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Abstract
Background: The ability to demonstrate the reproducibility of gene expression microarray
results is a critical consideration for the use of microarray technology in clinical applications. While
studies have asserted that microarray data can be "highly reproducible" under given conditions,
there is little ability to quantitatively compare amongst the various metrics and terminology used
to characterize and express measurement performance. Use of standardized conceptual tools can
greatly facilitate communication among the user, developer, and regulator stakeholders of the
microarray community. While shaped by less highly multiplexed systems, measurement science
(metrology) is devoted to establishing a coherent and internationally recognized vocabulary and
quantitative practice for the characterization of measurement processes.

Results: The two independent aspects of the metrological concept of "accuracy" are "trueness"
(closeness of a measurement to an accepted reference value) and "precision" (the closeness of
measurement results to each other). A carefully designed collaborative study enables estimation of
a variety of gene expression measurement precision metrics: repeatability, several flavors of
intermediate precision, and reproducibility. The three 2004 Expression Analysis Pilot Proficiency
Test collaborative studies, each with 13 to 16 participants, provide triplicate microarray
measurements on each of two reference RNA pools. Using and modestly extending the consensus
ISO 5725 documentary standard, we evaluate the metrological precision figures of merit for
individual microarray signal measurement, building from calculations appropriate to single
measurement processes, such as technical replicate expression values for individual probes on a
microarray, to the estimation and display of precision functions representing all of the probes in a
given platform.

Conclusion: With only modest extensions, the established metrological framework can be
fruitfully used to characterize the measurement performance of microarray and other highly
multiplexed systems. Precision functions, summarizing routine precision metrics estimated from
appropriately repeated measurements of one or more reference materials as functions of signal
level, are demonstrated and merit further development for characterizing measurement platforms,
monitoring changes in measurement system performance, and comparing performance among
laboratories or analysts.
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Background
The ability to demonstrate the reproducibility of gene
expression microarray results is a critical element in their
adoption for clinical applications. Several studies have
asserted that microarray data can be "highly reproducible"
if probe sequences are well-mapped to the genome and
standard protocols are followed [1-3]. While largely
focused on comparisons among measurement platforms,
these and other studies have variously characterized many
aspects of microarray performance. However, the microar-
ray community has yet to adopt a standardized terminol-
ogy and practice for characterizing performance that can
facilitate clear communication among the user, developer,
and regulator stakeholders.

The measurement science (metrology) community is
devoted to establishing a philosophically coherent termi-
nology and practice for characterizing and communicat-
ing measurement performance [4]. As the world's largest
developer and publisher of international consensus
standards, the non-governmental International Organiza-
tion for Standardization (ISO) plays a critical role in dis-
seminating this guidance [5]. The documentary standard
ISO 5725-1 [6] details the basic concepts and estimation
techniques for assessing metrological "accuracy" which is
defined as a combination of two concepts, "trueness" and
"precision." These concepts are formally defined in the
Vocabulary of International Metrology (VIM) [7] base
document and more cogently described in ISO 3534 [8]:
trueness is the closeness of a measurement to an accepted
reference value and precision is the closeness of measure-
ment results to each other. While microarrays can gener-
ate vastly more data per sample than is typical of the
processes that shaped the development of these docu-
ments, we believe that this pre-existing metrological
framework can be extended to microarrays and other
highly multiplexed measurement processes.

Properly designed collaborative studies are one of the very
best ways of obtaining the information required to char-
acterize some aspects of measurement performance [9].
The three "rounds" of the Expression Analysis Pilot Profi-
ciency Test evaluated replicate samples of a pair of mixed-
tissue RNA pools across multiple participants from June
to December of 2004; these studies provide a wealth of
information relevant to the estimation of several aspects
of within-platform measurement precision and among-
participant measurement concordance [10]. While the
known relationships between the two RNA pools used in
these studies also enable evaluation of several measures of
trueness in differential expression [11], we here evaluate
only the metrological concepts of precision as applied to
the underlying direct measurements. These concepts pro-
vide a foundation for the development of objective expec-

tations for the consistency of microarray results. We
anticipate that this foundation will facilitate improving
the comparability of microarray measurements over time
and place and may lead to the development of new
approaches and tools for objectively demonstrating the
utility of measures of differential expression and ranked
lists of differentially expressed genes.

Results
The precision of a defined measurement process can be
characterized using three nested metrics: "repeatability,"
"intermediate precision," and "reproducibility." These
measures of precision are defined in terms of the condi-
tions that apply when the measurements are obtained,
including: operator, equipment, calibrations, environ-
mental conditions, and the period of time between meas-
urements. Repeatability is defined as the precision of
independent measurements when all conditions are
assumed constant and thus do not contribute variability
(eg, single participants in a given round). Reproducibility
is defined as the precision observed when all conditions
are permitted to vary within allowable tolerances and thus
to contribute variability (eg, all participants in at least one
round). Intermediate precision is a special case, where
some specified factors are held constant and others are
varied (eg, a single participant in two or more rounds). A
variety of analysis of variance approaches are suitable for
dissecting such data. ISO 5725-2 details the standard
approach used in measurement science to characterize
measurement precision for a specific measurement proc-
ess from the results for a single material in a single study
[9,12].

Classical precision metrics
In the context of the microarray platform measurements,
the signal from each probeset of the array is a single meas-
urement process. The ISO 5725-2 calculations for a single
process in a single study are described in Methods, Classi-
cal Precision Metrics for Single Studies. Methods, Classical
Precision Metrics for Multiple Studies extends the calcula-
tions to multiple studies that use nominally identical
samples. The design elements of the Expression Analysis
Pilot Proficiency Test studies that enable the use of these
calculations are described in Methods, Study Design.

While tedious, none of the classical precision metrics are
particularly complex or difficult to calculate. However,
keeping track of the nomenclature and symbols used for
the various metrics can be challenging. In quick summary:
let xijk represent the kth replicate measurement of a given

probeset reported by the jth participant in the ith round.

The usual mean, , and standard deviation, s(xij), of thexij
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replicates estimate the value and technical variation for
that probeset for the particular participant at one point in

time. The value  and technical variation characteristic of

the microarray platform itself are estimated by combining

the  and s(xij) values over all participants; the metrolog-

ical term for this expected technical variation is repeatabil-
ity precision and is represented as sri. The variation among

the different  estimates the between-participant precision

and is represented as sLi. In combination, the two sources

of variation estimate the reproducibility precision which is
represented as sRi. These single-round estimates can be

regarded as characterizing the performance of the given
probeset over the (typically short) duration of the study.

When nominally identical samples are analyzed in multi-

ple studies, the resulting multiple  and s(xij) values can

be used to estimate the participant-specific expected

value, , repeatability, srj, and among-round precision, sWj;

the combination of these two sources of variation esti-
mate the intermediate precision over time for the participant,
sI(T)j [13]. Combining the single-round, single-participant

estimates over all participants can also estimate the long-

term expected value, , repeatability, sr, between-labora-

tory precision, sL, and reproducibility, sR; these long-term

estimates can be regarded as characterizing the intrinsic
performance of the platform.

Precision functions
The above classical precision metrics characterize per-
formance for individual processes with multiple nomi-
nally identical samples of one material. Characterizing
processes as a function of signal level can usefully identify
the performance expected for "typical" samples [14]. For
measurement methods involving one to a few tens of dif-
ferent measurement processes, this can be accomplished
with interlaboratory studies involving a relatively small
series of samples of similar matrix composition but with
varying levels of the analytes of interest. If the many
(thousands to millions) of signals typical of microarrays
have very different measurement characteristics, then little
simplification to this classical approach is possible. How-
ever, estimation of aggregate precision functions from
analyses of a single material becomes feasible if the major-
ity of the measurement processes share similar perform-
ance characteristics. The expected performance of a
"typical" probeset with a "typical" sample can be estab-
lished by compositing the multitudinous individual esti-
mates for one or a few samples.

The Expression Analysis Pilot studies provide results for
31054 probesets in each of two mixed-tissue pools. In the
following, we characterize the various precision metrics as
functions of signal level from the 62108 unique combina-
tions of probeset and material.

Discrete Precision Functions

Figure 1 illustrates a simple, empirical approach to evalu-
ating relationships between signal level and precision
metrics, where the multitude of individual {signal level,
precision} values are reduced to a relative handful of
expected values [15,16]. Each datum represents the aver-
age signal and standard deviation of the triplicate meas-
urements for one probeset for one of the two mixed-tissue
pools reported by participant 12 in Round 1,

{ ,s(x1,12)}. The line displays the expected value of

these estimates, {< >,<s(x1,12)>}, calculated as the

medians of 100 equally sized groups of the

{ ,s(x1,12)} after ordering on . While many sum-

marization approaches could be used, this binning
approach has the benefit of relative familiarity and com-
putational simplicity.

Figure 2 displays all of the precision functions for the

three rounds: the {< >,<s(xij)>} standard deviation

functions for the individual participants, the {< >,<sri>}

xi

xij

xij

xij

x j

x

x1 12,

x1 12,

x1 12, x1 12,

xij

xi

Within-participant repeatability as a function of signal inten-sityFigure 1
Within-participant repeatability as a function of sig-
nal intensity. Each flyspeck denotes the average signal 
intensity and repeatability, {x1,12,s(x1,12)}, for one of the 62108 
sets of measurements made by participant 12 in Round 1. 
The thick line represents the precision function defined from 
the median of successive 1/100 binnings of these estimates.
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repeatabilities, the {< >,<sLi>} between-participant pre-

cisions, and the {< >,<sRi>} reproducibilities. The upper

panel of Figure 3 displays the {< >,<sr>} between-round

repeatability, the {< >,<sL>} between-participant preci-

sion, and the {< >,<sR>} reproducibility functions. The

only difference in construction of these discrete functions

is use of the appropriate average signal,  or , rather

than the participant average, , in the initial list creation

step.

The pattern and magnitude of the various functions in all
three rounds are very similar to each other, indicating that
the precision characteristics of the method did not change
much over the seven months between Round 1 and

Round 3 or with the change in number and identity of the
participants. This pattern of technical variability as a func-
tion of signal level (in order of lowest to highest signal
level: smoothly increasing to a maximum, smoothly
decreasing to a relative constant minimum until a small
increase at the very highest signal levels) has been often
observed with Affymetrix Microarray Suite 5 [17] (MAS5)-
processed data [15,18,19]. This complex structure appears
to be at least mostly an artifact of MAS5 processing rather
than an intrinsic property of the microarray platform,
since it is not observed with some other data processing
approaches [15,16,20]. Regardless, variability estimated

xi

xi

x

x

x

xi x

xij

Within-round discrete precision functionsFigure 2
Within-round discrete precision functions. These pan-
els present the single-round discrete precision functions for 
the three rounds. The panels to the left display participant-
average signal intensities and repeatabilities, {< >,<s(xij)>} 

for every participant in the round. The panels to the right 
display round-average intensity and repeatability, 

{< >,<sri>}, between-participant precision, {< >,<sLi>}, 

and reproducibility, {< >,<sri>}. In all cases the functions 

are estimated as the medians of successive 1/100 binnings.
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Discrete and continuous precision functions characteristic of the methodFigure 3
Discrete and continuous precision functions charac-
teristic of the method. The upper panel displays the dis-

crete between-round repeatability {< >,<sr>} (thinnest 

line), between-participant precision {< >,<sL>}, and repro-

ducibility {< >,<sR>} (thickest line) functions. The lower 
panel displays the same precisions as continuous functions, in 
the form of 10th-order polynomials. In both panels, the open 
circles denote the values that define the discrete functions.
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from short-term studies may underestimate the variability
expected over longer periods: while <sr> for the higher sig-
nal levels is a multiplicative factor of 20.14 = 1.1 or about
10% relative, <sR> is a factor of 20.38 = 1.3 or about 30%
relative. It is perhaps noteworthy that these lessons can
only be learned through longitudinal study of measure-
ments from a reasonably well defined population of par-
ticipants.

Continuous precision functions

While discrete functions are efficient as graphical summa-
ries, they are inconvenient for estimating quantitative val-
ues of an expected precision at specific signal levels. For
use in further calculations, such as variance-stabilized
normalization [21,22], it is desirable to represent the var-
ious precision estimates as continuous functions,

 = f(x), where  is the estimated preci-

sion value, x is the signal level, and f is some function
parameterized with a relatively small set of coefficients.
While a simple four-parameter sigmoidal curve captures
much of the structure for most of the discrete functions for
the present data, the underlying model assumption of
monotonic change as the signal rises from the detection-
limit to saturation-limit is not fully adequate to describe
MAS5 behavior. Rather than attempting to define and fit
more complete theory-based models for particular data-
sets, platforms, or data processing systems, interpolative
empirical functions can readily capture the observed struc-
ture. While comparatively crude and unsuitable for
extrapolation, even simple polynomials of modestly high-
order provide a reasonable qualitative description of the
dependence as well as being easily implemented and
interpreted. The lower panel of Figure 3 displays 10th-
order polynomials parameterized to the discrete between-
round precisions shown in the upper panel of Figure 3. At
graphical resolution, very similar fits to the discrete func-
tions are provided by polynomials of order 7 and above.

Discussion
Characterizing measurement systems

The between-round repeatability, {< >,<sr>}, between-

participant precision, {< >,<sL>}, and reproducibility

{< >,<sR>} functions displayed in Figure 3 provide one

definition of the expected measurement precision of sig-
nals from one microarray platform, processed with partic-
ular software, obtained by a given group of laboratories at
a particular point in time. Comparable precision charac-
teristics for other data preprocessing approaches can be
estimated by reanalysis of these data. Evaluating the

expected characteristics of other platforms will require
new studies, with different samples, but comparable func-
tions can be defined given a similar experimental design
and sufficient participants of comparable experience.
Whether it will be possible to generalize results among
related microarray platforms or across data analysis sys-
tems is yet to be assessed.

Monitoring performance changes over time

The present data are, however, sufficient to evaluate
whether the precision characteristics of the particular plat-
form and signal analysis method are stable over time. The

discrete within-round {< >,<sri>} repeatabilities,

{< >,<sLi>} between-participant precisions, and

{< >,<sRi>} reproducibilities that are displayed by each

round in Figure 2 are redisplayed in Figure 4 by each pre-
cision component. The forms of the functions are very
similar over the three studies. Curiously, while the level of
within-participant repeatability shows little or no trend,
the between-participant precision at signal levels above
the median (28) appears to have degraded somewhat with
time. The invariant repeatability argues against any signif-
icant change in the quality of the RNA pools; this plus the
distribution of microarrays from multiple lots in Round 1
but single lots in Rounds 2 and 3 argue against significant
between-array variability. Thus the small increase in
between-participant variability may reflect the changes in
the number of participants and the processing protocols
that they used; it may also indicate that somewhat less
experienced analysts were involved in the later rounds.

Comparing participant precisions

While simple contrasts of repeatability, sr, and between-

participant precision, sL, (see Methods) enables identifica-

tion of individual probesets that differ systematically
among participants, the variation among the

{< >,<s(xij)>} functions in Figure 2 suggests that the

systematic differences among the participants are not con-
fined to just a relatively few measurement processes.
Comparison of the within-participant repeatability,

{< >,<srj>}, and among-round precision, {< >,<sWj>},

functions for each participant helps identify the nature of
long-term changes.

Figure 5 displays these within-participant discrete func-
tions for three exemplar measurement systems. For partic-
ipant 12 (top panel), sr12 is quite good at the highest signal
levels and sW12 is both quite good and roughly constant

ŝ f x= ( ) ŝ f x= ( )

x

x

x

xi

xi

xi

xij

x j x j
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Change in precision over timeFigure 4
Change in precision over time. These panels redisplay 
the precision functions shown in the right-side panels of Fig-
ure 2 but grouped by the type of estimate rather than by 
round to facilitate quantitative comparison of change with 
time. The dotted vertical line denotes the median signal level, 
28.
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of the participant. These panels display exemplar within-

participant repeatability {< >,<srj>} (thinnest line), among-

round precision {< >,<sWj>}, and intermediate precision 

over time {< >,<sI(T)j>}(thickest line) functions for three 

participants: 12, 6, and 4.
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for all levels; this indicates good short-term and excellent
long-term control of the measurement process. For partic-
ipant 6 (middle panel), sr6 is somewhat less good then sr12
with large signals, and while sW6 is excellent for moder-
ately high signals it is systematically less good at both low
and very high levels; this suggests somewhat poorer short-
term repeatability and long-term changes in the measure-
ment process that impact high and low signals more than
those at the mid-levels. We speculate that these changes
may be related to scanner performance, influencing both
background noise and signal saturation [23]. For partici-
pant 4 (bottom panel), sr4 is generally as good to some-
what better than for sr12 while sW4 is considerably poorer
for all signal levels; this suggests excellent short-term con-
trol but significant differences in the (probably pre-scan-
ner) measurement protocol over the course of the three
rounds.

While multivariate approaches could be used to evaluate
and display the relative participant performance based on
continuous versions of the short-term and long-term pre-
cision functions, the basic structure can be readily visual-
ized from the median value of the discrete functions.
Figure 6 displays the median within-round repeatability,

srj, and median among-round precision,sWj. To avoid esti-
mation artifacts, the medians are evaluated over signal
levels from 28 to 212. With three exceptions, between-
round precision is limited by within-round performance.
The excess between-round variability for measurement
systems 1B, 4, and 13 likely results from undocumented
changes to the systems. The generally poorer precision for
systems in protocol group "C" suggests that one or more
factor in this group is not well controlled.

The structure visualized in Figure 6 is congruent with the
behavior of the data for the exemplar probeset
AFFX_Rat_Hexokinase_5_at discussed in Methods. The
association of abstract trends with the behavior of a par-
ticular probeset in one sample may facilitate identifying
root-causes. The analysis and display tools developed for
traditional measurands thus can inform both the develop-
ment and the interpretation of tools for interlaboratory
studies of microarrays.

Conclusion
The established metrological framework for characteriz-
ing precision can be applied to results from microarray
interlaboratory studies, enabling precision characteristics
of microarray results to be expressed in a way that permits
comparison to those of other measurement processes. The
design of the Expression Analysis Pilot Proficiency Test
facilitated assessment of the nested precision metrics of
repeatability, intermediate precision over time, and repro-
ducibility – all critical figures of merit of any analytical
method. Such studies and figures of merit are essential
tools for objective, quantitative performance assessment
of individual laboratories, the population of laboratories,
and microarray platforms. We believe that continuous
precision functions will prove a vital tool for characteriz-
ing and comparing measurement platforms and data
processing algorithms.

The tools described here for the simplest of microarray sig-
nals, are the foundation for further work addressing preci-
sion measures for differential expression and
differentially expressed gene lists. Figures of merit for
these composite signals will support objective perform-
ance assessment of the measures behind the biological
inference, the reason for performing the measurements in
the first place.

Methods
Study design
Expression Analysis, Inc. coordinated three rounds of the
Expression Analysis Pilot Proficiency Test in 2004. The
first (Round 1) was completed in June, the second (Round
2) in September, and the third (Round 3) in December.
All data from these studies are available from ArrayEx-
press, accession number E-MEXP-1568 http://

Comparison of median within- and between-round partici-pant precisionFigure 6
Comparison of median within- and between-round 
participant precision. This scatterplot displays the median 
among-round precision, sWj, as a function of the median 
within-participant repeatability, srj, for the 16 measurement 
systems used in at least two rounds. The open circles denote 
protocol group "A" measurement systems, open squares 
denote group "B" systems, and open diamonds denote group 
"C" systems.
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www.ebi.ac.uk/microarray-as/ae/. The following summa-
rizes the organizational elements pertinent to our analy-
sis.

Participants
Eighteen laboratories participated in at least one of the
three rounds, with one laboratory changing its measure-
ment protocol between Round 1 and Round 2. The codes
and participation history for the 19 different measure-
ment systems (unique combinations of participant and
measurement protocols) are summarized in Table 1. Nine
of the measurement systems were used in all three rounds.

Samples
Each participant in each study analyzed three aliquots of
two mixed-tissue RNA pools, Mix 1 and Mix 2. The two
mixtures were prepared at Expression Analysis by combin-
ing different amounts of RNA from rat brain, kidney, liver,
and testicle tissues following the design developed by Dr.
Karol Thompson and her FDA colleagues [24]. The mix-
tures were prepared to have total RNA concentrations of 1
μg/μL. Each of the six samples was tagged with unique
combinations of five polyadenylated (polyA+) bacterial
gene transcripts. The three samples of each mixture were
otherwise nominally identical in composition. The sam-
ple materials were stored at -80°C by Expression Analysis
until shipment and by the participants after receipt. All

samples were shipped on dry ice via an overnight delivery
service.

Microarrays
Each participant received six Rat230 2.0 GeneChips
(Affymetrix, Inc, Santa Clara California, USA) for use in
each study, one microarray to be used for each RNA sam-
ple. Sixteen arrays were replaced because of various partic-
ipant-recognized technical problems. To study the
influence of lot-to-lot variation, four lots of these arrays
were used in Round 1. A single array lot was used in
Round 2 and a different single lot in Round 3. The Gene-
Chips are 11-μm format. They were annotated to contain
31099 unique probesets, 27 of which were designed to
respond to the polyA+ bacterial control transcripts and 18
to respond to hybridization control transcripts. The
remaining 31054 probesets were designed to respond to
rat RNA.

Measurement protocols
Each participant prepared biotin-labeled cRNA targets
from each sample and hybridized the cRNA to the rat
microarrays using his/her own labeling and hybridization
reagents. Each participant followed his/her own standard
measurement protocol, with the following restrictions: 1)
it was strongly recommended that 10 μg of the RNA sam-
ple be used to prepare each target, 2) the biotinylated

Table 1: Study design, participation, and protocol groups

Protocol Groupsa

Code Round 1 6/2004 Round 2 8/2004 Round 3 12/2004 #

1A A 1
1B B B 2
2 B B 2
3 A A 2
4 C C C 3
5 A A A 3
6 A A A 3
7 A A A 3
8 C C C 3
9 C C C 3
10 Y 1
11 A A 2
12 B B B 3
13 A A 2
14 A A A 3
15 A A 2
16 A A A 3
17 B B 2
18 Z 1

Total 19 13 16 15 44

a) Four measurement protocol groups, "A" to "C", were identified on the basis of common suppliers of enzymes, purification kits, instrumentation 
and similar operating conditions. Two participants used unique protocols that are coded "Y" and "Z".
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cRNA was to be prepared using a single round of cDNA
synthesis via the Eberwine protocol [25], 3) 20 μg of the
fragmented, biotinylated cRNA was to be used with 300
μL of hybridization cocktail including the oligo and
eukaryotic controls, and 4) 200 μL of the hybridization
cocktail was to be hybridized to each microarray. Three
"protocol groups" (coded as "A", "B", and "C") were iden-
tified on the basis of the participants' choice of operating
conditions and source of enzymes, purification kits, and
instrumentation; only two of the 19 measurement sys-
tems used during the study were sufficiently different to
be considered unique. Table 1 summarizes the use of the
different protocols by participant.

Signal estimation and processing
Each participant measured the microarrays following their
standard protocols using Affymetrix GeneChip Scanner
3000 instruments with high-resolution software. The
resulting "CEL" files for each microarray were sent to
Expression Analysis for data processing and evaluation
where probeset signal values were evaluated using MAS5
[17]. At NIST, the 55 polyA+ and hybridization controls
were deleted from all data sets and the remaining 31054
rat RNA signals were log2 transformed and centered to
have a median log2(signal) of 8 (ie, a median signal of 28

= 256.) This centering value was selected as the integral
power of 2 closest to the median of the raw MAS5 signals
in all data sets.

Data sets
Forty-four sets of data for the six samples were generated
over the course of the three rounds. Each data set consists
of 31054 probeset signals for three replicate samples of
Mix 1 and Mix 2. Table 1 lists the number of data sets
returned in each study.

Classical precision metrics for single studies
Let P represent some one particular measurement process,
X the results generated by that process, and x a particular
single result. For the data considered here, P is the log2-
transformed MAS5 evaluation of a particular probeset, X
the set of log2-transformed MAS5 results for that probeset
in all arrays studied, and x the log2-transformed MAS5
result for a particular array.

A variety of linear models have been employed to charac-
terize measurement processes from various types of
repeated measurements [26]. While complicated models
are appropriate when stationary effects (biases) are
expected and of interest, given the among-round variation
in participants and their measurement protocols, we
begin with the general ISO 5725 model. Rather than rely-
ing on strong assumptions about the structure of the vari-

ance, this simple model is designed to have the general
applicability needed for a standard approach. It asserts
that each x can be expressed as the sum of three compo-
nents [12]:

where  is either the true value or more typically a con-
sensus estimate of the quantity being measured, B is the
systematic difference (bias) between  and the expected
result for the given participant's implementation of P (as

estimated from replicate measurements), and ε is the ran-
dom difference between the expectation for the imple-
mentation (ie,  + B) and the given value. For a single
material evaluated in a single study (that is, at some given

point in time), the ε are assumed to follow a random dis-
tribution centered on zero with a standard deviation asso-
ciated with the (metrological) repeatability precision
characteristic of P. Likewise, the variability of the B among
all participants is assumed to follow a random distribu-
tion centered on zero with a standard deviation associated
with the (metrological) reproducibility precision of P.
These terms are described more fully in the Results Section;
we here detail a standard approach to their estimation.

Let xijk represent the kth of Nm replicate measurements of P
reported by the jth participant in the ith study. The standard
deviation of the replicates, s(xij), estimates the random
variability of P as implemented by the jth participant in the
ith study:

where  is the mean of the replicates. Assuming that the

variance magnitude is roughly similar for all participants
(as is the case, see Figure 2), the expected random variabil-
ity of P common to all participants (i.e., its repeatability
precision) in the ith study, sri, can be estimated by combin-

ing the individual s(xij) over all Npi participants. While the

general formulae detailed in [12] describe variable num-
bers of replicate measurements for different participants,
for these data the same numbers of replicates were
reported by every participant in every round. The appro-
priate formula for pooling variance in this circumstance
is:

x x B= + + e (1)

x

x

x

s x

xijk xij
k

Nm

Nm
; x

xijk
k

Nm

Nm
ij ij( ) =

−( )
=
∑

−
= =

∑
2

1
1

1
(2)

xij
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The sri can be interpreted as the "average" standard devia-
tion expected for technical replicate measurements made
by a typical laboratory, where "typical" is defined by the
population of actual participants.

The between-participant precision for the ith study, sLi, is
estimated from the standard deviation of the estimated
participant-specific biases:

where max() is the "take the maximum value of the argu-

ments" function and  is the mean of the participant

mean values. The  term estimates for the repeata-

bility contribution to the variance of the biases. With atyp-
ically noisy replicate measurements, the corrected bias
variance is defined as zero – allocating the observed vari-
ance to the least-complex source. The sLi estimates the

extent of agreement among the various implementations
of P used by the participants. Ideally, all participants will
observe the same mean value for X and the value for sLi

will be near zero; in practice, studies involving more than
one measurement protocol often (by conscious study or
from hard experience) discover sLi to be several times

larger than sri.

The reproducibility of P during the ith study, sRi, is esti-
mated by combining the sri and sLi variance components:

The sRi combines all of the factors influencing P at the time

the study was performed; the implementation of P in a
typical laboratory is expected to yield results that agree
with results of other such users within confidence limits

appropriate to a normal distribution having mean  and

standard deviation sRi.

The notation used in the above calculations is summa-
rized in Additional file 1. Additional file 2 lists the data
and results for the above calculations for one exemplar
probeset. Figure 7 displays the relationships among the
above estimates for all 31054 probesets in Round 1. While
repeatability magnitude is related to signal level, there is
considerable variety among the magnitude of the
between-participant precision regardless of level. A con-
siderable number of the sL1 are plotted along the left-hand
margin (sL1 = 20 = 1), a consequence of estimating variance
with a relatively small number of replicate measurements.

Additional file 3 summarizes the results of the above cal-
culations for four exemplar probesets in all three rounds.
Figure 8 displays these results in a "dot-and-bar" format
commonly used with interlaboratory studies. These four
probesets were selected as typical of the observed range of
the {sL1, sr1} pairs displayed in Figure 7, where the {sL1,
sr1} locations are marked with open circles labeled a to d.
Exemplar 1, probeset 1379568_at of Mix 2, has very small
sL1 and sr1; this represents results that are about the same
for all participants, for all replicate samples. Exemplar 2,
1395685_at of Mix 1, has small sL1 but large sr1; this rep-
resents results with considerable technical variability but
with averages that are about the same for all participants
participants. Exemplar 3, 1371165_a_at of Mix 1, has
moderate sL1 and sr1; this represents modest variability
with some systematic differences among the participants.
Exemplar 4, AFFX_Rat_Hexokinase_5_at of Mix 1, has
large sL1 but relatively small sr1; this represents results
with considerable and quite consistent systematic differ-
ences among the participants.

Classical precision metrics for multiple studies
When results for two or more qualitatively similar inter-
laboratory studies are available, the individually short-
term study-specific estimates can be used to define the
long-term performance characteristics of the measure-
ment process, P, with great confidence. It may also be pos-
sible to explore the temporal stability of participant-
specific systematic bias, B, and random variability, ε.
Indeed, an explicit goal of many interlaboratory studies is
to help participants identify and minimize sources of sys-
tematic difference in their individual implementations of
P and to establish tighter statistical control over its ran-
dom influences [27]. Changes in individual performance
will manifest may manifest as changes in the study-spe-
cific repeatability and reproducibility estimates [28].

Given Ns studies that evaluate identical samples, labora-
tory-specific repeatabilities can be estimated for all partic-
ipants that use nominally identical implementations of P
in at least two of the studies. For the jth such laboratory, srj
is estimated by combining the simple standard devia-

s
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tions, s(xij), over the Nsj studies in which they participated.
Since here the same number of replicates were evaluated
in each round, the general pooling formula again simpli-
fies to:

In a manner analogous to the between-participant preci-
sion described above, laboratory-specific estimates can be
obtained for the extent of agreement among results they
obtain over relatively long periods of time. The among-
round precision for the jth participant, sWj, is calculated:

where  is the mean of the mean values for the particular

laboratory over all of the studies in which they partici-
pated. The intermediate precision over time for the partic-
ipant, sI(T)j [13], is the combination of srj and sWj:

Additional file 4 summarizes these long-term within-par-
ticipant precision calculations for the four exemplar
probesets.

The long-term expected value for X, , and the total
number of sets of X values reported by all participants in
all of the studies, Nt, can be calculated across the Np par-

ticipants or across the Ns studies:

The expected long-term repeatability, sr, is directly calcu-
lated from the participation-weighted average of the labo-
ratory-specific repeatability variances; however, the same
value is obtained by pooling the study-specific repeatabil-
ity estimates:

Similarly, the expected long-term between-laboratory pre-
cision, sL, is calculated from the study size-weighted aver-
age of the between-laboratory precision variances:
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Within-round between-participant and repeatability preci-sionsFigure 7
Within-round between-participant and repeatability 
precisions. This scatterplot displays 62108 repeatabilities 
for Round 1 data, sr1, as a function of the between-participant 

precisions, sL1, and the average log2 signal, , for the Mix 1 

and Mix 2 technical replicates. The one-third of probesets 

with the smallest  are denoted green "-", the middle third 

are denoted blue "×", and one-third with the largest  are 

denoted red "+". The labeled open circles denote the {sL1, 
sr1} location of four exemplar probesets. The precisions are 
expressed as multiplicative standard deviations: a value of 1 
indicates that the values are within a factor of 1 of their mean 
(i.e., they are identical) whereas a value of 5 indicates a 5-fold 
spread about their mean.
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The expected long-term reproducibility of the measure-
ment process, sR, can be calculated from the study size-
weighted average of the study-specific reproducibility var-
iances or by combining sr and sL:s

Npi s i
i

N s

Nt
L =

×
=
∑ L

2

1 .
(11)

Example graphical analysis of within-round precisions for individual probesetsFigure 8
Example graphical analysis of within-round precisions for individual probesets. This "dot-and-bar" chart provides a 
graphical summary of the participant averages, , and standard deviations, s(x1i), for the four probesets labeled in Figure 7. 

The within-round averages, , are represented as a thick black line; the repeatabilities, sr1, as solid green lines one precision 

unit on either side of average; the between-participant precision, sL1, as solid light-blue lines; and the reproducibilities, sR1, as 
dashed magenta lines. Participant codes are ordered by protocol group: Group A {1A,5,6,7,11,13,14,16}, Group B {12,17}, and 
Group C {4,8,9}.
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Figure 9 displays the long-term repeatabilities and
between-laboratory precisions characteristic of the micro-
array platform for all of the 31054 probesets. The relation-
ship of the precision estimates to the signal level is not
changed from Figure 7, although the increased number of
data used in the estimates can be seen in the much
reduced number of probesets with sL = 20 = 1. Note that
the locations of the exemplar probesets relative to {sL, sr}
are unchanged after three rounds. Figure 10 displays all of
the above precision estimates for the four exemplar
probesets.

"Outliers"
It is often necessary to identify and remove grossly aber-
rant values and/or use robust statistical estimation tech-
niques to enable sensible summarization of a given data
set. Other than the arrays that were replaced because of
participant-recognized technical problems, no "outlier
arrays" (in the sense of the majority of MAS5 values for
one of the three replicate arrays being quite different from
those of its siblings) were identified in the final data.
Robust methods, including those advocated in ISO 5725-
5 [29], were evaluated and found to yield estimates very
similar to those described above.
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mators, coded the calculations, and drafted the manu-
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Additional file 1
Summary of notation. Summarizes the notation used with the various 
calculations detailed in Methods.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-153-S1.pdf]

Between-round between-participant and repeatability preci-sionsFigure 9
Between-round between-participant and repeatabil-
ity precisions. This scatterplot is identical in format to Fig-
ure 7, only displaying the overall between-participant 
precision and repeatability estimates pairs, {sL, sr} rather than 
just those of Round 1.
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Example graphical analysis of between-round precisions for individual probesetsFigure 10
Example graphical analysis of between-round preci-
sions for individual probesets. The left section of each 
panel displays dot-and-bar charts for the three rounds in the 
format used in Figure 8. The right section displays the same 
participant average and standard deviation dot-and-bar data, 
but grouped by participant rather than round. The mid-line 
of the box around the data for each participant represents 

that participant's average, ; the lower and upper edges of 

the box denote the intermediate precision over time, sI(T)j. 

The grand average, , is represented as a think black line; 
the repeatability, sr, as solid green lines; the between-partici-
pant precision, sL, as solid light-blue lines; and the reproduci-
bility, sR, as dashed magenta lines. Participant codes are 
ordered by protocol group: Group A 
{1A,3,5,6,7,11,13,14,15,16}, Group B {1B,2,12,17}, Group C 
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