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Abstract

Background: The wide use of organophosphorus (OP) pesticides makes them an important public
health concern. Persistent effects of exposure and the mechanism of neuronal degeneration are
continuing issues in OP toxicology. To elucidate early steps in the mechanisms of OP toxicity, we
studied alterations in global gene and protein expression in Caenorhabditis elegans exposed to OPs
using microarrays and mass spectrometry. We tested two structurally distinct OPs (dichlorvos and
fenamiphos) and employed a mechanistically different third neurotoxicant, mefloquine, as an out-
group for analysis. Treatment levels used concentrations of chemical sufficient to prevent the
development of 10%, 50% or 90% of mid-vulval L4 larvae into early gravid adults (EGA) at 24 h after
exposure in a defined, bacteria-free medium.

Results: After 8 h of exposure, the expression of 87 genes responded specifically to OP treatment.
The abundance of 34 proteins also changed in OP-exposed worms. Many of the genes and proteins
affected by the OPs are expressed in neuronal and muscle tissues and are involved in lipid
metabolism, cell adhesion, apoptosis/cell death, and detoxification. Twenty-two genes were
differentially affected by the two OPs; a large proportion of these genes encode cytochrome P450s,
UDP-glucuronosyl/UDP-glucosyltransferases, or P-glycoproteins. The abundance of transcripts and
the proteins they encode were well correlated.

Conclusion: Exposure to OPs elicits a pattern of changes in gene expression in exposed worms
distinct from that of the unrelated neurotoxicant, mefloquine. The functional roles and the tissue
location of the genes and proteins whose expression is modulated in response to exposure is
consistent with the known effects of OPs, including damage to muscle due to persistent
hypercontraction, neuronal cell death, and phase | and phase Il detoxification. Further, the two
different OPs evoked distinguishable changes in gene expression; about half the differences are in
genes involved in detoxification, likely reflecting differences in the chemical structure of the two
OPs. Changes in the expression of a number of sequences of unknown function were also
discovered, and these molecules could provide insight into novel mechanisms of OP toxicity or
adaptation in future studies.
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Background

The wide use of organophosphorus (OP) based pesticides
and unresolved issues in their toxicity, including the
causes of persistent and off-target effects and the mecha-
nisms of neuronal degeneration, make them an important
concern for public health. OPs are a class of chemicals that
inhibit serine esterases by covalently bonding with the
active site serine. Two primary targets of OPs have been
implicated in human toxicity, acetylcholinesterase (AChE;
reviewed in [1]) and neuropathy target esterase (NTE;
reviewed in [2]). However, the inhibition of AChE is of
more concern because of acetylcholine's role as a neural
transmitter. Long-term adverse effects of OP exposure
have been described [3-5], but the nature and mechanism
of persistent effects are relatively poorly understood.

The principal risk of toxicity from OPs and other AChE
inhibitors occurs after high level, acute exposures when
death from respiratory failure may rapidly ensue; less
severe exposures may cause salivation, lacrimation, incon-
tinence, and convulsions followed by paralysis potentially
resulting in death (reviewed in [6,7]). However, a number
of persistent and delayed effects of OP exposure are also
known. A so-called intermediate syndrome-defined by
weakness of the neck, proximal limb, and respiratory
musculature-may present 24-96 hours after exposure and
is believed to be the result of acetylcholine receptor desen-
sitization (reviewed in [1,8]). Organophosphate induced
delayed polyneuropathy (OPIDP) is a delayed syndrome
(7-21 days after exposure) that is characterized by numb-
ness, weakness, and paresthesia in the limbs and degener-
ation of peripheral nerves and central nervous system
myelin sheaths; inhibition of NTE is thought to underlie
OPIDP (reviewed in [1,8,9]). Chronic neurological and
neuropsychiatric effects—some of which may persist for
years—and developmental neuro-behavioral effects have
also been described [10-12].

In an effort to understand the mechanisms of OP toxicity,
we have tracked global gene and protein expression after
intoxication by two OPs, dichlorvos and fenamiphos,
using the genomic model organism Caenorhabditis elegans
with whole genome microarrays and mass spectrometry-
based proteomics. We selected two chemically different
OPs to ask whether it is possible to distinguish between
the biological responses to different inhibitors of AChE.
To discriminate generalized alterations in gene expression
due to neurotoxicity and stress from OP specific effects,
we included a third chemical, mefloquine, as an out-
group. Mefloquine is believed to cause neurotoxicity by
perturbing Ca** homeostasis, most likely through interfer-
ence with an ion channel [13,14].

Using C. elegans for toxicological studies provides a
number of benefits. The organism is well studied, has a
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very simple body plan, and has a completely sequenced
genome. Further, the responses of C. elegans to a number
of toxicants have been shown to resemble those of mam-
mals in a number of cases ranging from anesthetics to
metals to OP pesticides [15-21] (see also [22] for a recent
review of the uses of C. elegans in toxicological research),
and the availability of commercial microarrays has facili-
tated the investigation of the mechanism of action of an
array of toxicants at the functional genomic level (e.g.,
[23-25]).

C. elegans does not require neuronal signals for respiration
and is very resistant to death via OP intoxication yet
shows substantial similarity to mammals in the relevant
biochemistry and genomics [20]. The acute toxicity of OP
pesticides results from inhibition of AChE in vertebrates
[26] and in nematodes [20]. The C. elegans genome also
contains two homologs of the vertebrate secondary OP
target, NTE (ZK370.4 and M110.7; [27] and unpublished
observations). While it is unknown whether inhibition of
either of the C. elegans NTE homologs will induce an
OPIDP-like condition, the syndrome has been described
in humans following dichlorvos exposure (reviewed in
[28]) raising the possibility that dichlorvos might be a
suitable compound for investigating this effect. Further-
more, because C. elegans is resistant to OP lethality, we
reasoned that by using this organism to study the effects
of dichlorvos and fenamiphos, it might be possible to
expose the worms to high doses of OPs to highlight
changes in gene and protein expression that are difficult to
discern using classical methods or animal models that are
less resistant to OPs.

A drawback to using C. elegans, however, is that the worms
are usually cultured with bacteria as food source [29]. The
presence of bacteria may complicate the interpretation of
data because of the metabolism of test materials by the
feeder organisms and the contamination of protein and
nucleic acid samples with bacterial molecules. While a
number of axenic media have been previously described
(for example [30-36]), nematodes cultured in axenic
media have generally shown reduced rates of develop-
ment and extended life-spans, suggesting that the media
lack essential nutrients. To overcome this problem, we
developed a defined, liquid, sterile medium (CeHR
medium) [37] in which C. elegans can be stably propa-
gated with a generation time similar to that of worms on
bacterial plates [37,38].

In this study, we exposed developmentally synchronized
C. elegans cultures in CeHR medium to two structurally
different OPs, dichlorvos and fenamiphos, and the func-
tionally dissimilar neurotoxicant, mefloquine, as an out-
group. Global gene expression was determined by micro-
array analysis of RNA from harvested worms, and proteins

Page 2 of 21

(page number not for citation purposes)



BMC Genomics 2009, 10:202

extracted from parallel worm cultures were analyzed by
mass spectrometry to identify changes in protein expres-
sion. Proteomic and functional genomic analysis revealed
sets of genes and proteins that distinguish not only
between exposure to the OPs and to mefloquine, but also
between the OPs themselves. The results are generally
consistent across the transcriptomic and proteomic analy-
ses and can readily be understood in the context of the
known effects of OP intoxication.

Methods

Nematode culture

C. elegans [N2 wild type, DR subclone of CB original (Tcl
pattern I), obtained from Caenorhabditis Genetics
Center| were maintained in synchronized cultures grown
in CeHR medium (see below). All cultures were grown at
22.5°C with shaking at 70 rpm on an Innova 2000 plat-
form shaker (New Brunswick Scientific, Edison, NJ). Typ-
ically, 5 x 105 L1 larvae were used to inoculate 40 mL of
medium in a T-75 flask. Stock cultures were propagated
using the synchronization procedure described below to
ensure that sufficient numbers of developmentally syn-
chronized worms were available for experimentation at all
times. CeHR medium is a sterile, defined medium, sup-
plemented with 20% (v/v) ultrapasteurized organic, fat-
free milk for the axenic propagation of C. elegans. A
detailed description of the preparation of the medium is
available from the USACEHR on request and in [37].

Synchronization of cultures

Embryos were isolated using a minor modification of the
bleaching method of Stiernagle [39] described by Szilagyi
et al. [37]. The isolated embryos were suspended in 30 mL
M9 buffer (42.3 mM Na,HPO,, 22.0 mM KH,PO,, 85.6
mM NaCl, 1 mM MgSO,), transferred into T-75 culture
flasks and incubated at 22.5°C overnight to allow hatch-
ing and arrest at the L1 stage. L1 larvae were used within
three days to start developmentally synchronized cultures.

Table I: Concentrations of test chemicals
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Rangefinding

A developmental inhibition assay was used to determine
exposure concentrations. Synchronized worms grown at
22.5°C with shaking at 70 rpm progress from the mid-
vulval L4 larval stage to the early gravid adult (EGA) stage
within 24 h. The presence of toxicants inhibits this devel-
opment. To determine concentrations corresponding to
effect concentrations (EC) of EC,,, EC,,, and EC,, (con-
centrations preventing 10%, 50%, and 90% of the worms
from developing to EGA), 8 x 104 L1 larvae were inocu-
lated into T-25 flasks-each containing 10 mL of CeHR
medium. When 90% of the worms had developed to mid-
vulval L4 larvae (44-46 h), chemical was added. The
flasks were incubated for 24 h, after which a sample of
worms was examined microscopically to assess their
developmental stage. The toxicant concentrations corre-
sponding to EC,,, ECs, and EC,, were selected for the
exposure experiments (Table 1).

Exposures

L1 larvae (2.5 x 10°) were suspended in T-75 flasks con-
taining 30 mL CeHR medium and grown until 90% of the
population had developed to the mid-vulval 14 larval
stage-two flasks were allotted for each condition to pro-
vide adequate biomass for RNA and protein preparation.
The worms were treated with mefloquine (Ash Stevens,
Inc., Detroit, MI), dichlorvos, or fenamiphos (Chem Serv-
ice, Inc., West Chester, PA) for 8 h or allowed to develop
as a control; a sample was taken for chemical analysis to
verify exposure concentration (Table 1). Each exposure
was repeated three times.

Worms were harvested by centrifugation (800 x g for 3
min at 4°C), and the supernatant was aspirated. Samples
for protein extraction were washed once with 0.1 M NaCl,
centrifuged (800 x g for 3 min at 4°C), and the superna-
tant was aspirated. The pellets for protein and RNA extrac-
tion were suspended in the residual liquid, flash frozen by

Chemical Developmental Nominal Conc. Average Conc. Rep | Conc. (mg/L) Rep 2 Conc. (mg/L) Rep 3 Conc. (mg/L)
Arrest (%) (mg/L) (mg/L)
10 3 3.55 3.65 3.44 3.57
dichlorvos 50 I5 16.0 16.5 15.9 15.8
90 50 52.7 53.4 53.0 51.8
10 10 6.33 7.65 5.97 5.37
fenamiphos 50 60 29.2 28.1 25.6 338
90 200 744 86.2 68.7 68.3
10 10 10.3 8.5 1.3 I
mefloquine 50 250 240 205 248 267
90 500 492 530 477 470
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drop-wise addition to liquid nitrogen, and stored at -
80°C.

Chemical analysis

Chemicals were analyzed on a Hewlett-Packard Model
6890 Gas Chromatograph equipped with a 6890 model
series auto injector. Ions were measured for fenamiphos
with a 5973 Mass Selective Detector, for mefloquine with
a flame ionization detector, and for dichlorvos with an
electron capture detector. Analytical standards were pur-
chased from Chem Service, Inc.

RNA methods

Extraction and labeling

Frozen worm droplets were pulverized in liquid N, using
a pre-chilled mortar and pestle. The pulverized worms
were transferred to 6 mL Trizol (Invitrogen, Carlsbad, CA)
and homogenized in a dounce homogenizer. RNA was
purified according to the manufacturer's protocol and pre-
cipitated with isopropyl alcohol. After centrifugation, the
RNA pellet was dried, dissolved in water, and subjected to
an additional round of purification using the RNeasy
Maxi Kit (Qiagen, Valencia, CA) according to the manu-
facturer's directions. The quality and yield of the prepara-
tion was assessed throughout processing and labeling
using a 2100 Bioanalyzer (Agilent, Santa Clara, CA), and
when necessary, the mass yield was confirmed using an
ND-1000 spectrophotometer (Nanodrop Technologies,
Wilmington, DE).

Poly(A)+ RNA was isolated from the total RNA using Oli-
goTex (Qiagen) essentially as described by the manufac-
turer. Two micrograms of poly(A)+ RNA (adjusted for
rRNA contamination) was used as the template for cDNA
synthesis using the SuperScript Choice Kit (Invitrogen)
per the manufacturer's recommendations except that (1)
a high pressure liquid chromatography (HPLC)-purified
T,,T7 promoter primer (Integrated DNA Technologies,
Coralville, IA) was used to initiate first strand synthesis;
(2) the second strand synthesis was not terminated using
EDTA since we found that EDTA carryover interfered with
subsequent enzymatic manipulations; and (3) PelletPaint
(Novagen, Madison, WI) was used in place of glycogen for
precipitation. Biotin labeled cRNA was synthesized from
the T7 promoter incorporated in the cDNA using the Bio-
Array High Yield RNA Transcript Labeling Kit (Enzo Life
Sciences, Farmingdale, NY) per the manufacturer's recom-
mendations; approximately 1 pg of cDNA was used for
synthesis. cRNA was purified from unincorporated nucle-
otides and other reaction components using the RNeasy
Mini Kit (Qiagen).

Microarrays
cRNA samples were hybridized to C. elegans whole
genome GeneChips (Affymetrix, Santa Clara, CA), proc-

http://www.biomedcentral.com/1471-2164/10/202

essed, and scanned at the Walter Reed Army Institute of
Research Vaccine Genomics Laboratory, Rockville, MD
using Affymetrix instrumentation and with hybridization,
washing, and scanning parameters provided by the man-
ufacturer [40].

Microarray data analysis

Microarray data was processed using the robust multi-
array averaging method (RMA) [41]. To verify inter-repli-
cate reproducibility, replicate samples were subjected to
pairwise correlation analysis of all probe sets. For the vast
majority of replicate pairs, the R2 value was greater than or
equal to 0.95, and no replicates were included with R2 <
0.92. A Present, Absent, or Marginal call for each probe set
was determined using the R statistical package [42] and
the Bioconductor [43] implementation of the Affymetrix
MAS 5.0 algorithm (affy package 1.12.2). Only probe sets
with at least three present calls in the complete data set
were retained for further analysis. This procedure removed
5,623 out of the total 22,624 probe sets on the microarray
from the analysis. We have observed that even when a
multiple test correction is used in ANOVA with high
dimensional microarray data, small differences in gene
expression that are not credible on careful inspection of
the signal intensities can be assigned highly significant p
values. To reduce the impact of this problem, we retained
a final tally of 4,999 probe sets that passed the Present/
Absent screen and changed by at least 1.8 fold from con-
trol for statistical analyses.

Support vector machine for dosing standardization

On inspection, the standardized concentrations of dichlo-
vos seemed to exert relatively greater effects on the pat-
terns of gene expression in exposed worms than
mefloquine or fenamiphos, yielding a right shifted pat-
tern of gene expression (see Figure 1). To confirm this
observation, we used a support vector machine (SVM,
[44] Partek Pro Genomics Suite 6.0-default settings) to
predict an apparent concentration (control, low, mid, or
high) for each chemical to which the worms had been
exposed based on patterns of gene expression. For SVM
modeling, we used data from worms exposed to cadmium
and acrylamide in parallel experiments (unpublished
data) in addition to fenamiphos and mefloquine. No
dichlorvos data were included. To take the differences
between the measured and targeted concentrations of
chemicals (Table 1 and not shown) into account for this
analysis, we calculated an adjusted measure of develop-
mental arrest by prorating the target level of arrest (10%,
50% or 90%) by the ratio of the measured concentration
of toxicant to the target concentration (Equation 1). The
100 probe sets with the highest partial correlations to this
adjusted value were used to train the SVM.
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Clustering of samples of worms exposed to standard-
ized concentrations of dichlorvos, fenamiphos, and
mefloquine. Principal components analysis plot depicting
the clustering of samples of worms exposed to standardized
concentrations of the three toxicants based on gene expres-
sion levels. Three replicates are shown. Nominal concentra-
tion classes are indicated in color, and chemical exposure
groups (including respective controls) are indicated by
shapes. Low, medium, and high concentrations refer to EC,,
EC;, and ECy, from the developmental inhibition assay. A
support vector machine (SVM) trained on a data set lacking
dichlorvos exposed worms was used to classify the samples
based on gene expression levels. Samples which the SVM
predicts to have the same concentration level are joined by
lines to a centroid. The percent variance in the data
explained by each principal component is shown in parenthe-
ses.

measured concentration
target concentration

(1)

adjusted arrest level = target arrest level X

Identification of OP specific gene changes

For identification of OP-specific gene changes, we
removed the fenamiphos low concentration and the
dichlorvos high concentration data from consideration.
The samples for the two remaining exposed concentra-
tions for each OP were grouped based on the SVM classi-
fication as either "mid concentration OP" or "high
concentration OP." The OP control samples and all of the
mefloquine samples were placed into a third "no OP"
class. An ANOVA identified 500 probe sets that are signif-
icantly different (FDR < 10-4; false discovery rate, [45])
among the three classes. To eliminate those genes whose
expression was even marginally affected by mefloquine
exposure, we next removed probe sets that changed by 1.5
fold or more from control at any concentration, in any
replicate of the mefloquine data, to generate a list of 94
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probe sets differentially affected by OP exposure, but
unaffected by mefloquine.

Following statistical identification of the 94 differentially
expressed probe sets, we inspected their mapping on the
C. elegans genome (based on WormBase oligo mapping;
WormBase release 180) [46] and found 20 of them that
represent genes with at least one additional probe set on
the microarray that was not identified, based on our strict
criteria, as a probe set specifically affected by OP exposure.
In most cases, these probe sets have similar patterns of
expression but display slight differences in the magnitude
of the fold change from control with the result that one
probe set passed the fold change or statistical cut off while
the other(s) did not. In two instances, the selected and
rejected probe sets targeted different splice variants of the
same gene. In another, the probe set showed a response to
mefloquine, but the change was in the opposite direction
compared to the OP responses; we deemed this to be an
OP specific gene change. In a final case, the unidentified
probe set had a signal intensity below background (indi-
cated by no Present calls). We retained all 15 of these
probe sets.

However, we excluded probe sets for five genes each rec-
ognized by two probe sets. For four of these genes, one but
not the other of the probe sets showed changes in expres-
sion upon mefloquine exposure with no readily apparent
explanation for the differences. The other one hybridized
to two genes, and we could not resolve which gene was
being measured. One final probe set was removed because
it was called Present (by MAS 5.0 algorithm) in only two
of the OP exposed samples; the third sample in which it
was called Present was a mefloquine sample. After these
adjustments, a group of 88 probe sets (representing 87
genes) that respond to OP but not mefloquine exposure
remained (Table 2, Figure 2).

Gene ontology analysis

In order to assist in interpreting the microarray data,
DAVID [47-49] and GoMiner [50,51] were used to assess
whether particular gene ontology terms occurred more
frequently than expected by chance in the set of genes spe-
cifically affected by OP exposure. DAVID was run using
the high stringency setting and the following annotation
groups: Molecular Function level 4-5, Cellular Compo-
nent level 4-5, Biological Function level 4-5, InterPro
terms, and PIR keywords. Of the 88 probe sets submitted
all but 9 were clustered by annotation. GoMiner was run
through the web interface with default settings except that
all ontology terms were used. The group of 88 probe sets
that are specifically affected by OP exposure was com-
pared to the annotation of the entire C. elegans genome for
both DAVID and GoMiner for statistical evaluation. For
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DAVID analysis, we report the negative antilog of the
Group Enrichment Score as p values.

Identification of OP discriminating gene changes

For identification of gene changes that discriminate
between the OP exposures, only data from OP exposed
samples and their respective controls were included. As
above, SVM predicted concentrations were used for classi-
fication and the low fenamiphos and highest dichlorvos
exposures were omitted. A 2-way ANOVA using the SVM
predicted concentrations and exposure chemical (fenami-
phos, dichlorvos, and control) revealed 28 probe sets with
significantly different expression between the two OPs
(FDR £ 10). Two of these genes are also targeted by addi-
tional probe sets which do not meet the fold difference
criterion but are similar in expression pattern to the origi-
nally identified probe sets, so both original probe sets
were retained. This list was further refined to include only
probe sets which changed by at least 1.8 fold as a result of
the exposure and between chemicals resulting in a final
list of 24 probe sets, representing 23 genes.

Microarray data have been deposited in the Gene Expres-
sion Omnibus [52], Accession Number GSE12298.

Protein Methods

Complete details of sample processing, mass spectrome-
try, and data analysis may be found in Additional File 1:
ProteinMethods.pdf. A brief description follows.

Purification and processing

Frozen worm droplets from the highest concentrations of
fenamiphos and dichlorvos exposures and the unexposed
controls were ground in liquid N, and resuspended [40
mM Tris, 1 mM EGTA, and 1 x Protease Inhibitor Cocktail
(Sigma-Aldrich, St. Louis, MO)]. The suspension was son-
icated, clarified by centrifugation, and lyophilized. Four
milligrams of protein from each sample were denatured
in 8 M UREA and dithiothreitol and then acetylated with
iodoacetamide. After dilution to 1 M urea, the samples
were digested with trypsin (Promega, Madison, WI).

Peptide analysis

The digested peptides were desalted, dried under vacuum,
reconstituted in 10% acetonitrile, and fractionated using
mixed mode ion chromatography with a Polycat A col-
umn and Polywax LP column in series (PolyLC Inc,
Columbia, MD). Eight time based fractions were col-
lected. Each fraction was analyzed using a nanoACQUITY
UPLC coupled to a QTOF Premier quadrupole, orthogo-
nal acceleration time-of-flight tandem mass spectrometer
(Waters, Milford, MA). Data were collected over the 50—
1990 mass to charge (m/z) range using the Waters Protein
Expression MSE method, which alternates between low
energy scans to survey the precursor ions and high colli-
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Figure 2

Changes in expression levels of genes specifically
affected by OP exposure. Heatmap depicting the average
changes in expression levels of genes affected by OP expo-
sure. Gene or sequence names are shown at the left of the
heatmap. The color bar indicates log, differences from the
control for each chemical. Concentrations are based on SVM
predictions.
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Table 2: Genes specifically affected by organophosphorus pesticide exposure

Probe Set WBID2 Geneb Description Biological Role Dicc  Fend
191443_at WBGene00013078 ttr-25 unknown function — contains transthyretin-like family domain -5.1 -5.6
192157 _at WBGene00000964 dhp-2 dihydropyrimidinase -2.7 2.4
187663_at WBGene00008706 FIIE6.1 glucocerebrosidase Lipid metabolism -2.4 -2.3

173412_s_at WBGene00013077 ttr-24 unknown function — contains transthyretin-like family domain -2.5 -1.9
181137_at WBGene00009796 F46G10.1 unknown function — contains potassium channel tetramerization domain 2.2 -1.7
192644 _at WBGene00002010 hsp-6 heat shock 70 protein Stress -1.8 -1.8
184978_at WBGene00003130 map-2 methionine aminopeptidase Anti-apoptosis -1.8 -1.6
191082_at WBGene00009165 F26E4.12 glutathione peroxidase Redox -1.6 -1.9
183671 _at WBGene00019058 F58F9.4 unknown function — contains DUF272 domain -1.7 -1.5
185811 _at WBGene00022194 Y71H2B.4 unknown function -1.7 -1.4
178599_at WBGene00004997 spp-12 saposin like protein family Lipid metabolism -1 -1.2
193531 _at WBGene00001668 gpa-6 G protein alpha subunit involved in chemosensation Sensory 1.7 1.3
183021 _at WBGene00018615 F48G7.4 unknown function 1.9 1.3
186977 _at WBGene00014033 ZK643.1 arrestin like protein Sensory 1.9 1.6
175989 _at WBGene00017042 D2007.2 unknown function — contains MSP domain Axon Guidance 1.9 1.5
180587 _at WBGene00018288 F41E6.7 unknown function 2.0 1.7
176365_at WBGene00022479 fbxa-36 F-box A protein Ubiquitination 2.4 1.4

193559 _s_at WBGene00003644 nhr-54 nuclear hormone receptor-54 Transcription factor 1.3 1.5
185495_at WBGene00016094 C25E10.4 predicted transporter/transmembrane protein Membrane channel 1.6 1.4
193861 _at WBGene000066 | 4 trp-1 transient receptor potential ion channel involved in sensory transduction Sensory, membrane channel 1.5 1.5
188133_at WBGene00004226 ptr-12 patch related family Sterol trafficking 1.7 1.7

Page 7 of 21

(page number not for citation purposes)



http://www.biomedcentral.com/1471-2164/10/202

BMC Genomics 2009, 10:202

Table 2: Genes specifically affected by organophosphorus pesticide exposure (Continued)

179248 _at WBGene00008693 FIICI.4 unknown function 1.6 1.4
184849_at WBGene00020869 T28AI1.2 unknown function — contains DUFI9 domains 1.8 1.5
179132_at WBGene00007854 C3IH5.1 alpha/beta hydrolase of unknown function Sensory 1.4 1.8
178276_at WBGene00007421 CO7H4.1 unknown function 1.7 1.4
175147 _at WBGene00000969 dhs-5 dehydrogenase, short chain — possible steroid dehydrogenase Detoxification 1.2 1.8
174374 _s_at WBGene00018576 F47G3.1 unknown function Sensory 1.4 1.9
192917_s_at WBGene00008547 FO7Al11.4 ubiquitin carboxyl-terminal hydrolase Ubiquitination 1.6 2.1
192646_at WBGene00010396 HI3NO06.2 unknown function — contains VWA invertebrate integrin domain 1.5 1.5
191570_s_at WBGene00009717 dep-1 class Ill receptor protein tyrosine phosphatase (R-PTP) Signaling 1.6 1.8
193155_s_at WBGene0000978 | F46C5.6 unknown function — contains 2 HEAT repeat domains 1.8 1.9
187505_at WBGene00015139 B0310.3 unknown function 1.2 2.0
179197 _s_at WBGene00007672 fbxa-136 F-box A protein Ubiquitination 1.6 2.1
189341 _s_at WBGene00013875 ZC376.3 b-type carboxylesterase Detoxification 1.7 2.1
185117_at WBGene00016657 C44EI12.1 N-acyl-L-amino-acid amidohydrolase Amino acid metabolism 1.7 2.5
193763_at WBGene00009854 clec-31 unknown function — contains 2 C-type lectin domains 2.1 1.5
186028 _at WBGene00015371 CO3A7.13 UDP-glucuronosyl/glucosyl transferase Detoxification 2.1 1.6
177226_s_at WBGene00022016 Y61A9LA .4 unknown function 24 1.5
189292 _at WBGene00019438 cyp-25A6 cytochrome P450 Detoxification 2.4 1.7
191150_at WBGene00006486 tag-140 predicted Zn transporter Membrane channel 1.7 1.7
178686_s_at WBGene00013885 ZC412.4 unknown function 1.7 1.6
181726_at WBGene00002140 inx-18 innexin — invertebrate gap junction protein Membrane channel 1.8 1.8
188880_at WBGene00007924 C34Cl125 Ras suppressor protein Cell Adhesion 1.9 1.8
188007_at WBGene00006984 zig-7 2(Zwei) 1G-domain protein Cell Adhesion 1.7 1.8
193031 _at WBGene0001 1556 TO7A5.3 sugar phosphate permease Membrane channel 2.1 1.5
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Table 2: Genes specifically affected by organophosphorus pesticide exposure (Continued)

191623_at WBGene00020182 ugt-53 UDP-glucuronosyl/glucosyl transferase Detoxification 2.3 1.8
186581 _at WBGene00013819 YII6FI1A.6 unknown function — contains caspase recruitment domain Apoptosis/Cell Death 25 1.7
188459 _s_at WBGene00000779 cpn-3 Calponin Actin related 2.0 2.1
177598 _at WBGene00012034 T26C5.4 unknown function 2.1 2.1
176229 _at WBGene00018367 F42H10.3 unknown function — contains Nebulin repeat domain Actin related, Cell Adhesion 2.1 2.0
193302_at WBGene00010675 KO8E7.8 unknown function — contain leucine rich repeat domain Apoptosis/Cell Death 2.0 2.1
183894 _at WBGene000 15889 CI7C33 acyl co-A thioesterase Lipid metabolism 3.1 2.4
189169_s_at WBGene00001480 fmo-5 flavin-containing monooxygenase Detoxification 3.1 1.6
175285_at WBGene00018747 F53C3.3 unknown function — contains CX module 33 2.1
188099_s_at WBGene00006582 tmd-2 Tropomodulin Actin related 2.8 24
173824 _at WBGene00022788 ZK682.2 sugar phosphate permease Membrane channel 2.7 2.5
190692 _at WBGene00012322 WO7A12.4 unknown function — contains btb/poz domain Ubiquitination 2.4 23
189557 _at WBGene00015062 trx-1 Thioredoxin Redox 32 1.7
193582 _at WBGene00003629 nhr-38 nuclear hormone receptor involved in thermosensation Sensory 2.4 2.1
178886_at WBGene00009328 F32D8.3 unknown function — contains trypsin Inhibitor like cysteine rich domain 3.1 24
190432_at WBGene00001608 RO7BI1.8 unknown function — contains GTP binding domain 1.9 2.2
190957 _at WBGene00001763 gst-15 glutathione S-transferase Redox 22 2.1
188131 _s_at WBGene00006318 sup-9 TWK potassium channel Membrane channel 2.4 1.9
184319_at WBGene00000780 cpn-4 Calponin Actin related 2.5 2.1
19021 | _at WBGene00008746 dpy-30 adenylate kinase like 2.5 2.5
177839_s_at WBGene00013481 Y69H2.3 unknown function — contains trypsin inhibitor like cysteine rich domain 23 23
192432_at WBGene00008028 scl-6 defense-related protein containing SCP domain 2.4 2.7
191916_at WBGene00015559 C06G4.5 G-protein coupled receptor 25 2.6
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Table 2: Genes specifically affected by organophosphorus pesticide exposure (Continued)

190719_at WBGene00017332 ugt-37 UDP-glucuronosyl/glucosyl transferase Detoxification 1.6 42
192997_s_at WBGene00018832 pat-2 vitronectin receptor, alpha subunit Actin related, Cell Adhesion 1.8 3.0
172944 _s_at WBGene00018720 F53A3.1 unknown function 2.9 3.7
193210_s_at WBGene00006794 unc-60c actin depolymerizing factor Actin related 2.5 2.6

187747 _at WBGene000068 14 unc-82 serine/threonine protein kinase required for thick filament organization 22 29
173480_s_at WBGene00021 167 cyp-32B1 cytochrome P450 Detoxification 2.5 22
173698 _s_at WBGene00008499 cyp-37A1 cytochrome P450 Detoxification 3.0 2.3
186562_s_at WBGene00012875 Y45F10B.13 unknown function 2.8 33
179847_s_at WBGene00018720 F53A3.1 unknown function 23 25
193108_s_at WBGene00003485 mua-6 (ifa-2) intermediate filament protein Cell Adhesion 37 39
191689_s_at WBGene00007422 ugt-17 UDP-glucuronosyl/glucosyl transferase Detoxification 4.1 43

183314_at WBGene00016210 C29F5.1 unknown function 47 5.5

178198_at WBGene0001 1251 glb-22 unknown function — contains globin domain 4.7 33

186720_at WBGene00020881 T28AI11.19 predicted secreted cysteine rich protein 43 37

183178_at WBGene00020690 T22ES. | unknown function Actin related 5.2 3.5

190445_at WBGene00008490 FOID4.8 cysteine synthase/cystathionine beta-synthase family Redox 6.6 1.8
1851 16_s_at WBGene00019934 RO7CI12.4 unknown function 5.5 3.1

177733 _at WBGene00005654 srr-3 serpentine receptor, class R Sensory 7.5 2.9

181201 _at WBGene00018479 F45F2.6 otopetrin like transmembrane protein Sensory 6.7 5.1

189633_at WBGene000 15045 cyp-34A10 cytochrome P450 Detoxification 2.2 21.2

a- Gene names and descriptions were derived from WormBase, release WS189 [46].
b- WormBase gene identifier.
c- Gene expression fold change values for dichlorvos SVM predicted high concentration
d- Gene expression fold change values for fenamiphos high concentration
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sion energy scans to fragment all of the precursor ions.
Computational methods are used to assign fragment ions
to precursor ions based on elution profiles [53,54].

Proteomic data analysis

Mass spectrometry data were processed using Protein Lynx
Global Server (PLGS) version 2.3 (build 23) with Expres-
sion version 2 (Waters). Data preparation and workflow
parameters were set to manufacturer's default with the
exception of a 785.8426 lock mass, allowing deamidated
asparagine and glutamine and oxidated methionine as
variable modifications, and enabling PPM calc. The pro-
tein identification database contained all C. elegans Ref-
Seq sequences (download date August 8, 2007) [55] and
likely contaminant proteins including bovine serum albu-
min, human keratins, and porcine trypsin.

For our investigation of proteins that change in abun-
dance upon OP exposure, we combined the high concen-
trations data sets for dichlorvos and fenamiphos into one
group and compared it to the combined unexposed con-
trols for these exposures. We have only reported proteins
that were identified in at least four replicates of the condi-
tion where the protein is at the higher abundance. Those
present in both conditions and changing by 1.5 fold we
consider as quantitative changes, and those absent in the
other condition as experiencing qualitative changes in
abundance.

Results and Discussion

To investigate the effects of OP AChE inhibitors on global
gene and protein expression, we exposed synchronized
cultures of C.elegans to standardized concentrations of the
three neurotoxicants, fenamiphos, dichlorvos, and meflo-
quine. We determined the percentage of worms that failed
to develop from mid-vulval L4 larvae to early gravid adult
(EGA) during a 24-hour exposure in range finding experi-
ments and set benchmark concentrations for 10%, 50%,
and 90% developmental inhibition. In control cultures,
100% of the worms developed to EGA. Synchronized cul-
tures of C. elegans at the mid-vulval L4 stage were exposed
to the indicated concentration of toxicant (Table 1) for 8
h. Unexposed cultures served as controls. Protein and
mRNA isolated from the exposed and unexposed control
nematodes were analyzed by mass spectrometry or whole
genome microarray, respectively. In general, the worms
exposed to the OPs appeared to have limited mobility and
suffered from hypercontraction of their muscles. In feed-
ing studies, the exposed worms displayed at least a mini-
mal pharyngeal reflex (data not shown). However, it is
unlikely that they fed normally, and we observed changes
in gene and protein expression that are likely due to nutri-
tional restriction (see below).

http://www.biomedcentral.com/1471-2164/10/202

Developmental genes

Because the dosing for these experiments was standard-
ized based on the inhibition of developmental processes,
we were concerned that the ensemble of probe sets we
observed to change in response to OP exposure might be
skewed toward genes involved in development. To
address this issue, we compared two lists of genes. The
first list contained developmentally regulated genes
derived from an unpublished data set spanning the same
developmental period as this experiment; the second list
contained genes from the study at hand whose expression
level is highly correlated with developmental inhibition
for all three toxicants. Both sets comprised the 2000 probe
sets with the lowest p values for the relevant desideratum.
Only 438 probe sets are shared by the two lists. Further-
more, only 4 of the 88 probe sets affected by OP but not
mefloquine exposure (see below) appear in the develop-
mental data set. We concluded that our experimental
design effectively excluded developmentally regulated
genes.

Cross chemical standardization

Preliminary examination of the data suggested the expres-
sion levels of genes in worms exposed to the three stand-
ardized concentration levels of dichlorvos were shifted
toward those seen in worms exposed to higher standard
concentrations of mefloquine and fenamiphos. Figure 1
presents the results of a principal components analysis
(PCA) performed on 1110 probe sets that are statistically
different by concentration (2-way ANOVA, concentration
and exposure group; FDR < 10-3). It is noteworthy that the
dichlorvos low concentration samples cluster with the
fenamiphos and mefloquine mid concentration samples,
and the dichlorvos mid and high concentration samples
cluster with the fenamiphos and mefloquine high concen-
tration samples. Because this shift in gene expression can-
not be fully accounted for by deviations in the
administered concentrations from the nominal concen-
trations, we verified the apparent clustering by assigning
predicted concentration levels to all the samples with a
support vector machine (SVM). The SVM was trained on
gene expression levels from a data set that contains no
dichlorvos exposure data but does include data from
mefloquine, fenamiphos, and two additional toxicant
exposures (see Methods). The SVM classification results
support our conclusion that the dichlorvos effects are
shifted toward higher concentration levels with respect to
mefloquine and fenamiphos. For all subsequent analysis
of microarray data, we used the predicted rather than
nominal concentration levels for dichlorvos.

OP specific responses

In order to identify genes that are regulated by exposure to
OPs but not by generalized stress caused by toxic chemical
exposure, we compared the expression of genes in worms
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exposed to two OPs, dichlorvos and fenamiphos, to gene
expression in worms exposed to the unrelated toxicant
mefloquine and unexposed controls. Eighty-eight probe
sets representing 87 genes respond specifically to OP
intoxication (Table 2 and Figure 2). The changes in the
expression of this set of genes represent responses by the
worm that are specific to OP exposure and are not a result
of generalized stress or developmental delays, as they do
not respond to the mefloquine exposures. In a separate
analysis of proteins whose abundance was affected by OP
exposure, we found 34 proteins whose level of expression
changed in response to dichlorvos and fenamiphos intox-
ication (Table 3). While the differences in the expression
of some of these proteins might result from generalized
stress responses or from developmental delays (no meflo-
quine out-group was included in the proteomic analysis),
many appear to be part of the same biological processes
involving the OP specific gene set. These biological proc-
esses included muscle damage, cell death, and detoxifica-
tion.

Muscle damage

In the lists of genes and proteins specifically affected by
exposure to the OPs, we observed increases in the expres-
sion of a number of molecules involved with muscle
structure and function, including genes encoding an inter-
mediate filament, ifa-2 [56]; a ras suppressor, C34C12.5
[57]; a vitronectin receptor, pat-2 [58]; a cell adhesion
molecule from the immunoglobulin superfamily, zig-7
[59]; the nematode homolog to actin regulator, LASP-1
(F42H10.3) [60]; and a serine/threonine protein kinase
important for proper striated muscle structure and, per-
haps, body wall attachment, unc-82 [61]. We also
observed increases in expression of the IFB-1 protein
which is co-expressed with the intermediate filament pro-
tein I[FA-2 (see above) [62]. All of these genes and proteins
are involved in cell adhesion, muscle attachment or struc-
ture, suggesting that muscle repair/regeneration responses
may have occurred as a result of mechanical damage
resulting from muscle hypercontraction. Interestingly,
inhibiting synthesis of the zig-7 product with RNAi con-
fers resistance to aldicarb, an AChE-inhibiting carbamate
[63].

In addition, a number of transcripts and proteins modu-
lating actin polymerization are also up-regulated,
although these molecules are not necessarily muscle-spe-
cific. The expression of unc-60, a cofilin-like actin depo-
lymerization factor, increases in both the proteomic and
genomic assays. The expression of profilin (PFN-3), cal-
ponin genes (cpn-3 and cpn-4), and the KO3E5.2 gene
product, which contains a calponin repeat, is also
induced. Calponins may play a role in regulation of
myosin ATPase activity and muscle contraction [64].
Finally, the expression of the gene encoding the actin end

http://www.biomedcentral.com/1471-2164/10/202

cap and nebulin-binding protein, tropomodulin (tmd-2)
is increased as is F42H10.3, a poorly described gene
encoding a nebulin repeat domain.

Taken together, the data argue for an increased require-
ment for molecules involved in cytoskeletal and muscle
structure and suggest ongoing cytoskeletal rearrangement
and perhaps repair of the muscular system as a result of
OP exposure, a conclusion that is consistent with our pre-
vious observation of convulsions in worms exposed to
dichlorvos [37].

Cell death

We also found alterations in the expression of a number
of genes and proteins involved in cell death. Neuronal
death in response to OP exposure in C. elegans is consist-
ent with the neurodegenerative effects of a gain of func-
tion mutation of deg-3, which encodes the nicotinic
acetylcholine receptor (nAChR) [65], and with the occur-
rence of neuronal death in mammals in response to OP
exposure [2]. We observed increased levels of the NEX-1
protein, which mediates apoptotic engulfment, and the
map-2 metalloprotease gene was down-regulated; its
human homolog is anti-apoptotic [66]. A possible addi-
tional indication of apoptotic activity is an apparent
change in sphingolipid metabolism in OP exposed
worms. The sphingolipid metabolites, ceramide and
sphingosine, are involved in apoptosis and growth arrest,
while other metabolites, such as sphingosine 1-phos-
phate, are anti-apoptotic [67]. F11E6.1, a glucocerebrosi-
dase encoding gene, is up-regulated, and the expression of
spp-12, a gene encoding a saposin-like protein which may
be involved in sphingolipid metabolism, is altered (see
below). However, these changes in lipid metabolism
could also be responses to starvation or to disruption in
the level of free acetylcholine.

At face value, the evidence argues against the occurrence of
necrosis. C. elegans has six aspartyl protease genes (asp-1
through asp-6) which are believed to be under the control
of the daf-2/insulin/IGF-1 regulatory pathway (see below)
[68]. The asp-3 and asp-4 (and possibly asp-1) genes have
been implicated in neuronal necrosis in RNAi experi-
ments [69], and ASP-1 is required for necrotic cell death
[70]. When we examined the expression of the aspartyl
protease genes and proteins, we observed that the abun-
dance of ASP-1 and ASP-5 proteins was reduced in worms
exposed to OPs, although there was at most a marginal
reduction in their transcript levels (average difference <
1.3 fold). In addition, the asp-4 transcript was down-regu-
lated nearly three fold upon OP exposure. The reduction
in aspartyl protease levels suggested by these observations
is consistent with the known diminution of aspartyl pro-
tease activity during starvation [71], probably through
auto-digestion. Intriguingly, starvation protects against
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Table 3: Proteomic changes upon organophosphorus pesticide intoxication
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Genomic Resultsf

Gene? ProteinsP Description Fold Quant Fracts? Total Fractss MH DH FH
Changec
C29F5.1 NP_495267.1 unknown function OP only 0 | -1.2 5.6 5.5
C42D4.1  NP_501136.1 unknown function —predicted ~ OP only 0 2 148 54 6.7
alpha-helical protein
C42D4.3 NP_501132.1 unknown function — contains OP only 0 2 49 43 5.0
fibronectin domain
cul-3 NP_503151.1 Cullin OP only 0 | -3 14 -15
E04F6.5 NP_001022062.1 Very-long-chain acyl-CoA OP only 0 | 1.1 1.0 -1.2
NP_001022063.1 dehydrogenase
KO3E5.2 NP_001021535.1 predicted calponin OP only 0 2 -1.2 3.0 29
NP_001021536.1
NP_001040674.1
T28F4.5 NP_492102.1 homolog of Death Associated  OP only 0 | 2.6 1.7 1.4
Protein |
Y57GI1A.3 NP_502756.1 unknown function — contains OP only | 1.6 4.4 6.0
LIM domain
gei-7 NP_001021367.1 isocitrate lyase/malate 3.0 4 4 33 4.5 3.8
NP_503306.1 synthase
C32D5.8 NP_001022003.1 unknown function — contains 2.9 | | 2.7 43 3.9
NP_001022004.1 thioredoxin domain
TI9B10.2  NP_505848.1 unknown function 23 5 6 9.3 43 4.8
CO06A8.3  NP_495640.1 homolog of OV-17 22 4 6 24 2.1 22
hypodermal antigen
nex-1 NP_498109.1 Annexin 22 3 4 22 2.8 23
ifb-1 NP_495136.1 NP_495137.1 intermediate filament, B 1.9 3 4 I.1 1.5 1.5
sap-1 NP_494763.1 U2-associated snRNP A’ 1.8 | | -1.3 1.3 -1.2
protein
ZK909.3  NP_493608.2 guanosine polyphosphate 1.8 | | 37 25 2.5
pyrophosphohydrolase/
synthase
pfn-3 NP_508205.1 Profiling 1.7 2 2 1.2 38 43
H34C03.2 NP_501035.1 ubiquitin C-terminal 1.7 | | -2 14 -13
hydrolase
spp-14 NP_001041271.1 saposin like protein family 1.6 | |
unc-60c NP_503427.2 cofilin — actin depolymerizing 1.6 2 2 1.9 1.8 1.8

factor
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Table 3: Proteomic changes upon organophosphorus pesticide intoxication (Continued)

tag-273a NP_001023516.1 unknown function — contains 1.5 | | -1.2 2.0 3.5
LIM domain
unc-87 NP_001021092.1 myofilament associated 1.5 4 6 -2.2 1.2 1.6
NP_001021093.1 protein
NP_001021094.1
F22F7.1 NP_503577.1 NP_872194.1 uncharacterized membrane -1.6 | 2 -2.5 43 44
protein
tr-16 NP_502060.1 transthyretin like family -1.6 | | .1 -1.0 1.0
dct-16 NP_507944.1 unknown function — daf-16 -1.7 2 4 46 -48 5.1
regulated
dsc-4 NP_499903.3 microsomal triglyceride -1.7 | 3 1.3 24 20
transfer protein, large subunit
pmt-1 NP_494990.2 NP_494991.1  phosphoethanolamine N- -1.7 2 3 1.9 1.5 1.3
NP_871997.1 methyltransferase
ZK1127.10 NP_495449.1 cystathionine gamma-lyase -1.8 | 3 1.3 -7 -19
asp-1 NP_741677.1 aspartyl protease -1.9 3 4 12 -3 -12
pod-2 NP_001022400.1 acetyl-CoA carboxylase -2.0 | 6 22 1.0 -2
NP_001022401.1 domain
asp-5 NP_505135.1 aspartyl protease -2.2 2 2 -0 -13 -l
dct-18 NP_496755.1 unknown function — daf-16 24 3 3 22 -19  -19
regulated
F48E3.3 NP_509268.1 UDP-glucose:glycoprotein Cont only 0 2 12 -12 -1.0
glucosyltransferase domain
ifg-1 NP_001022259.1 initiation factor 4G Cont only 0 2 1.4 1.0 1.1

NP_001022260.1

a- Gene names and descriptions were derived from WormBase, release WS189 [46].
b- NCBI protein accession number
c- Protein fold change values for OP exposure. Proteins identified as "OP only" or "Cont only" were identified in at least 4 replicates of the OP-
exposed or control samples and in no replicates of the other condition.
d- Number of fractions in which quantitative comparisons were made
e- Number of fractions in which protein was identified

f- Gene expression fold change values for mefloquine (MH), dichlorvos (DH), and fenamiphos (FH) high concentration exposure. Gene expression
levels for H34C03.2 were below signal to noise threshold.

neural degeneration [69], perhaps by reducing aspartyl
protease activity.

At this point, it is uncertain to what extent cell death is
occurring, and it is unclear how aspartyl protease activity
is interacting with components of the cell death and star-
vation responses.

Detoxification
Many of the genes whose expression is induced in
response to OP exposure appear to be involved in detoxi-

fication. Eight of the 87 genes up-regulated by OP expo-
sure encode either cytochrome P450 monooxygenases or
UDP-glucuronosyl/glucosyl transferases. Two additional
induced genes, fmo-5 and dhs-5, encode proteins (flavin-
containing monooxygenase and a short chain dehydroge-
nase, respectively) that have previously been shown to
respond to xenobiotic toxicants [24,72] and are most
likely involved in detoxification. ZC376.3, which encodes
a type B carboxylesterase, may also play a role in detoxifi-
cation as a carboxylesterase from Lucilia cuprina has been
shown to provide resistance to OP insecticides through
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hydrolysis of the phosphate [73]. However, as many car-
boxylesterases are inhibited by OPs [74], the up-regula-
tion of ZC376.3 could also represent an off-target,
positive feedback loop (see below).

It is also noteworthy that the expression of genes for a
number of membrane channels is up-regulated in
response to OP intoxication. While some of these chan-
nels may play other roles, it is likely that some of them are
involved in detoxification. It is well known that the multi-
drug resistance gene (mdr-1) codes for a P-glycoprotein
family ATP-dependent efflux transporter [75]. Further-
more, there are numerous examples in which detoxifica-
tion includes the export of the toxicant from the cell [76].

When gene ontology analyses were performed using the
87 genes specifically affected by OP exposure, only catego-
ries containing genes plausibly involved in detoxification
were identified as being enriched in the data set. GoMiner
[50] identified one enriched gene ontology category
(GO:0004497 monooxygenase activity; FDR = 0.032)
containing four cytochrome P450 and one flavin-contain-
ing monooxygenase genes (cyp-25A6, cyp-32B1, cyp-
34A10, cyp-37A1, fmo-5). Using DAVID [47,48], the same
five monooxygenase genes were found in an annotation
term cluster (p = 0.010). In addition, four known or puta-
tive UDP-glucuronosyl transferases (ugt-17, ugt-37,
C03A7.13, and NM071370) were found in a second
annotation term cluster (p = 0.033) supporting our sug-
gestion above that the expression of genes involved in
detoxification is altered in response to OP exposure.

Strikingly, the expression of the genes for these putative
detoxification proteins is induced by OP exposure with
some specificity since mefloquine fails to induce them;
hence, there may be detoxification pathways specific to
OPs and related chemicals.

DAF-16 modulation

The transactivator DAF-16 appears to be a key modulator
of the changes in OP-specific gene and protein expression.
Several signaling pathways converge directly on DAF-16
including the daf-2/insulin/IGF-1 pathway involved in
stress and starvation, the PEP-2 innate immunity response
pathway, the heat shock pathway, and other stress path-
ways mediated by jun kinase (JNK-1) and other mitogen-
activated protein kinases (MAPKs). Responses to other
stimuli appear to be transduced through DAF-16 by cofac-
tor interaction [77,78] making DAF-16 a critical integrator
of stress signals. We observed alterations in the expression
of a number of genes and proteins under DAF-16 control
including several aspartyl proteases (ASP-1, asp-4, and
ASP-5; see above) [68] and molecules implicated in the
fasting response (GEI-7 and ACS-11) [79] and in lipid
transport and metabolism (far-2, C17C3.3, F11E6.1, spp-
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12) [46,80,81]. Two proteins, DCT-16 and DCI-18,
downstream of DAF-16 [82] were found to be down-reg-
ulated. A curious observation is that the expression of the
saposin gene, spp-12, which is known to be governed by
DAF-16 [80], increases and then falls as the OP concentra-
tion rises. This gene appears to function as part of the
innate immunity system and in sphingolipid metabolism.
How DAF-16 interacts with the other physiological proc-
esses in play in these exposures is not at present clear. Nev-
ertheless, as in the case of detoxification, the OP-induced
DAF-16 mediated responses appear to be distinct from
those elicited by mefloquine exposure.

Alternative targets

We were particularly interested in attempting to find path-
ways of OP intoxication and response that were not easily
explainable as a direct result of inhibition of AChE. The
worm homologs to neuropathy target esterase (NTE) were
of particular interest because this enzyme is a known tar-
get for OP inhibition. The NTE protein affects lipid metab-
olism, and its inhibition causes axon damage [2]. There
are two genes in the C. elegans genome homologous to the
vertebrate secondary OP target, NTE (ZK370.4 and
M110.7; [27] and unpublished observations). Expression
of the ZK370.4 gene changed only slightly (1.5x) under
any of the conditions tested; and the expression level of
the other gene, M110.7, did not differ between fenami-
phos exposed and control nematodes; however, expres-
sion was reduced in both the mefloquine and dichlorvos
exposed animals in comparison with control (2.1 and 1.6
fold respectively in high concentration). Since the expres-
sion of M110.7 increases in control worms over the course
of the experiment (unpublished data), it is not clear
whether the decreased expression of the gene during
mefloquine and dichlorvos exposure is an authentic toxic
effect or whether it is simply the result of developmental
inhibition. If the mefloquine and dichlorvos responses
reflect a developmental effect, then fenamiphos exposure
must be stimulating the expression of the gene in the
developmentally retarded animals. The mechanism
underlying such an effect is not clear, but as discussed
below, dichlorvos and fenamiphos elicit different
responses from a number of different genes.

We found several genes for enzymes with serine active
sites that are specifically up-regulated upon OP exposure,
perhaps as a result of a feedback loop since their activity
could be inhibited directly by OPs. These include
C17C3.3, C31H5.1, and ZC376.3; at present we cannot
definitively ascribe functions to any of the products of
these genes.

Differential gene expression between OPs
In addition to finding genes that responded specifically to
OPs, we wanted to identify genes that could discriminate

Page 15 of 21

(page number not for citation purposes)



BMC Genomics 2009, 10:202

between exposures to the two different OPs. We selected
23 probe sets, representing 22 different genes, showing a
statistically significant difference between the two OPs
and robust 1.8 fold difference between the control and
exposed conditions (Table 4, Figure 3). Nearly half of
these (9) encode phase I or phase II detoxification
enzymes (UGT or cytochrome P450), and three encode P-
glycoproteins (pgp-3, pgp-14 and C44C10.3), which are
also involved in detoxification [83]. It is likely that the dif-
ferences in gene expression reflect differences in the chem-
ical structures of the compounds and the consequent
activation of different detoxification pathways. Both mol-
ecules have two small hydrocarbon substituents, but
dichlorvos is a phosphate ester with a dichlorovinyl
group, and fenamiphos is a phosphoramidate with an aryl
ring group [84].

The functions of the other genes differentially affected by
the two compounds are poorly described. However, two
genes known to be involved with neuronal function are
affected differently by dichlorvos and fenamiphos. ptr-22
is involved in axon guidance and is more strongly induced
by fenamiphos than dichlorvos, and M110.7, the NTE
homolog discussed above, appears to respond somewhat
differently to the two compounds as well. Finally, F15E6.3
contains an RRM domain which suggests that it may reg-
ulate miRNA activity with broader consequences than we
have observed in this limited experiment [85].

Correlation of protein and gene responses

As a whole, the proteins identified as changing in abun-
dance in response to OP exposure respond quite similarly
to their transcripts. However, there are five proteins with
quantitative changes and four with qualitative changes
whose transcript levels do not appear to be changing.
There is reason to believe that some of the changes
observed only in the proteomics data are substantive. For
example, two of the proteins with measured changes
(ASP-1 and ASP-5) are cathepsin D homologs [86], and
previous work indicates that during starvation cathepsin
D undergoes auto-digestion [71].

We found four proteins, which were identified either only
in the control or only in the OP samples and which
showed no differences in their expression in the microar-
ray analysis. This difference in behavior could result from
post-transcriptional regulation, but it might also result
from limitations in mass spectrometric analysis. Success-
ful protein identification may not have occurred because
the detection of lower abundance peptide ions may have
been masked by the presence of higher abundance ones,
or because of random effects during the mass spectral
analysis. However, the prediction of changes in abun-
dance for five other proteins identified only in OP sam-
ples is supported by consistent regulation of the gene
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Figure 3

Changes in expression levels of genes differentially
affected by dichlorvos and fenamiphos exposure.
Heatmap depicting the average changes in expression levels
of genes differentially affected by the exposure to the two
OPs. Gene or sequence names are shown at the left of the
heatmap. The color bar indicates log, differences from the
control for each chemical. Concentrations are based on SVM
predictions.

transcripts. Thus, while comparisons between conditions
must be interpreted cautiously when there is a protein
identification in only one of them, mass spectral analysis
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Table 4: Genes differentially affected by dichlorvos and fenamiphos exposure

ProbeSet WBID2 Geneb Description Biological Role  Dicc Fend
191857_s_at  WBGene0001 1462 scl-22 SCP-like extracellular protein -1.2 -3.7
189735_at WBGene0000202 | hsp-17  heat shock protein Stress 2.0 -1.0
190518_at WBGene00006629 tsp-3 tetraspanin 25 1.0
184400_at WBGene00017726 F22H10.2  unknown 32 1.7
192142_at WBGene00008084  C44C10.3 major facilitator superfamily transporter Detoxification 3.6 1.4
180425_s_at  WBGene00017484 FI5E6.3  RRM-type RNA binding protein miRNA regulation 4.0 1.9
180592_s_at WBGene00021224 clec-209  unknown function — contains c-type lectin domain -2.1 2.0
178843 _at WBGene00008584 F08G5.6  CUB domain containing protein -2.3 4.9
193604 _at WBGene00007455 ugt-22 UDP-glucoronosyl and UDP-glucosyl transferases Phase 2 enzyme -1.6 6.7
183703_s_at  WBGene00012788  Y43D4A.2 UDP-glucoronosyl and UDP-glucosyl transferases Phase 2 enzyme -1.4 79
191418_at WBGene00013901 ugt-16 UDP-glucoronosyl and UDP-glucosyl transferases Phase 2 enzyme -1.8 77
189394 _at WBGene00019473 cyp-35A5  cytochrome P450 Phase | enzyme -1.1 15.9
193924 _at WBGene00003997 pgp-3 P-glycoprotein 3 Detoxification 1.0 3.1
190248 s_at  WBGene00004008 bgp-14 P-glycoprotein 14 Detoxification -1.1 33
185525_at WBGene00015399 cyp-35A1  cytochrome P450 Phase | enzyme I.1 4.3
188031 _s_at WBGene00006890 vem-1 putative steroid membrane receptor — involved in axon 1.6 5.7
guidance
191066_s_at  WBGene00013906 ugt-5 UDP-glucoronosyl and UDP-glucosyl transferases Phase 2 enzyme 22 5.6
188962 _at WBGene00019234 ugt-8 ugt family, 7TM chemoreceptor Phase 2 enzyme 1.2 10.4
178316_at WBGene0000781 | C29F7.2  unknown 2.0 9.8
188217_at WBGene00004236 ptr-22 sterol sensing domain protein — patch related Sterol trafficking 24 14.7
189282_at WBGene00007362 cyp-35CI  cytochrome P450 Phase | enzyme 1.8 54.5
189283_s_at  WBGene00007362 cyp-35CI  cytochrome P450 Phase | enzyme 23 54.7
189512 _at WBGene00015400 cyp-35A2  cytochrome P450 Phase | enzyme 3.0 332

a- WormBase gene identifier
b- Gene names and descriptions were derived from WormBase, release WS89 [46].
c- Gene expression fold change values for dichlorvos SVM predicted high concentration
d- Gene expression fold change values for fenamiphos high concentration
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is a viable means of screening for changes in the abun-
dance of proteins.

Conclusion

We developed an exposure protocol for comparing the
effects of different toxicants with varying mechanisms of
action based on the developmental arrest displayed by
stressed C. elegans worms. Using this technique in con-
junction with genomic and proteomic analysis, we identi-
fied changes in expression of a group of genes and
proteins that are consistent with muscle regeneration or
repair resulting from mechanical damage during hyper-
contraction of muscle in OP exposed worms. In addition
we found evidence of cell death stimulated by OP expo-
sure and the induction of (in this limited comparison)
OP-specific pathways of detoxification. The effects we
observed are similar to those reported in worms exposed
to the carbamate, aldicarb, under conventional culture
conditions [6,87] and include developmental delays,
muscle hypercontraction, reduced mobility, and failure to
feed.

Using unsupervised gene ontology analyses of OP specific
gene responses, we identified an enrichment of several
functional categories of genes plausibly involved in
detoxification. We did not observe statistically significant
over-representation of any other functional annotation
groups, including the ones that we discussed above.
Therefore, we cannot rigorously conclude that they occur
in our data set more frequently than expected by chance.
However, it is possible that more might have been signif-
icantly enriched in a larger, less strictly limited set of
genes. Further, some actual functional associations may
have been missed in the ontology analyses, because avail-
able ontologies fail to capture the complexities of some
biological functions. Even though we did not identify sta-
tistically significant ontology groups for all the functions
we considered, the functional categories identified are
consistent with the known actions of OPs and provide a
foundation for ongoing work elucidating the complete
mechanism of OP toxicity.

While we did not pursue changes in gene expression
resulting from mefloquine exposure, we found that it was
quite easy to discriminate OP-specific responses from
ones consequent on mefloquine treatment. Indeed we
were able to find differences in gene and protein expres-
sion resulting from exposure to the two different OPs in
this study, dichlorvos and fenamiphos. These differences
seem to indicate that at least somewhat distinct detoxifi-
cation pathways are induced by the two compounds,
likely reflecting their different chemical structures. We
also found differences in the expression of two molecules
involved in neurological function and of a possible regu-
lator of miRNA activity that differ between the two OPs.

http://www.biomedcentral.com/1471-2164/10/202

These findings suggest that it may be possible to identify
"signature" changes in gene expression even for closely
related compounds or groups of compounds.

While we originally undertook these experiments partly to
identify possible off-target and persistent effects of OP
exposure, we did not find clear candidates for this role,
perhaps because of the duration of the experiment. Never-
theless, we found alterations in the expression of a carbox-
ylesterase which could affect previously unidentified
pathways of intoxication or detoxification and other bio-
logical processes. We also found altered expression of a
possible regulator of miRNA activity which could ulti-
mately affect the expression of downstream genes. Under
the conditions of these experiments, we found only a
modest difference in the expression of one of the C. ele-
gans NTE homologs; this observation is consistent with
observations of human astrocytes exposed to the OP chlo-
rpyrifos, where the NTE gene expression level changes lit-
tle [88].

The technical approaches we have used in this work have
both strengths and weaknesses. Even when proteomic and
functional genomic approaches are used together, not all
possible biochemical processes and regulatory events that
may be important for understanding OP toxicity will be
identified. Analyses of the post-translational modifica-
tions of proteins, small molecule signaling events, or cell
physiological processes would certainly provide an
increased understanding of the mechanisms of OP toxic-
ity. However, our approach did reveal OP-specific changes
in the expression of a number of molecules of known and
unknown function, some or all of which may prove to be
critical for our ultimate understanding of the mechanisms
of OP toxicity and adaptation. Examining the function of
these new players in classically designed studies of mech-
anism could provide new insights into the overall cell and
organismal physiology of OP insult.
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