat maps for the Fournier et al. dataset of HMECs grown in 3D culture. In this system, rap-
idly growing HMECs (day 3) enter the quiescent state over several days (day 7). (D) CCS score heat maps for the Cam et al. 
dataset of T98 breast cancer cells. The profiles of growing and serum-starved cells for 3 days were analyzed.
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cent state [12,13]. As shown in Fig. 2C, CCScycling and
CCSphase scores for the total gene dataset uniformly
decreased as the HMECs transitioned from cycling (day 3)
to non-cycling state (day 7) (Fig. 2C, upper panel).
According to the DNA flow cytometry estimation in the
original report, the S phase and G2+M phase fraction size
decreased from 15% ± 5.1 (day 5) to 5.5% ± 0.5 (day 7),
and from 12% ± 1.1 (day 5) to 7% ± 2.5 (day 7), respec-
tively (day 3 data was not available) [12]. On the other
hand, the G0+G1 phase fraction size increased from 73%
± 6.3 (day 5) to 86% ± 4.6 (day 7). Due to the inability of
DNA flow cytometry to distinguish cells in G0 from cells
in G1, decisive conclusions cannot be made. However,
from two situations in which 1) 3D cultured HMECs grad-
ually underwent growth arrest and 2) CCSG1 scores
decreased at day 7, this increase can be regarded as an
increase in the number of cells at the G0 phase as well as
a decrease in the number of cells at the G1 phase. To our
surprise, the heat map for the cycling gene dataset showed
increasing CCSG1 scores towards day 7 (Fig. 2C, lower
panel). This increase in CCSG1 scores could be due to the
G1 phase prolongation which is known to occur under
G0-inducing conditions, such as serum starvation and
development [14,15]. For further confirmation, we ana-
lyzed the Cam et al. dataset [16] of profiles of growing and
serum starved T98 breast cancer cells. Similar to the results
for HMECs, a uniform decrease in CCScycling and CCSphase
scores for the total gene dataset was observed in serum-
starved cells (Fig. 2D, upper panel). In addition, an
increase in CCSG1 scores for the cycling gene dataset was
observed (Fig. 2D, lower panel), indicating prolongation
of the G1 phase. Taken together, these results suggested
that changes in the proportion of cycling cells in the sam-
ple can be presented as uniform changes in CCScycling and
CCSphase scores for the total gene dataset.

The mammalian cell cycle is a highly regulated and con-
served process [17]. To investigate whether CCS derived
from human datasets can be used to closely related spe-
cies, the Yamamoto et al. dataset [18], cell cycle profiles
(G0 to S) of NIH3T3 mouse fibroblasts, was analyzed. The
heat map showed changes in the proportion of cycling
cells (Additional file 3: upper panel) as well as cell cycle
progression from G1 to S phase (Additional file 3: lower
panel), as quiescent cells (FGF 0 h) re-enter the cell cycle,
progress through G1 phase and enter S phase (FGF 12 h).
These results showed that the human CCS created in this
study can be applied for the analysis of mouse datasets.

Analysis on mouse tumor model dataset
The CCS method was applied to the Herschkowitz et al.
dataset [19] which contains 122 profiles of 13 different
mouse mammary carcinoma models and normal sam-
ples. The authors reported that some models developed
similar tumors (homogeneous models) of gene expres-
sion and histological phenotype while other models

showed heterogeneity (heterogeneous models) and gave
"randomness of the molecular basis of tumor initiation"
as the reason for the heterogeneity. As shown in Fig. 3A,
CCScycling and CCSphase scores for the total gene dataset for
the normal samples were consistently very low, while
scores for tumors were varying degrees higher, indicating
variation in the proportion of cycling cells. It is reasonable
that heterogeneous models show variation in CCScycling
and CCSphase scores. However, variation was also seen in
each homogeneous model, although Tag models had a
tendency towards higher scores and the Neu model had a
tendency towards lower scores. In contrast, CCSphase
scores for the cycling gene dataset were similar within the
same homogeneous models, except in the Myc model
(Fig. 3A, lower panel). To illustrate this in detail, CCSphase
scores of several models for both datasets were plotted as
shown in Fig. 3B. It can be seen that each model has a spe-
cific cell cycle phase distribution. High CCSG1 and low
CCSS-G2-M scores were seen in the Neu model. The oppo-
site pattern was seen in one of the Tag models. The Myc
model showed two different cell cycle phase distributions
(Additional file 4) and the reason is not clear. However,
because Myc has been reported to induce genomic insta-
bility and to contribute to tumorigenesis through a dom-
inant mutator effect [20], additional oncogenic events
may have been induced. In all cases, plots for the total
gene dataset were vertically shifted in varying degrees
which would be due to the influence of non-cycling cells,
as presented in HMECs and T98 cells. On the other hand,
plots for the cycling gene dataset showed minimal varia-
tion in alignment. These results indicated two findings: (i)
the cell cycle phase distribution reflects the oncogenic
events in tumors, and (ii) the cell cycle phase distribution
can be better indexed when the influence of non-cycling
cells is taken into account. The advantage of the CCS
method can be underscored considering that the current
cell cycle phase estimation methods relying on one or few
measurements are not sufficient to depict cell cycle phase
distribution or to distinguish non-cycling cells.

Analysis on human breast cancer datasets
The CCS method was applied to the Ivshina et al. dataset
[21] from a panel of 249 human breast cancers. The heat
map for the total gene dataset showed various CCScycling
scores, indicative of variations in the proportion of cycling
cells in the sample (Fig. 4A, upper panel). The CCSphase
scores were not uniformly changed in some patients, sug-
gesting that cell cycle phase distributions were also
altered. The heat map for the cycling gene dataset dis-
played a rolling wave pattern (Fig. 4A, lower panel).
Patients with high CCScycling scores for the total gene data-
set had high CCSS-G2-M and low CCSG1 scores for the
cycling gene dataset, but several exceptions existed (Fig.
4A), reminding the influence of non-cycling cells found in
the analysis of mouse tumor models. Clinical annotations
were available for this dataset and so the relevance
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between CCS scores and patient prognosis were tested.
Patients were dichotomized by the median of each CCS
score and then the risk differences between the two groups
for disease free survival (DFS) were assessed using log-
rank test and Cox univariate analysis (Fig. 4B). The CCScy-

cling score for the total gene dataset was significantly pre-
dictive of poor prognosis (Hazard ratio [HR] = 1.98, p =
0.00134) (Fig. 4B and Fig. 4C, CCScycling), consistent with

the common view that a larger number of cycling cells cor-
relates with worse clinical outcome. The CCSS-G2-M and
several CCSG1 scores for the total gene dataset were also
predictive of poor prognosis. On the other hand, CCSG1
scores for the cycling gene dataset had an adverse prognos-
tic power and gave the highest prognostic value among
the tests (HR = 0.41, p = 0.0000367) (Fig. 4B and Fig. 4C,
CCSG1).

Analysis of the Herschkowitz et al. mouse tumor model datasetFigure 3
Analysis of the Herschkowitz et al. mouse tumor model dataset. (A) CCS score heat maps for the Herschkowitz et al. 
dataset. 122 profiles from 13 mouse tumor models and normal samples were analyzed. Tumors are aligned according to the 
homogeneous-heterogeneous classification of Herschkowitz et al. (B) CCS score plots for selected homogeneous models. 
CCSphase scores of the MMTV-Neu, MMTV-PyMT and C3(1)-Tag models were plotted. X axis represents cell cycle phases and 
Y axis represents magnitude of CCS score.
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To exclude the possibility of dataset specificity, the CCS
method was also applied to the Langerød et al. dataset
[22] from a panel of 80 breast cancers. Similar results were
obtained (Additional file 5). For the total gene dataset,
variations in CCScycling scores and non-uniform changes in
CCSphase scores in some patients were observed. Patients
with high CCScycling scores for the total gene dataset had
high CCSS-G2-M and low CCSG1 scores for the cycling gene
dataset with some exceptions. CCSG1 scores for the cycling
gene dataset were predictive for DFS as with the Ivshina et
al. dataset and gave the highest prognostic value (HR =
0.41, p = 0.00553) (Additional file 5). Taken together,
these results indicated that: (i) variations in the propor-
tion of cycling cells exist among tumors, (ii) the propor-
tion of cycling cells correlated to the cell cycle phase
distribution per cycling cells with several exceptions, and
(iii) the cell cycle phase distribution per cycling cells better
associated with patients' prognosis.

Discussion and conclusion
In this study, we developed a signature-based method to
index cell cycle phase distribution from microarray pro-
files under consideration of cycling and non-cycling
cells, providing two sources of valuable information on
cancers.

One source of information is the proportion of cycling
cells in the sample. The rationale of most current cell cycle
phase estimation methods, including mitotic index, S
phase fraction and IHC against cell cycle markers, is that
the high proliferative tumors leading to poor prognosis
contain more cycling cells. In the analysis of the human
breast cancer datasets, higher CCScycling scores for the total
gene dataset, indicative of a larger number of cycling cells
in the sample, did associate with poor prognosis. Natu-
rally, it can be thought that an increase in the number of
cycling cells leads to a uniform increase in the number of
cells at all cell cycle phases. However, some patients
showed non-uniform changes in CCSphase scores for the
total gene dataset (Fig. 4A, upper panel), suggesting that
each cell cycle phase was not evenly changed. Similarly,
Whitfield et al. observed that some cell cycle-regulated
genes did not express in correlation with proliferation sta-
tus in some breast cancers [11]. Furthermore, although
the G1 phase is a part of the cell cycle, G1 phase marker
cyclin D1 often negatively correlates with poor prognosis
of breast cancers [2-4,23]. Therefore, considering only the
proportion of cycling cells seems insufficient.

The other source of information is cell cycle phase distri-
bution. A number of oncogenic events are known to per-

Analysis of the Ivshina et al. human breast cancer datasetFigure 4
Analysis of the Ivshina et al. human breast cancer dataset. (A) CCS score heat maps for the Ivshina et al. dataset. 
Patients were aligned by the peak in CCSphase scores for the cycling gene dataset. (B) Prognostic values of each CCS for disease 
free survival (DFS). Patients were dichotomized by the median of each CCS score and risk differences of two groups for DFS 
were assessed by log-lank test and Cox univariate analysis. Log scale hazard ratios are indicated by the colored bars: log-rank p 
< 0.05 (red), and p ≥ 0.05 (gray). The highest prognostic value is indicated by (*). (C) Survival curves for selected signatures. 
Higher CCS score patients (blue); lower CCS score patients (red).
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turb the duration of cell cycle phases. For example,
activation of oncogenes such as v-H-ras, v-Src, v-Raf, cyclin
D1, cyclin E, and c-myc shortens the G1 phase [24-26]. Loss
of tumor suppressor Pten shortens the G1 phase [27] and
loss of Lzts1 and Lats2 shortens the M phase [28,29]. Viral
infections such as SV40-Tag and HTLV-1 Tax also shorten
the G1 phase [30,31]. Such perturbations in the cell cycle
phase duration subsequently alter the cell cycle phase dis-
tribution. Thus, the cell cycle phase distribution per
cycling cells would reflect the biology of cancers. Actually,
in the analysis of mouse tumor models, oncogenic-event
specific cell cycle phase distributions were observed. This
suggests that the cell cycle phase distribution under con-
sideration of both cycling and non-cycling cells has a
potential for cancer characterization.

A model of tumors with different cell cycle phase distribu-
tions is proposed in Fig. 5. Oncogenic events perturb the
cell cycle each in a unique way which in turn alters the cell
cycle phase distribution as well as the proliferation rate.
High proliferative tumors grow rapidly and thereby pro-
duce a large number of cycling cells. The opposite is the

true for low proliferative tumors. However, high prolifer-
ative tumors with a small number of cycling cells or low
proliferative tumors with a large number of cycling cells
would exist at a low probability. This model would
account for non-uniform changes in CCSphase scores for
the total gene dataset found in some breast cancer
patients, the Whitfield et al.'s observation, and the adverse
prognostic value of cyclin D1. Current cell cycle phase esti-
mation methods are insufficient for detecting such can-
cers. Mitotic index and S-phase fraction do not recognize
non-cycling cells. Combinatorial IHC [32] still needs
improvement and validation. Shetty et al. reported a rela-
tionship between breast cancer grade and G1 phase length
estimated from the ratio of geminin and Ki67 IHC meas-
urements; however, it was not significant [33]. The CCS
method, on the other hand, indexed the cell cycle phase
distribution under consideration of cycling and non-
cycling cells, and showed a potential for characterizing
cancers.

Previously, as an alternative microarray-based cell cycle
analysis technique, Lu et al. introduced the "expression

A model of tumors with different cell cycle phase distributionsFigure 5
A model of tumors with different cell cycle phase distributions. Oncogenic events perturb the cell cycle each in their 
unique way, which alters cell cycle phase distribution as well as proliferation rate. High proliferative tumors grow rapidly and 
produce large number of cycling cells, but exceptions exist at a low probability. CCS can characterize them under considera-
tion of cycling and non-cycling cells.
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deconvolution" method [34]. To predict the cell cycle
phase distribution of yeast, they prepared about 700
equations with 5 variables representing 5 cell cycle phases
and searched for the optimal solution. The method has
comparable or even better potential to improve cancer
characterization than the CCS method. However, it
requires a tremendous amount of computational
resources to find the optimal solution and avoid the local
minimum, especially as the number of variables increases
(18 + 1 phases were analyzed in our study). There are
some hurdles that need to be overcome before high reso-
lution cell cycle phase analysis is practical and we are cur-
rently tackling some of them.

Methods
Cell Culture and Synchronization
The HCT116 colorectal cancer cell line (ATCC) was grown
in McCoy's 5A medium modified (Sigma-Aldrich) with
10% FBS (JBS) and maintained at 37°C and 5% CO2. Syn-
chronous culture was obtained by incubating cells for 19
h in 2 mM of thymidine, followed by a 9-h incubation in
normal medium and a second 16-h incubation in thymi-
dine (2 mM). Cells were washed with normal medium
followed by treatment with DMSO for 0, 2, 4, 6, 7, 8, 9,
and 10 h as a control or 0.1 mg/ml nocodazole (Sigma-
Aldrich) for 7, 8, 9, and 10 h. Cells were stained with pro-
pidium iodide and analyzed with DNA flow cytometry.

Microarray
Total RNA was reverse transcribed, labeled, and hybrid-
ized to Human Genome U133 Plus 2.0 arrays (Affyme-
trix) according to the manufacturer's instructions. The
expression value for each probe was calculated using the
GC-RMA algorithm. The microarray data were deposited
in the GEO database (GEO number: GSE14103).

Signature development
Two datasets were used to create the CCS. First, the Whit-
field et al. dataset [11] of 47 profiles of synchronized Hela
S3 cells for 0–46 h time points (1-h intervals) after release
of double thymidine block was analyzed to identify genes
which express in a cell cycle-regulated manner. Raw signal
intensities from the Cy5 and Cy3 channels were quantile
normalized for each sample. Cy5/Cy3 ratios were log-
transformed and quantile normalized across the arrays.
Resulting values were smoothened using a moving aver-
age with a window size of 3 and were standardized by Z-
transformation. Then, Fourier transformations were
applied to each probe for 1-40-h periods in 15-min incre-
ments to identify periodicity and phase offset. Fourier
transformation magnitudes for the known 51 cell cycle-
regulated genes (listed in Whitfield et al. [11]) demon-
strated a peak at the 14.75-h periodicity (Additional file
6). Thus, probes were selected using the criterion of

Z-score(Pi) > 1.96

where Pi is the Fourier transformation magnitude of the
14.75-h periodicity for probe i, i = 1,..., 44,160. The anal-
ysis yielded a list of 1,633 periodically expressed probes
representing 976 genes. Second, the Bar-Joseph et al. data-
set [35] of 17 profiles of synchronized primary human
foreskin fibroblasts (FFs) for 0–32 h time points (2-h
intervals) after release of double thymidine block and 2
profiles of serum starved FFs was investigated to identify
genes which preferentially express in cycling cells. Serum
starved cells are known to exit the cell cycle phase and to
enter the non-cycling G0 phase [14], thus probes, whose
expression is constantly higher throughout the cell cycle
compared with non-cycling cells, were selected by the cri-
terion

max(eij) < min(eik)

where eij is the expression value for probe i of serum-
starved FFs sample j, j = 1, 2, and eik is the expression value
for probe i of the synchronized FFs sample k, k = 1,..., 17.
This yielded 2,304 out of 22,277 probes representing
1,779 genes. Then, from the intersection, a list of 335
probes representing 252 genes was obtained. These genes
which preferentially express in cycling cells and in a cell
cycle-regulated manner compose the CCS masterset (CCS-

cycling). A number of well-known proliferation markers
such as Ki67, geminin, TOP2A, aurora A, and PCNA [1-
5,32] were included in this signature, while some cell
cycle-regulated genes such as p21 and cyclin G1 whose
expression can be up-regulated in non-cycling cells
[36,37] were not. Lastly, according to their phase offsets,
probes for CCScycling were assigned to 18 CCS subsets
(CCSphase) which correspond to a 360° cell cycle evenly
divided into 20° increments, so that each CCS subset con-
tains at least 3 genes. Because some genes were repre-
sented by multiple probes, the same genes may appear in
different CCS subsets. The CCS gene list is shown in Addi-
tional file 1.

Signature scoring and data visualization
The given microarray dataset was used as the total gene
dataset. The cycling gene dataset was created by extracting
the expression values for CCScycling constituents from the
total gene dataset. Both total and cycling gene datasets
then underwent the following steps independently to give
CCS scores. Expression values were log-transformed,
quantile normalized to achieve the same expression value
distribution for each sample, and standardized with Z-
transformation across the samples. The Z-scores of the
probes for each CCS genes were averaged for each sample
and used as the CCS scores. To obtain robust scores, each
CCSphase score was adjusted by averaging with the neigh-
boring CCS scores twice for a total of two cell cycle
rounds. Heat maps were created by "Java Treeview" [38].
In the analysis of the mouse tumor model dataset, gene ID
mapping was done using human-mouse orthology infor-
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mation from HomoloGene [39]. In the analysis of human
breast cancer datasets, patients were ordered by peak in
CCSphase scores for the cycling gene dataset.

Survival analysis
Patients were dichotomized by the median of each CCS
score. To assess the risk difference between two groups for
DFS, Kaplan-Meier survival analysis, log-rank test and Cox
univariate analysis were conducted using R "survival"
package.
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