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Abstract
Background: Staphylothermus marinus is an anaerobic, sulfur-reducing peptide fermenter of the
archaeal phylum Crenarchaeota. It is the third heterotrophic, obligate sulfur reducing
crenarchaeote to be sequenced and provides an opportunity for comparative analysis of the three
genomes.

Results: The 1.57 Mbp genome of the hyperthermophilic crenarchaeote Staphylothermus marinus
has been completely sequenced. The main energy generating pathways likely involve 2-
oxoacid:ferredoxin oxidoreductases and ADP-forming acetyl-CoA synthases. S. marinus possesses
several enzymes not present in other crenarchaeotes including a sodium ion-translocating
decarboxylase likely to be involved in amino acid degradation. S. marinus lacks sulfur-reducing
enzymes present in the other two sulfur-reducing crenarchaeotes that have been sequenced –
Thermofilum pendens and Hyperthermus butylicus. Instead it has three operons similar to the mbh and
mbx operons of Pyrococcus furiosus, which may play a role in sulfur reduction and/or hydrogen
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production. The two marine organisms, S. marinus and H. butylicus, possess more sodium-
dependent transporters than T. pendens and use symporters for potassium uptake while T. pendens
uses an ATP-dependent potassium transporter. T. pendens has adapted to a nutrient-rich
environment while H. butylicus is adapted to a nutrient-poor environment, and S. marinus lies
between these two extremes.

Conclusion: The three heterotrophic sulfur-reducing crenarchaeotes have adapted to their
habitats, terrestrial vs. marine, via their transporter content, and they have also adapted to
environments with differing levels of nutrients. Despite the fact that they all use sulfur as an
electron acceptor, they are likely to have different pathways for sulfur reduction.

Background
Crenarchaeota is one of the two major phyla of the
domain Archaea. Many crenarchaeotes are heterotrophic,
anaerobic, sulfur-reducing hyperthermophiles, but the
crenarchaeotes with completely sequenced genomes are
primarily aerobes. Of the archaea with published
genomes, only Hyperthermus butylicus and Thermofilum
pendens are heterotrophic, obligate sulfur-reducing anaer-
obes [1,2]. More genomes are needed from anaerobic cre-
narchaeotes in order to determine if their phenotypic
similarities are reflected in their genomes.

Staphylothermus marinus was isolated from a black smoker
and from volcanically heated sediments [3]. It is a hyper-
thermophile, with a maximum growth temperature of
98°C. Its name reflects its proclivity to form clusters of up
to 100 cells. At high concentrations of yeast extract it
forms large cells up to 15 μm in diameter. It is a strict
anaerobe and grows heterotrophically on complex media.
H2S, CO2, acetate and isovalerate are metabolic products,
suggesting a metabolism similar to that of the Thermococ-
cales of the phylum Euryarchaeota. Dark granules
observed within the cytoplasm may consist of glycogen.
While S. marinus can survive in the absence of sulfur and
produce hydrogen rather than H2S, it requires sulfur for
growth [4]. An unusual cell surface protein named tetra-
brachion has been characterized from S. marinus [5], and
a 24-subunit phosphoenolpyruvate-utilizing enzyme with
a unique structure has also been studied [6].

Here we report the complete genome of the anaerobic,
sulfur-reducing archaeon S. marinus and a comparative
analysis with other sulfur-reducing heterotrophic crenar-
chaeotes. While some features in S. marinus are similar to
H. butylicus [7] and T. pendens [8], including peptide fer-
mentation enzymes, there are also major differences, par-
ticularly in the electron transport machinery.

Results
General features
The genome of S. marinus F1 consists of a circular chromo-
some of 1.57 Mbp. There is one copy each of 5S, 16S, and
23S ribosomal RNA. About 59% of protein-coding genes

begin with an AUG codon, 8% with GUG, and 33% with
UUG. The low number of GUG start codons reflects the
low GC content of this genome (35.7% GC). The ribos-
omal protein L12ae gene (Smar_1096) does not have a
valid start codon, but this is likely to be an essential gene.
Based on alignment with L12ae proteins from other
archaea, it appears that the S. marinus gene begins with an
ATC start codon. S. marinus has 12 regions of CRISPR
repeats containing between 5 and 17 repeats. Twelve
CRISPR-associated proteins are found in the vicinity of
three of the repeats, between coordinates 323,400 and
345,500 (Smar_0308-Smar_0325), and one other
CRISPR-associated protein is found at a different location
not close to any repeats (Smar_1195).

The genome statistics for S. marinus and the two other sul-
fur-reducing crenarchaeotes are presented in Table 1.
While the genome of H. butylicus is larger than that of S.
marinus, they both have approximately the same number
of genes due to the lower coding percentage of H. butyli-
cus. T. pendens has a larger genome and a greater number
of genes than the other two (discussed below). The GC
content of S. marinus is much lower than the others, but
this is not unusual for a hyperthermophile. It is in the
same range as the GC content of the Sulfolobus genomes,
while Methanocaldococcus jannaschii and Nanoarchaeum
equitans have lower GC contents (31% and 32% respec-
tively). T. pendens has a much higher percentage of genes
in paralog clusters than the others, suggesting that gene
duplication and divergence have been more prevalent in
this genome. S. marinus has a smaller percentage of genes
with signal peptides. In all three genomes the predicted
exported proteins are primarily ABC transporter substrate-
binding proteins and hypothetical proteins. S. marinus
has approximately the same number of ABC transporters
for uptake of nutrients as H. butylicus, but they both have
fewer than T. pendens.

T. pendens has about 270 more protein-coding genes than
the other two, but only about 150 more genes with COG
hits, suggesting that 120 of the additional genes in T. pen-
dens are hypothetical proteins. We compared COG catego-
ries [9] between the three crenarchaeotes to determine
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what categories were more prevalent in T. pendens com-
pared to the other two (Table 2). T. pendens has a higher
number of genes in many categories, suggesting that the
additional genes are spread out among a number of cellu-
lar processes. The three categories with the greatest addi-
tional genes in T. pendens are carbohydrate metabolism
and transport, cell wall/membrane/envelope biogenesis,
and function unknown. The greater number of carbohy-
drate-associated genes is mainly due to a larger number of
transporters. T. pendens has more ABC transporters than
the other two and a phosphotransferase (PTS) system
transporter, as well as a higher number of transporters
assigned to COG2814, arabinose efflux permease, which
are transporters of the major facilitator superfamily. In
addition, T. pendens has three sugar kinases of COG1070,
while the other two have none. Thus T. pendens can prob-
ably take up and utilize a greater number of carbohydrates
than the other two. The greater number of cell wall-asso-
ciated genes in T. pendens is mainly due to a greater
number of glycosyltransferases (COG0438) and nucle-
otide sugar metabolic enzymes. This suggests that T. pen-
dens has a greater variety of sugars attached to lipids and/
or proteins on the outside of the cell.

The S. marinus genome contains several protein families
not found before in crenarchaeotes, and these are dis-
cussed below. S. marinus is the first crenarchaeote found
to have an arginine decarboxylase belonging to COG1166
(Smar_0204), which includes the speA gene of E. coli. This
protein family is also found in one euryarchaeote, Meth-
anosaeta thermophila. Most euryarchaeota have a pyruvoyl-
dependent arginine decarboxylase [10]. T. pendens and
Cenarchaeum symbiosum also contain this type of enzyme.
No arginine decarboxylase has been identified in other
crenarchaeote genomes. Phylogenetic analysis of the S.
marinus arginine decarboxylase (not shown) does not
indicate a clear case of lateral gene transfer, and this
enzyme was not identified during the search for laterally
transferred genes (see below).

S. marinus contains a probable cell surface protein
(Smar_0566) with 4 copies of the pfam03640 repeat,
which has not been found in any other crenarchaeal
genome. This repeat is present in two methanogens, Can-
didatus Methanoregula boonei and Candidatus Methano-
sphaerula palustris. It is also found in a wide variety of
bacteria, but its function is unknown.

Table 1: Genome statistics.

S. marinus H. butylicus T. pendens

Genome size (bp) 1,570,485 1,667,163 1,813,393

Coding region (bp) 1,399,012 (89.1%) 1,385,726 (83.1%) 1,651,626 (91.1%)

G+C content (bp) 561,080 (35.7%) 895,879 (53.7%) 1,045,351 (57.6%)

Total genes 1655 1668 1923

RNA genes 45 (2.7%) 52 (3.1%) 40 (2.1%)

Protein-coding genes 1610 (97.3%) 1616 (96.9%) 1883 (97.9%)

Genes with function prediction 974 (58.9%) 981 (58.8%) 1170 (60.8%)

Genes in ortholog clusters 1391 (84.0%) 1380 (82.7%) 1559 (81.1%)

Genes in paralog clusters 542 (32.7%) 488 (29.3%) 805 (41.9%)

Genes assigned to COGs 1109 (67.0%) 1114 (66.8%) 1264 (65.7%)

Genes assigned Pfam domains 1062 (64.2%) 1042 (62.5%) 1215 (63.2%)

Genes with signal peptides 37 (2.2%) 70 (4.2%) 134 (7.0%)

Genes with transmembrane helices 348 (21.0%) 294 (17.6%) 437 (22.7%)

Fusion genes 44 (2.7%) 32 (1.9%) 74 (3.8%)
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Table 2: Comparison of COG categories among the three sulfur-reducing crenarchaeotes.

S. marinus H. butylicus T. pendens

Amino acid transport and metabolism 74 75 89

Carbohydrate transport and metabolism 72 40 108

Cell cycle control, cell division, chromosome partitioning 8 7 13

Cell motility 4 6 5

Cell wall/membrane/envelope biogenesis 23 24 47

Chromatin structure and dynamics 2 1 2

Coenzyme transport and metabolism 53 75 51

Cytoskeleton 0 0 1

Defense mechanisms 17 10 22

Energy production and conversion 92 109 119

Extracellular structures 0 0 0

Function unknown 116 113 132

General function prediction only 199 206 212

Inorganic ion transport and metabolism 85 57 82

Intracellular trafficking, secretion, and vesicular transport 12 15 15

Lipid transport and metabolism 15 20 20

Nuclear structure 0 0 0

Nucleotide transport and metabolism 39 43 42

Posttranslational modification, protein turnover, chaperones 53 56 63

RNA processing and modification 2 2 1

Replication, recombination and repair 71 61 78

Secondary metabolites biosynthesis, transport, and catabolism 5 9 3

Signal transduction mechanisms 18 24 15

Transcription 60 66 73

Translation 164 161 153
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S. marinus is unique among crenarchaeotes in having a
sodium ion-translocating decarboxylase for energy gener-
ation (Smar_1503-1504). It also has three putative oper-
ons containing subunits of multisubunit cation/proton
antiporters, although these are likely to belong to large
membrane-bound ion-translocating enzyme complexes
rather than acting as cation antiporters (see below). S.
marinus is the first crenarchaeote found to have a type I
restriction-modification system (Smar_0761-0763).

S. marinus has 5 putative transposable elements. Phyloge-
netic analysis shows that all of them belong to family
IS607 (not shown). The characterized members of this IS
family contain two ORFs. In S. marinus one of the ele-
ments contains two ORFs while the other four contain
only one ORF. In the S. marinus element with two ORFs,
the first (Smar_0846) is truncated relative to other mem-
bers of the family, and is likely to be a pseudogene, while
the second (Smar_0847) is intact. The four elements with
one ORF share a high degree of similarity to each other
(Smar_0083, Smar_0767, Smar_1150, Smar_1546), sug-
gesting that they have been recently duplicated. In addi-
tion, there are 14 copies of a repeated sequence of
approximately 260 nucleotides, although some of the
repeats are truncated at one or both ends. These repeats
are likely to be miniature inverted-repeat transposable ele-
ments (MITEs) as they are flanked by inverted repeats and
have similarity to a region of DNA upstream of the group
of four transposase ORFs (Figure 1). MITEs have previ-
ously been identified in some archaeal genomes [11]. Two

ORFs are disrupted by MITEs, a protein with ABC trans-
porter ATPase and acetyltransferase domains
(Smar_0733) and a PIN domain protein (Smar_0327/
0328). The presence of disrupted genes suggests that the
MITEs have been active recently, although they do not
appear to have had a major impact on the genome con-
tent.

Twenty-one probable laterally transferred genes were
identified using the program SIGI-HMM [12]. One gene is
by itself (Smar_0375), there are three pairs of genes
(Smar_0568-0569, Smar_0846-0847, and Smar_1144-
1145) and there is one cluster of 17 genes (Smar_1525-
1541) in which 14 of the genes are predicted to be later-
ally transferred. Twelve of the laterally transferred genes
are predicted to have come from other Crenarchaeota, six
from Euryarchaeota, and the remaining three have
unknown donors. Six of the 17 genes are likely to be pseu-
dogenes, suggesting that they were transferred but then
are degrading. From these findings we conclude that lat-
eral transfer has not played a large role in shaping S. mari-
nus gene content, and most if not all gene transfers have
come from other archaea.

Metabolism/transport
The presence of transporters for peptides and carbohy-
drates suggests that both types of compounds can serve as
carbon and energy sources. S. marinus has four ABC trans-
porters for carbohydrates (Smar_0088-0091, Smar_0108-
0111, Smar_0299-0302, Smar_1146-1149) and two for

Alignment of putative miniature inverted-repeat transposable elements (MITEs) from S. marinusFigure 1
Alignment of putative miniature inverted-repeat transposable elements (MITEs) from S. marinus. Start and end 
coordinates are given for each putative MITE. Below the MITEs are the upstream regions of four related transposases with 
start and end coordinates. The underlined sequences are the inverted repeats within the MITEs, and the boxed sequences are 
regions of similarity between the MITEs and the upstream regions of the transposases.
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peptides (Smar_0270-0274, Smar_0342-0346). It has a
carbohydrate secondary transporter of the glycoside-pen-
toside-hexuronide (GPH) family (Smar_0710), and it is
the first crenarchaeote found to have a peptide transporter
of the oligopeptide transporter (OPT) family
(Smar_1400). There are no ABC transporters for amino
acids, but a probable amino acid transporter of the neuro-
transmitter:sodium symporter (NSS) family is present
(Smar_0285). The presence of secondary transporters
(GPH, OPT, and NSS), which have low affinity and high
capacity, suggests that there are times when S. marinus is
exposed to high levels of nutrients, and it can conserve
energy by using secondary transporters instead of ATP-
dependent transporters.

S. marinus has a glycolysis pathway similar to Aeropyrum
pernix, with ATP-dependent glucokinase (Smar_1514)
and phosphofructokinase (Smar_0007). Glycogen syn-
thase (Smar_1393) and phosphorylase (Smar_0246) are
present, suggesting that the dark granules observed in S.
marinus cells are composed of glycogen. Similar to other
crenarchaeotes and thermococci, S. marinus has pyru-
vate:ferredoxin oxidoreductase (Smar_1447-1450) and
ADP-forming acetyl-CoA synthase (Smar_0449,
Smar_1241-1242) for ATP synthesis from pyruvate. Three
other 2-ketoacid:ferredoxin oxidoreductases are present
(Smar_0291-292, Smar_0997-1000, Smar_1443-1444)
that are probably involved in amino acid degradation.

S. marinus is unique in Crenarchaeota in having a sodium-
translocating decarboxylase. Smar_1504 and Smar_1503
encode the beta and gamma subunits (beta and delta in
methylmalonyl-CoA decarboxylase). There are two possi-
bilities for the activity of this decarboxylase (Figure 2).
With Smar_1426 and Smar_1427 these genes could form
a methylmalonyl-CoA decarboxylase. Smar_1426 and
Smar_1504 are closely related to predicted methylmalo-
nyl-CoA decarboxylase subunits of Pyrococcus species. This
enzyme would be involved in catabolism of succinyl-CoA
resulting from glutamate degradation via a 2-
oxoacid:ferredoxin oxidoreductase (Figure 2). However,
methylmalonyl-CoA mutase and epimerase were not
found in the genome. The other possible function is
oxaloacetate decarboxylase with Smar_0341 as the alpha
subunit. This would be involved in catabolism of aspar-
tate (Figure 2). However Smar_0341 is also related to
pyruvate carboxylase B subunits of euryarchaeotes, and
could interact with Smar_0140 to form this enzyme
instead of or in addition to a sodium-transporting decar-
boxylase.

S. marinus, like the other heterotrophic crenarchaeotes H.
butylicus and T. pendens, has lost almost all amino acid
biosynthetic enzymes, although it has retained a few path-
ways for specific physiological reasons. For instance,

glutamine is needed for its function as a nitrogen donor.
Like the other heterotrophic crenarchaeotes, S. marinus
can make pyrimidines but not purines. Enzymes for syn-
thesis of several cofactors are present in S. marinus, in con-
trast to T. pendens, which lacks many cofactor synthesis
pathways. S. marinus can likely synthesize riboflavin, pyri-
doxine, and coenzyme A, but it probably must acquire
heme from the environment.

Electron transport/sulfur reduction
S. marinus requires sulfur for growth and reduces it to
sulfide [4], but it lacks homologs of proteins implicated in
sulfur reduction in other organisms. It has no genes simi-
lar to sulfhydrogenases [13,14] and the recently discov-
ered NADPH:sulfur oxidoreductase [15] from P. furiosus.
It also lacks genes with similarity to the molybdoenzymes
polysulfide reductase of Wolinella succinogenes [16], sulfur
reductase of Acidianus ambivalens [17], sulfur reductase of
Aquifex aeolicus [18], and thiosulfate/sulfur reductase of
Salmonella enterica [19]. S. marinus has a gene
(Smar_1055) with 56% similarity to sulfide dehydroge-
nase SudA subunit from P. furiosus [20], but this gene is
shorter than the P. furiosus gene by 120 amino acids and
the beta subunit is not present in S. marinus. Thus, this

Two possible functions of the sodium ion-translocating decarboxylase of S. marinus in their metabolic contextsFigure 2
Two possible functions of the sodium ion-translocat-
ing decarboxylase of S. marinus in their metabolic 
contexts.

Oxaloacetate                Methylmalonyl-CoA 
decarboxylase                   decarboxylase
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Smar_1503 – delta

aspartate

oxaloacetate

CO2

pyruvate

CO2

CoA Fdox
Fdred

acetyl-CoA

acetate
CoA

ADP
ATP

glutamate

2-oxoglutarate

CO2

CoA Fdox
Fdred

succinyl-CoA

methylmalonyl-CoA

CO2
propionyl-CoA

CoA
ADP
ATP

propionate
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enzyme is unlikely to be present in S. marinus. However S.
marinus has three putative operons similar in composition
to the mbh and mbx operons of Thermococcales (Table 3).
These multisubunit complexes are not found in any other
sequenced crenarchaeote. The mbh operon from P. furiosus
encodes a membrane-bound hydrogenase that oxidizes
ferredoxin [21], while the mbx operon has a yet to be
defined role in electron transfer. Its proposed function is
the transfer of electrons from ferredoxin to NADPH cou-
pled with proton translocation across the cell membrane
[15]. A similar complex present only in Pyrococcus abyssi

(PAB1395-1401) is adjacent to formate dehydrogenase
subunits and has similarity to E. coli hydrogenases 3 and
4. Thus, it is likely to be a formate hydrogen lyase.

The S. marinus mbh/mbx-related complexes contain a set of
proteins similar to components of multisubunit cation/
proton antiporters and another set with similarity to
NADH:ubiquinone oxidoreductase subunits (Table 4).
The S. marinus antiporter-related subunits show high sim-
ilarity to each other and to the corresponding subunits of
the P. abyssi putative formate hydrogen lyase. S. marinus

Table 3: Sulfur reduction enzymes and their presence in the three sulfur-reducing heterotrophic crenarchaeotes.

Enzyme S. marinus T. pendens H. butylicus

Sulfur/polysulfide reductase (molybdoenzyme) - Tpen_1121-1123 Hbut_0371-0373

Sulfhydrogenase - - -

Sulfide dehydrogenase - - -

NADPH:sulfur oxidoreductase - Tpen_0143 Hbut_0802

mbh/mbx-related Smar_0018-0030, Smar_0645-0657, Smar_1057-1071 - -

Table 4: Subunit composition of multisubunit membrane-bound complexes from Pyrococcus species and S. marinus.

mbh mbx PabFHL Smar1 Smar2 Smar3

COG1863, MnhE PF1423 PF1453 PAB1401 0027 0655 1070

COG2212, MnhF PF1424 PF1452 PAB1398.1 0022 0650 1065

COG1320, MnhG PF1425 PF1451 PAB1398 0023 0651 1066

COG1563 PF1426 PF1450 PAB1399.1 0024 0652 1067

COG2111, MnhB PF1427 PF1428 PF1449 PAB1399 0025 0653 1068

COG1006, MnhC PF1429 PF1448 PAB1400 0026 0654 1069

Pfam00361, MnhD/nuoLMN PF1430 PF1447
PF1446

PAB1402
PAB1392
PAB1391

0028 0645 1057
1058
1071

mbhI-related PF1431 0029

Pfam01058, nuoB PF1432 PF1444 PAB1396 0018 0646 1063

Pfam00329, nuoC PF1433 PF1443 PAB1394 0019 0647 1061

Pfam00346, nuoD PF1434 PF1442 PAB1394 0020 0648 1061

Pfam00146, nuoH PF1435 PF1445 PAB1393 0030 0657 1060

COG1143, FHL6/nuoI PF1436 PF1441 PAB1395 0021 (pseudo) 0649 1062
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does not have an identifiable formate dehydrogenase, so
these complexes likely have a different function in S. mari-
nus. The S. marinus and P. abyssi proteins form a distinct
cluster separate from mbh and mbx complexes and from
the related cation/proton antiporters (Figure 3). In con-
trast, the NADH:ubiquinone oxidoreductase-related sub-
units in the S. marinus putative operons are not closely
related to each other or to the corresponding P. abyssi for-
mate hydrogen lyase proteins. These findings indicate that
the antiporter-related subunits form a cassette that has
been duplicated in S. marinus and combined with
NADH:ubiquinone oxidoreductase-related subunits that
are divergent in sequence.

S. marinus produces hydrogen when sulfur is limiting [4].
Two of the multisubunit complexes are potentially
involved in hydrogen production. One set of S. marinus
proteins (Smar_1060-Smar_1063) clusters strongly with
E. coli hydrogenases 3 and 4 in phylogenetic trees, and
may form a membrane-bound hydrogenase. Smar_0018
and Smar_0020 have similarity (61% and 39%, respec-
tively) to subunits of Methanosarcina mazei ech hydroge-
nase subunits, and hydrogenase accessory proteins are
found in their vicinity (Smar_0012-0013, Smar_0015). It
is likely that at least one of these clusters is involved in
hydrogen production.

The other complexes may be involved in sulfur reduction
either directly or indirectly. One of the clusters
(Smar_1057-1071) is close on the chromosome to a pyri-
dine nucleotide-disulfide oxidoreductase (Smar_1055). It
is possible that this cluster is involved in sulfur respira-
tion, where Smar_1055 acts as a NAD(P)H-dependent
polysulfide reductase and the other ORFs are involved in
the generation of NAD(P)H through a membrane-based
electron transport system that oxidizes reduced ferredoxin
and translocates protons across the membrane. The sys-
tem would allow energy generation from an overall sul-
fur-dependent oxidation of peptides and amino acids and
it would be similar to the mbx-NAD(P)H elemental sulfur
oxidoreductase (NSR) system that has been described for
P. furiosus [15].

Comparison of the three sulfur-reducing crenarchaeotes
Spectral clustering was used to create protein clusters from
the three anaerobic sulfur-reducing heterotrophs, and the
clusters shared by all three or by pairs of the three were
derived (Figure 4) and [see Additional file 1]. The three
organisms share 571 core clusters, somewhat more than
the conserved crenarchaeal core of 336 determined by
Makarova et al. [22]. Among the clusters conserved
among the three but not found in all Crenarchaeota are
the subunits of ABC transporters for sugars, peptides, and

Phylogenetic tree of proteins related to antiporter subunit mnhE/mrpE/phaEFigure 3
Phylogenetic tree of proteins related to antiporter subunit mnhE/mrpE/phaE.
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amino acids, which are required for their heterotrophic
lifestyle. Also falling into this group are the ferrous iron
transporter proteins FeoA and FeoB and the anaerobic
form of ribonucleotide reductase, proteins which reflect
their anaerobicity. S. marinus and H. butylicus have almost
twice as many shared clusters (225) as either one has with
T. pendens (119 or 126). This is due to their closer phylo-
genetic relationship. S. marinus and H. butylicus both
belong to the order Desulfurococcales while T. pendens
belongs to the order Thermoproteales.

The major difference in habitat between these three organ-
isms is that S. marinus and H. butylicus were isolated from
marine environments [1,3] while T. pendens was isolated
from a terrestrial solfatara [2]. Marine environments have
relatively high concentrations of sodium and potassium
compared to terrestrial springs, and this influences the
complement of transporters encoded by the three
genomes. For example, S. marinus and H. butylicus use the
Trk type of potassium transporter (COG0168), which is a
proton or sodium symporter, while T. pendens uses the
more energy-intensive ATP-dependent kdp-type potas-
sium transporter (COG2060, COG2216, COG2156).
Also, S. marinus and H. butylicus have a greater number
and variety of sodium symporters than T. pendens. They
both have sodium-dependent multidrug efflux pumps of
the MATE family (COG0534) and amino acid transport-
ers of the neurotransmitter:sodium symporter family
(pfam00209), while only S. marinus has a transporter of
the sodium:solute symporter family (pfam00474).

Both T. pendens and H. butylicus have formate dehydroge-
nases while S. marinus lacks this enzyme. Formate can be
used as an electron donor with sulfur as electron acceptor
to generate energy. S. marinus also lacks the FdhE protein,
which is involved in formate dehydrogenase formation,
while the other two have it.

There are also differences in the ability to utilize carbohy-
drates among the three organisms. As discussed above, T.
pendens has a greater number of carbohydrate transporters
than the other two. According to the CAZy database http:/
/www.cazy.org[23], H. butylicus has no glycosyl hydro-
lases, while S. marinus has ten and T. pendens has fifteen.
Also H. butylicus apparently does not store glycogen as it
lacks glycogen synthase and phosphorylase, but the other
two have these. H. butylicus also lacks enzymes for utiliza-
tion of galactose and N-acetylglucosamine. Surprisingly
while S. marinus and T. pendens have probable glucoki-
nases related to the characterized Aeropyrum pernix
enzyme [24], H. butylicus has a protein related to the
broad-specificity hexokinase from Sulfolobus tokodaii [25].
This suggests that, while it may not be able to break down
polysaccharides, it may be able to utilize simple sugars.

There are similarities and differences among the three
genomes in the genes involved in biosynthesis. Many of
the genes shared by S. marinus and H. butylicus but missing
from T. pendens are involved in cofactor metabolism. T.
pendens appears to be unable to make riboflavin, coen-
zyme A, pyridoxine, and possibly other cofactors, and it
has transporters for biotin and riboflavin that are not
found in the other two. Among the three organisms only
H. butylicus has a heme biosynthesis pathway. On the
other hand, all three organisms are unable to make most
amino acids and purines, although they do have the pyri-
midine biosynthetic pathway. S. marinus and H. butylicus
have ABC transporters of the basic membrane protein
family (pfam02608) that probably transport nucleosides
[26], but T. pendens lacks this type of transporter. In fact T.
pendens does not have any identifiable nucleoside or
nucleobase transporters, so it likely has undiscovered fam-
ilies to transport these compounds.

There are other differences between these three organisms
that do not directly reflect the habitats they live in. H.
butylicus is surprisingly lacking some enzymes of central
metabolism. It has no identifiable fructose-bisphosphate
aldolase and no phosphoenolpyruvate synthase or pyru-
vate phosphate dikinase. Since fructose-bisphosphate
aldolase is essential for hexose and pentose synthesis, it
likely has a new version of this enzyme. H. butylicus also
does not have an asparaginyl-tRNA synthetase; however,
it is the only one of the three to have an Asp-tRNA(Asn)/
Glu-tRNA(Gln) amidotransferase, but the A subunit of
this enzyme (Hbut_0594) has a frameshift. Since this
appears to be an essential enzyme for H. butylicus, the gene
may still be functional.

Discussion
The crenarchaeotes H. butylicus, S. marinus, and T. pendens
are similar phenotypically in that they all degrade pep-
tides and/or carbohydrates using 2-oxoacid:ferredoxin
oxidoreductases, they are anaerobes, and they are depend-
ent on sulfur reduction to dispose of electrons. They all
have genomes in the size range of 1.6–1.8 Mbp. Having
these three genome sequences allows comparative studies
to determine whether their phenotypic similarity is
reflected in their genome sequences.

While the central metabolic pathways for generation of
ATP from peptides appear to be similar between the three,
there are also differences. For instance there are different
sets of transporters used by the marine organisms versus
the terrestrial one. However the biggest differences
between the three relate to the availability of nutrients.
On one extreme is H. butylicus, which has no glycosidases
and is capable of synthesizing most if not all cofactors it
needs. This organism appears to be more specialized than
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the other two in that it is restricted to the use of peptides
and amino acids as energy sources, although formate can
also be utilized. On the other extreme is T. pendens which
has many glycosidases and relies on its environment for
most cofactors, thus it is used to being in a nutrient-rich
environment. Probably a terrestrial solfatara environment
allows nutrients to be concentrated as compared to
marine environments in which nutrients may be quickly
dispersed. S. marinus falls in the middle ground as it has
several glycosidases like T. pendens but it encodes most
cofactor biosynthesis pathways like H. butylicus. Its use of
secondary transporters and ABC transporters suggests that
at least at some times it is exposed to high levels of nutri-
ents. It is adapted to an environment that contains carbo-
hydrates as well as proteinaceous substrates, but in which
cofactors are not present at high levels.

Characterized membrane-bound sulfur and polysulfide
reductases have three subunits [16-19]. The A and B sub-
units are related in sequence, but the C subunits belong to
different protein families. T. pendens and H. butylicus have
putative three-subunit sulfur reductases in which all sub-
units are adjacent on the chromosome. These complexes
have the standard A and B subunits, but they differ in their
C subunits. The T. pendens C subunit belongs to the same
family as the W. succinogenes psrC subunit, while the H.

butylicus C subunit is related to sreC of Acidianus ambiva-
lens. S. marinus lacks this type of sulfur or polysulfide
reductase, and it is the only crenarchaeote other than C.
symbiosum to lack this family of molybdopterin oxidore-
ductases (COG0243).

T. pendens and H. butylicus also have putative NADPH:sul-
fur oxidoreductases similar to the P. furiosus enzyme [15],
which is also absent in S. marinus. However, S. marinus
has three mbh/mbx-related multisubunit complexes,
which are not found in the other two genomes. The over-
all picture of sulfur reduction shows that T. pendens and H.
butylicus may use similar pathways, while S. marinus uses
different ones. This is in contrast to the phylogenetic posi-
tions of these organisms: S. marinus and H. butylicus
belong to the order Desulfurococcales, while T. pendens
belongs to the order Thermoproteales. The molybdoen-
zymes are widespread within Crenarchaeota, missing only
in S. marinus, and may represent the ancestral path for sul-
fur reduction in Crenarchaeota. This analysis, however,
rests on comparison to sulfur reduction enzymes charac-
terized in other organisms, and new sulfur reduction
pathways may be identified in the future.

Conclusion
The three heterotrophic sulfur-reducing crenarchaeotes
have adapted to their habitats, terrestrial vs. marine, via
their transporter content, and they have also adapted to
environments with differing levels of nutrients, with T.
pendens being adapted to a nutrient-rich environment and
H. butylicus adapted to an environment in which only pep-
tides are present. S. marinus appears to have different elec-
tron transport pathways compared to the phenotypically
similar organisms T. pendens and H. butylicus, showing
that this phenotype is not encoded by the same genotype
in these organisms.

Methods
S. marinus strain F1 is available from the Deutsche
Sammlung von Mikroorganismen und Zellkulturen
(DSMZ) as DSM 3639T and from the American Type Cul-
ture Collection (ATCC) as ATCC 43588. T. pendens Hrk5
is available from DSMZ as DSM 2475, and H. butylicus is
available from DSMZ as DSM 5456. S. marinus F1 cells
were grown in a 300 liter fermenter at 85°C in SME
medium with 0.1% yeast extract, 0.1% peptone, and 0.7%
elemental sulfur under a 200 kPa N2 atmosphere. Cells
grew to a density of 3 × 108 cells/ml in 3 days. Cell pellets
were stored at -85°C. DNA was extracted based on the
method of Zhou et al. [27]. One gram of cells was dis-
solved in 4.5 ml extraction buffer (100 mM Tris, pH 8.0,
100 mM EDTA, 100 mM sodium phosphate, and 1.5 M
NaCl). After 200 micrograms of proteinase K were added,
cells were incubated for 30 minutes at 37°C. A solution of
0.5 ml 20% SDS was added, and then the mixture was
incubated at 65°C for 2 hours. Proteins were removed by

Venn diagram showing genes shared between S. marinus, H. butylicus, and T. pendensFigure 4
Venn diagram showing genes shared between S. mari-
nus, H. butylicus, and T. pendens.
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extraction with 5 ml phenol. The sample was centrifuged
for 30 minutes at 19000 rpm in a Sorvall SS34 rotor at
10°C, and the upper phase was discarded. The sample was
then extracted twice with chloroform and isoamyl alcohol
(24:1) to remove phenol. DNA was precipitated with 3 ml
isopropanol at room temperature overnight. The sample
was then centrifuged for 30 minutes. The pellet was
washed with 5 ml 70% ethanol and recentrifuged. The
pellet was dried and then dissolved in 1 ml LiChrosolv
(Merck, Darmstadt, Germany). RNA was removed by
addition of 20 μg DNAse-free RNAse and incubation for 4
hours at 37°C.

The genome of S. marinus was sequenced at the Joint
Genome Institute (JGI) using a combination of 3 kb, 8–10
kb and 40 kb (fosmid) DNA libraries. For all three librar-
ies, shearing is followed by blunt end repair; then the
DNA is isolated on an agarose gel and the appropriate sec-
tion of the gel is cut out. For fosmid libraries, DNA is sep-
arated on a pulsed-field gel. DNA is extracted from the gel
and then cloned into the pUC18 vector for 3 kb libraries,
the pMCL200 vector for 8–10 kb libraries, or the
pCC1FOS vector for 40 kb fosmid libraries. Sequencing is
carried out from both ends of the inserts using BigDye Ter-
minators and ABI3730XL DNA sequencers. More detailed
information about library construction and sequencing,
including protocols and reagents, is available at http://
www.jgi.doe.gov/sequencing/protocols/
prots_production.html. Draft assemblies were based on
23766 total reads. All three libraries provided 13.3× cov-
erage of the genome. The Phred/Phrap/Consed software
package http://www.phrap.com was used for sequence
assembly and quality assessment [28-30]. All mis-assem-
blies were corrected and all gaps between contigs were
closed by custom primer walk using subclones or PCR
products as templates. A total of 657 additional reactions
were necessary to close gaps and to raise the quality of the
finished sequence. The Phred quality score for this
genome is Q50, which corresponds to one miscalled base
per 100,000 bases. The genome sequence of S. marinus
can be accessed in GenBank [GenBank: CP000575]. The
Genomes On Line Database (GOLD) accession number is
http://genomesonline.org/GOLD_CARDS/
Gc00511.html. Genes were identified using a combina-
tion of Critica [31] and Glimmer [32] followed by a round
of manual curation.

Analysis of the S. marinus genome was carried out with the
Integrated Microbial Genomes (IMG) system [33]. Pro-
teins unique to S. marinus or missing from S. marinus but
present in other crenarchaeotes were identified with the
phylogenetic profiler in IMG. Transposable elements were
identified by BLAST against the ISFinder database [34].
CRISPR repeats were identified with the CRISPR Recogni-
tion Tool [35].

Laterally transferred genes were identified with SIGI-
HMM [12]. DNA and protein alignments were generated
with CLUSTAL W [36]. The phylogenetic tree was gener-
ated with MrBayes 3.1.2 [37] with 1,000,000 generations
sampled every 100 generations. The first 250,000 genera-
tions were discarded as burn-in. The tree was viewed and
manipulated with njplot [38].

To generate clusters for comparative genomics, we
retrieved all amino acid sequences for S. marinus, H. butyl-
icus, and T. pendens along with their blastp [39] (e-value <
10-6) similarity scores, from the Integrated Microbial
Genomes database [33]. Thereafter, we divided the result-
ing network of protein similarities into distinct similarity
matrices. Each matrix (cluster of proteins) was then suc-
cessively partitioned into two child clusters using a spec-
tral clustering procedure [40,41]. This procedure is
analogous to a random walk of a particle moving over the
proteins of the network. At each transition, the particle
moves to an adjacent protein with probabilities corre-
sponding to the similarity between proteins. The amount
of time the particle spends in a given sub-network will
determine whether this is indeed a cluster of its own or
not. The magnitude of the second eigenvalue of the simi-
larity matrix for a network will determine how fast the
particle approaches its stationary distribution [42]. Here,
we chose to partition the network if the second eigenvalue
was 0.8 or more. This approach resulted in 1041 clusters
of a total of 2653 proteins with homologs within two or
more of the organisms.

Authors' contributions
HH isolated the DNA, SL and AC carried out the sequenc-
ing and assembly, HS and AL finished the genome, ML
carried out gene calling and annotation. IA, LD, JR, IP,
LEU, SH, JGE, KM, and BM contributed to the analysis. IA
compiled the manuscript. HH, IBZ, WBW, BM, CW, JB,
and NK supervised aspects of the project and critically
reviewed the manuscript. All authors approved the final
manuscript.

Additional material

Additional file 1
Clusters shared between two or three of the genomes S. marinus, 
H. butylicus, and T. pendens.
Clusters shared between two or three of the genomes S. marinus, H. 
butylicus, and T. pendens. List of cluster IDs with the protein family 
they belong to, followed by a list of locus tags for proteins belonging to the 
cluster.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-145-S1.txt]
Page 11 of 13
(page number not for citation purposes)

http://www.jgi.doe.gov/sequencing/protocols/prots_production.html
http://www.jgi.doe.gov/sequencing/protocols/prots_production.html
http://www.jgi.doe.gov/sequencing/protocols/prots_production.html
http://www.phrap.com
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CP000575
http://genomesonline.org/GOLD_CARDS/Gc00511.html
http://genomesonline.org/GOLD_CARDS/Gc00511.html
http://www.biomedcentral.com/content/supplementary/1471-2164-10-145-S1.txt


BMC Genomics 2009, 10:145 http://www.biomedcentral.com/1471-2164/10/145
Acknowledgements
This work was performed under the auspices of the US Department of 
Energy's Office of Science, Biological and Environmental Research Program, 
and by the University of California, Lawrence Berkeley National Laboratory 
under contract No. DE-AC02-05CH11231, Lawrence Livermore National 
Laboratory under Contract No. DE-AC52-07NA27344, and Los Alamos 
National Laboratory under contract No. DE-AC02-06NA25396. L. D., J. R., 
and B. M. were supported by a NASA Astrobiology: Exobiology and Evolu-
tionary Biology grant NNG05GP24G to B. M. I. P. and W. B. W. were sup-
ported by DOE contract number DE-FG02-97ER20269. L. E. U. and I. B. Z. 
were supported by grant number GM72285 from the National Institutes of 
Health. J. G. E. was supported by the DOE Genomes to Life program. M. L. 
was supported by the Department of Energy under contract DE-AC05-
000R22725.

References
1. Zillig W, Holz I, Janekovic D, Klenk H-P, Imsel E, Trent J, Wunderl S,

Forjaz VH, Coutinho R, Ferreira T: Hyperthermus butylicus, a
hyperthermophilic sulfur-reducing archaebacterium that
ferments peptides.  J Bacteriol 1990, 172:3959-3965.

2. Zillig W, Gierl A, Schreiber G, Wunderl S, Janekovic D, Stetter KO,
Klenk H-P: The archaebacterium Thermofilum pendens repre-
sents, a novel genus of the thermophilic, anaerobic sulfur
respiring Thermoproteales.  Syst Appl Microbiol 1983, 4:79-87.

3. Fiala G, Stetter KO, Jannasch HW, Langworthy TA, Madon J: Staphy-
lothermus marinus sp. nov. represents a novel genus of
extremely thermophilic submarine heterotrophic archae-
bacteria growing up to 98°C.  Syst Appl Microbiol 1986, 8:106-113.

4. Hao X, Ma K: Minimal sulfur requirement for growth and sul-
fur-dependent metabolism of the hyperthermophilic
archaeon Staphylothermus marinus.  Archaea 2003, 1:191-197.

5. Peters J, Nitsch M, Kühlmorgen B, Golbik R, Lupas A, Kellermann J,
Engelhardt H, Pfander J-P, Müller S, Goldie K, Engel A, Stetter K-O,
Baumeister W: Tetrabrachion: a filamentous archaebacterial
surface protein assembly of unusual structure and extreme
stability.  J Mol Biol 1995, 245:385-401.

6. Cicicopol C, Peter J, Lupas A, Cejka Z, Müller SA, Golbik R, Pfeifer G,
Lilie H, Engel A, Baumeister W: Novel molecular architecture of
the multimeric archaeal PEP-synthase homologue (MAPS)
from Staphylothermus marinus.  J Mol Biol 1999, 290:347-361.

7. Brügger K, Chen L, Stark M, Zibat A, Redder P, Ruepp A, Awayez M,
She Q, Garrett RA, Klenk H-P: The genome of Hyperthermus
butylicus: a sulfur-reducing, peptide fermenting, neutrophilic
Crenarchaeote growing up to 108 degrees C.  Archaea 2007,
2(2):127-135.

8. Anderson I, Rodriguez J, Susanti D, Porat I, Reich C, Ulrich LE, Elkins
JG, Mavromatis K, Lykidis A, Kim E, Thompson LS, Nolan M, Land M,
Copeland A, Lapidus A, Lucas S, Detter C, Zhulin IB, Olsen GJ, Whit-
man W, Mukhopadhyay B, Bristow J, Kyrpides N: Genome
sequence of Thermofilum pendens reveals an exceptional loss
of biosynthetic pathways without genome reduction.  J Bacte-
riol 2008, 190:2957-2965.

9. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin
EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS,
Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA: The
COG database: an updated version includes eukaryotes.
BMC Bioinformatics 2003, 4:41.

10. Graham DE, Xu H, White RH: Methanococcus jannaschii uses a
pyruvoyl-dependent arginine decarboxylase in polyamine
biosynthesis.  J Biol Chem 2002, 277:23500-23507.

11. Filée J, Siguier P, Chandler M: Insertion sequence diversity in
archaea.  Microbiol Mol Biol Rev 2007, 71:121-157.

12. Waack S, Keller O, Asper R, Brodag T, Damm C, Fricke WF, Surovcik
K, Meinicke P, Merkl R: Score-based prediction of genomic
islands in prokaryotic genomes using hidden Markov models.
BMC Bioinformatics 2006, 7:142.

13. Ma K, Schicho RN, Kelly RM, Adams MWW: Hydrogenase of the
hyperthermophile Pyrococcus furiosus is an elemental sulfur
reductase or sulfhydrogenase: evidence for a sulfur-reducing
hydrogenase ancestor.  Proc Natl Acad Sci USA 1993,
90:5341-5344.

14. Ma K, Weiss R, Adams MWW: Characterization of hydrogenase
II from the hyperthermophilic archaeon Pyrococcus furiosus
and assessment of its role in sulfur reduction.  J Bacteriol 2000,
182:1864-1871.

15. Schut GJ, Bridger SL, Adams MWW: Insights into the metabolism
of elemental sulfur by the hyperthermophilic archaeon Pyro-
coccus furiosus: characterization of a coenzyme A-dependent
NAD(P)H sulfur oxidoreductase.  J Bacteriol 2007,
189:4431-4441.

16. Krafft T, Bokranz M, Klimmek O, Schröder I, Fahrenholz F, Kojro E,
Kröger A: Cloning and nucleotide sequence of the psrA gene
of Wolinella succinogenes polysulphide reductase.  Eur J Biochem
1992, 206:503-510.

17. Laska S, Lottspeich F, Kletzin A: Membrane-bound hydrogenase
and sulfur reductase of the hyperthermophilic and acido-
philic archaeon Acidianus ambivalens.  Microbiology 2003,
149:2357-2371.

18. Guiral M, Tron P, Aubert C, Gloter A, Iobbi-Nivol C, Giudici-Orti-
coni M-T: A membrane-bound multienzyme, hydrogen-oxi-
dizing, and sulfur-reducing complex from the
hyperthermophilic bacterium Aquifex aeolicus.  J Biol Chem
2005, 280:42004-42015.

19. Hinsley AP, Berks BC: Specificity of respiratory pathways
involved in the reduction of sulfur compounds by Salmonella
enterica.  Microbiology 2002, 148:3631-3638.

20. Ma K, Adams MWW: Sulfide dehydrogenase from the hyper-
thermophilic archaeon Pyrococcus furiosus: a new multifunc-
tional enzyme involved in the reduction of elemental sulfur.
J Bacteriol 1994, 176:6509-6517.

21. Sapra R, Verhagen MF, Adams MWW: Purification and character-
ization of a membrane-bound hydrogenase from the hyper-
thermophilic archaeon Pyrococcus furiosus.  J Bacteriol 2000,
182:3423-3428.

22. Makarova KS, Sorokin AV, Novichkov PS, Wolf YI, Koonin EV: Clus-
ters of orthologous genes for 41 archaeal genomes and
implications for the evolutionary genomics of archaea.  Biol
Direct 2007, 2:33.

23. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Hen-
rissat B: The Carbohydrate-Active EnZymes database
(CAZy): an expert resource for Glycogenomics.  Nucleic Acids
Res 2009, 37:D233-D238.

24. Sakuraba H, Mitani Y, Goda S, Kawarabayasi Y, Ohshima T: Cloning,
expression, and characterization of the first archaeal ATP-
dependent glucokinase from aerobic hyperthermophilic
archaeon Aeropyrum pernix.  J Biochem 2003, 133:219-224.

25. Nishimasu H, Fushinobu S, Shoun H, Wakagi T: Identification and
characterization of an ATP-dependent hexokinase with
broad substrate specificity from the hyperthermophilic
archaeon Sulfolobus tokodaii.  J Bacteriol 2006, 188:2014-2019.

26. Webb AJ, Hosie AH: A member of the second carbohydrate
uptake family of ATP-binding cassette transporters is
responsible for ribonucleoside uptake in Streptococcus
mutans.  J Bacteriol 2006, 188:8005-8012.

27. Zhou J, Bruns MA, Tiedje JM: DNA recovery from soils of diverse
composition.  Appl Environ Microbiol 1996, 62:316-322.

28. Ewing B, Green P: Base-calling of automated sequencer traces
using phred. II. Error probabilities.  Genome Res 1998,
8:186-194.

29. Ewing B, Hillier L, Wendl MC, Green P: Base-calling of automated
sequencer traces using phred. I. Accuracy assessment.
Genome Res 1998, 8:175-185.

30. Gordon D, Abajian C, Green P: Consed: a graphical tool for
sequence finishing.  Genome Res 1998, 8:195-202.

31. Badger JH, Olsen GJ: CRITICA: coding region identification
tool invoking comparative analysis.  Mol Biol Evol 1999,
16:512-524.

32. Delcher AL, Harmon D, Kasif S, White O, Salzberg SL: Improved
microbial gene identification with GLIMMER.  Nucleic Acids Res
1999, 27:4636-4641.

33. Markowitz VM, Szeto E, Palaniappan K, Grechkin Y, Chu K, Chen I-
MA, Dubchak I, Anderson I, Lykidis A, Mavromatis K, Ivanova NN,
Kyrpides NC: The integrated microbial genomes (IMG) sys-
tem in 2007: data content and analysis tool extensions.
Nucleic Acids Res 2008, 36:D528-D533.
Page 12 of 13
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2113915
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2113915
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2113915
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15803665
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7837271
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7837271
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7837271
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10388577
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17350933
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17350933
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18263724
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18263724
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12969510
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12969510
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11980912
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11980912
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11980912
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17347521
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17347521
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16542435
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16542435
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8389482
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8389482
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8389482
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10714990
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10714990
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17449625
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17449625
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1597189
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12949162
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16236714
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12427953
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7961401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7961401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10852873
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18042280
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18042280
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18042280
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18838391
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18838391
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12761185
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16484213
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16997965
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8593035
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8593035
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9521922
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9521922
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9521921
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9521921
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9521923
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9521923
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10331277
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10331277
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10556321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10556321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17933782
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17933782


BMC Genomics 2009, 10:145 http://www.biomedcentral.com/1471-2164/10/145
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

34. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M: ISfinder:
the reference centre for bacterial insertion sequences.
Nucleic Acids Res 2006, 34:D32-D36.

35. Bland C, Ramsey TL, Sabree F, Lowe M, Brown K, Kyrpides NC,
Hugenholtz P: CRISPR recognition tool (CRT): a tool for auto-
matic detection of clustered regularly interspaced palindro-
mic repeats.  BMC Bioinformatics 2007, 8:209.

36. Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving
the sensitivity of progressive multiple sequence alignment
through sequence weighting, position-specific gap penalties
and weight matrix choice.  Nucleic Acids Res 1994, 22:4673-4680.

37. Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic
inference under mixed models.  Bioinformatics 2003,
19:1572-1574.

38. Perrière G, Gouy M: WWW-query: an on-line retrieval system
for biological sequence banks.  Biochimie 1996, 78:364-369.

39. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local
alignment search tool.  J Mol Biol 1990, 215:403-410.

40. Paccanaro A, Casbon JA, Saqi MA: Spectral clustering of protein
sequences.  Nucleic Acids Res 2006, 34:1571-1580.

41. Brewer ML: Development of a spectral clustering method for
the analysis of molecular data sets.  J Chem Inf Model 2007,
47:1727-1733.

42. Broder A, Karlin A: Bounds on the cover time.  J Theoret Probab
1989, 2:101-120.
Page 13 of 13
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381877
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381877
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17577412
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17577412
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17577412
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12912839
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12912839
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8905155
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8905155
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16547200
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16547200
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17636944
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17636944
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	General features
	Metabolism/transport
	Electron transport/sulfur reduction
	Comparison of the three sulfur-reducing crenarchaeotes

	Discussion
	Conclusion
	Methods
	Authors' contributions
	Additional material
	Acknowledgements
	References

