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Abstract
Background: The availability of whole-genome sequences allows for the identification of the
entire set of protein coding genes as well as their regulatory regions. This can be accomplished
using multiple complementary methods that include ESTs, homology searches and ab initio gene
predictions. Previously, the Genie gene-finding algorithm was trained on a small set of
Chlamydomonas genes and shown to improve the accuracy of gene prediction in this species
compared to other available programs. To improve ab initio gene finding in Chlamydomonas, we
assemble a new training set consisting of over 2,300 cDNAs by assembling over 167,000
Chlamydomonas EST entries in GenBank using the EST assembly tool PASA.

Results: The prediction accuracy of our cDNA-trained gene-finder, GreenGenie2, attains 83%
sensitivity and 83% specificity for exons on short-sequence predictions. We predict about 12,000
genes in the version v3 Chlamydomonas genome assembly, most of which (78%) are either identical
to or significantly overlap the published catalog of Chlamydomonas genes [1]. 22% of the published
catalog is absent from the GreenGenie2 predictions; there is also a fraction (23%) of GreenGenie2
predictions that are absent from the published gene catalog. Randomly chosen gene models were
tested by RT-PCR and most support the GreenGenie2 predictions.

Conclusion: These data suggest that training with EST assemblies is highly effective and that
GreenGenie2 is a valuable, complementary tool for predicting genes in Chlamydomonas reinhardtii.

Background
A complete genome sequence facilitates the identification
of all the genes in an organism and helps determine the
set of functions encoded by those genes as well as the reg-
ulation of their expression. The identification of protein-
coding genes can be approached both experimentally and
computationally and the combination of approaches
leads to the most complete catalog of genes [2]. Expressed

sequence tags (ESTs) provide experimental evidence for
the transcription of specific regions of the genome and sig-
nificant similarity with known proteins in other organ-
isms also provides evidence for the existence of a gene.
However, both approaches have limitations that often
preclude them from identifying the complete gene set.
The exclusive use of the former would require a very large
library of ESTs, obtained from a wide variety of environ-
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mental and developmental conditions, to ensure that all
transcribed regions have been included. Identification
based on homology will fail to identify genes that are
novel to a particular species, or that are sufficiently
diverged to make detection unreliable. Ab initio gene-find-
ers provide a complementary gene identification method
by predicting gene models based on the statistical charac-
teristics of a representative set of protein-coding genes
from the genome of interest.

Research using the unicellular green alga, Chlamydomonas
reinhardtii, has provided important insights into many cel-
lular processes that include flagellar assembly and motil-
ity, basal body assembly and positioning, phototaxis,
gametogenesis and fertilization, circadian rhythms, pho-
tosynthesis, starch metabolism, and cell wall assembly [3-
8]. Chlamydomonas is amenable to genetic analysis using
classical techniques of tetrad analysis and complementa-
tion as well as molecular techniques of transformation
and RNA interference [9].

The current catalog of genes for Chlamydomonas reinhardtii
is based on a combination of experimental and computa-
tional approaches [1] where 44% of the 15,143 models in
the catalog are derived from ab initio methods and the
remainder use various evidence including similarity in
other organisms and manual annotation. The inclusion of
multiple ab initio gene-finders gives rise to complementary
predictions by providing alternative models that can be
used for experimental validation and may lead to the
determination of true gene structures. Taken together,
multiple methods may yield multiple correct predictions
for genes with multiple alternate splice variants and a
complementing gene-finder can also provide complete
models for genes that are incomplete within an existing
catalog and predict novel genes.

Ab initio gene-finders employ models that capture the
essential features of gene structure that include sequence
characteristics that distinguish exons and introns that
include codon bias and feature length distributions as
well as signal sequences that correspond to the splice sites
that separate them [10,11]. Generalized hidden Markov
models (gHMMs) are commonly used because gene struc-
ture can be represented in a probabilistic framework.
Given a particular model of gene structure, the quality of
predictions depends on the specific values assigned to the
model parameters. Because these model parameters, such
as codon bias and splice site patterns, vary between spe-
cies, training a gene-finder on a representative set of exam-
ple genes from the target species is closely related to the
accuracy of the resulting predictions. The original Green-
Genie [12] is a version of the Genie gene-finder [13] that
was optimized for the prediction of genes in
Chlamydomonas. The parameters for GreenGenie were

obtained by training on only 71 genes with experimen-
tally determined structure. GreenGenie provided more
accurate predictions than other programs available at the
time; it predicted 86 genes within 81 Kb and 443 Kb
regions of Chlamydomonas genomic sequence and we
extrapolated that number to predict between 12,215 and
16,414 genes in the Chlamydomonas genome. This predic-
tion was recently corroborated [1]. GreenGenie facilitated
gene identification in Chlamydomonas by many groups
[14-16].

To improve the quality of gene prediction in
Chlamydomonas, we used the EST assembly tool, Program
to Assemble Spliced Alignments (PASA) [2], to assemble
167,613 Chlamydomonas EST sequences into protein cod-
ing gene models and trained the most recent version of
the Genie ab initio gene-finder [13] on this larger set of
Chlamydomonas gene models. The PASA pipeline begins
by filtering and aligning input EST sequences onto a
genome assembly. These ESTs alignments are then filtered
further and clustered based on alignment compatibility.
Finally, through a dynamic programming process, the EST
alignment clusters are stitched into a set of consistent,
non-overlapping EST assemblies [2]. PASA has been used
for gene prediction in Arabidopsis thaliana [2], Drosophila
melanogaster and Homo sapiens [17]. This larger training set
improves the predictions made by the program, now
called GreenGenie2, as determined on a set of 140 well-
characterized Chlamydomonas genes that were not
included in the training set and outperforms the most cur-
rent published gene-finder trained for Chlamydomonas.
Importantly, GreenGenie2 complements the existing
Chlamydomonas gene catalog [1] by completing incom-
plete models and predicting new genes that were not pre-
viously identified.

Results
Constructing and evaluating a training-set of gene 
predictions from ESTs
PASA aligned 167,641 high-quality Chlamydomonas EST
sequences onto the published genome assembly of
Chlamydomonas, which is called v3, and assembled those
alignments into 19,707 unique models. The set of PASA
assembled models to be used for training were selected
based on three criteria. First, the model must be complete;
it must begin with an ATG codon and terminate with a
stop codon (TAA, TAG or TGA). Second, the assembly
must have a minimum open reading frame length of 270
bp. Third, the PASA model must lack similarity to the
gb140 reference set of GenBank Chlamydomonas gene
records (see Methods; see Additional file 1) and known
transposable elements ftp://ftp.jgi-psf.org/pub/JGI_data/
Chlamy/v3.0/CHLREP.fn.gz. These criteria reduce the
19,707 models to 2,384 models.
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A similarity search of the 2,384 EST assembled models
against the NCBI non-redundant database (NRdb) using
NCBI BLAST (E < 1.0 × 10-3) was performed to assess the
novelty of the assembled ESTs. 957 (40.1%) of the
selected PASA assembled models align to an entry in
NRdb (Table 1) and 482 (20.2%) of the remaining predic-
tions have some overlap (see Methods) to models in the
Frozen Gene Catalog [1], which we will refer to as FGC07
(see Methods). The remaining 945 (39.6%) complete
PASA gene models in v3 are novel predictions identified
by PASA EST assembly alone. We find that 835 of these
novel models contain only a single exon. The quality of
this large set of single-exon genes was evaluated by testing
13 randomly selected single exon models via RT-PCR. All
13 models yield product of the correct size with genomic
DNA as the template and 10 of the 13 produce a fragment
of the predicted size with cDNA as the template by RT-
PCR (Table 2, Additional File 2). Given that the final set
of 2,384 PASA assembled models are derived directly
from 167,641 Chlamydomonas EST records and screened to
have a complete compliment of gene features, this set of
models is likely to provide an improved training set to
optimize the parameters of the GreenGenie2 gene-finding
program.

GreenGenie2 is more accurate than GeneMark.hmm-ES 
3.0
One primary purpose of gene-finders is to assist the user
by accurately identifying genes in an isolated DNA seg-
ment that may be up to several kilobases in length. To
evaluate the performance of GreenGenie2 on such short-
sequence prediction queries we compared the perform-
ance statistics of GreenGenie2 and GeneMark.hmm-ES
3.0, the most recent, publicly available gene-finder trained
specifically for Chlamydomonas [18].

Short-sequence prediction sensitivity and specificity of
GreenGenie2 and GeneMark.hmm-ES 3.0 were computed
for the total predictions made by each gene-finder using
140 genomic sequences obtained from the literature,
referred to as gb140 (see Methods). At the whole-gene
level, GreenGenie2 performs considerably better than

GeneMark.hmm-ES 3.0. GreenGenie2 achieves sensitivity
and specificity values of 0.51 (±0.10) and 0.47 (±0.11)
while GeneMark.hmm-ES 3.0 sensitivity and specificity
values are 0.31 (±0.10) and 0.24 (±0.09) (Table 3). A two-
proportion z-test indicates that both differences are statis-
tically significant (p < 0.001; see Methods). At the exon
level, GreenGenie2 outperforms GeneMark.hmm-ES 3.0
with sensitivity and specificity values of 0.83 and 0.83 as
compared to the corresponding values of 0.79 and 0.74
when using GeneMark.hmm-ES 3.0 (Table 3). The
improvements in predictive accuracy made by
GreenGenie2 are most obvious with initial and terminal
exons (Table 3). At the nucleotide level, the least stringent
assessment of prediction performance, GreenGenie2
shows an improvement of 2–3% over the Gene-
Mark.hmm-ES 3.0 predictions (Table 3). These results
indicate that GreenGenie2 is an improved ab initio gene-
finder for Chlamydomonas and encouraged us to make
whole-genome predictions on assembly v3 and compare
them to the FGC07 catalog [1] with the goal of identifying
new genes and improving the accuracy of the current gene
models.

GreenGenie2 models in v3 complement the Frozen Gene 
Catalog
GreenGenie2 predictions on Chlamydomonas genome
assembly v3 were screened for a minimum coding length
of 270 bp and against significant alignment to known
transposable elements (see Methods). The final
GreenGenie2 v3 catalog, gg2v3, consists of 12,387 predic-
tions. The identical criteria applied to the FGC07 catalog
leaves 12,320 predictions. All models were further classi-
fied as complete or incomplete based on the presence of

Table 1: Analysis of PASA gene models: Categorization of the 
2384 PASA EST assembly gene models

Class N

Alignment to NCBI NRdb 957/2384
Absent from the NCBI NRdb 1427/2384
Exact overlap in FGC07 222/1427
Partial overlap in FGC07 260/1427
No overlap in FGC07 945/1427

Single exon 835
Tested via RT-PCR 13
Verified via RT-PCR 10

Table 2: Analysis of PASA gene models: RT-PCR testing of 13 
novel, single exon PASA gene assemblies

Assembly ID Outcome

3146_3724 Present in cDNA
5172_6168 Present in cDNA
8132_9749 Present in cDNA
9104_10933 Present in cDNA
9866_11843 Present in cDNA
11161_13363 Present in cDNA
11240_13451 Present in cDNA
11709_14017 Present in cDNA
14828_17825 Present in cDNA
16095_19351 Present in cDNA
14105_16951 Not present in cDNA
15620_18773 Not present in cDNA
14205_17074 Not present in cDNA

Present: A product of the correct size was found in samples by RT-
PCR
Not present: No product was obtained by RT-PCR
Assembly ID numbers can be downloaded from http://
bifrost.wustl.edu/cgi-bin/greengenie2/greenGenie2. For primers used 
see Additional file 3
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start and stop codons (see Methods). All gg2v3 models are
complete by construction. Of the 12,320 models in
FGC07, only 67.7% are complete; the remaining 3,981
models lack a start codon, a stop codon or both.

Given the possible bias towards single-exon models in the
GreenGenie2 training set, a comparison of single-exon
models between gg2v3 and FGC07 was performed. In
FGC07, 7.0% of complete models are single-exon genes
and a similar proportion is observed in gg2v3 where 6.4%
of the models are single-exon predictions. A two-propor-
tion z-test (see Methods) indicates that there is no signifi-
cant difference between the two proportions of single
exon genes and that there is no bias towards the predic-
tion of single-exon genes made by GreenGenie2.

The gg2v3 gene catalog was compared to both the com-
plete and incomplete partitions of FGC07 (Table 4) using
interval overlap analysis. This analysis compares two lists
of coding sequence coordinates that index a common
underlying genome sequence and categorizes each predic-
tion as consistent or conflicting (Figure 1; see Methods).
Our analysis finds that 11% of the FGC07 models are pre-

Table 3: Comparing GreenGenie2 and GeneMark.hmm-ES 3.0 in gb140 catalog

GreenGenie2 GeneMark.hmm-ES 3.0

Sensitivity Specificity Sensitivity Specificity

Gene Level (n = 140) 0.51 0.47 0.31 0.24
Exon Level (n = 1145) 0.83 0.83 0.79 0.74
Initial Exons (n = 133) 0.65 0.60 0.50 0.40
Internal Exons (n = 870) 0.87 0.88 0.84 0.84
Terminal Exons (n = 133) 0.82 0.75 0.78 0.63
Single Exon (n = 7) 0.71 0.62 0.00 0.00
Nucleotide Level (n = 713682) 0.93 0.92 0.91 0.89

Table 4: Comparison of gg2v3 and FGC07 catalog by overlap 
interval analysis

Complete FGC07 models Incomplete FGC07 models

Type of overlap Count Type of overlap Count

Exact Overlap 1,324 Exact Overlap 0
Partial Overlap 5,425 Partial Overlap 2,826

No Overlap 1,574 No Overlap 1,149
Other 16 Other 16

Total 8,339 Total 3,981

Complete model: Any model that includes a starting ATG gene 
feature and terminates with a stop codon (TAA, TAG or TGA).
Incomplete model: Any model that lacks a start or stop codon or 
both.
Other: Models that interlaced overlaps and concatenated exact 
overlaps.

Diagram of four classes of gene level interval overlapsFigure 1
Diagram of four classes of gene level interval over-
laps. Interval overlap analysis identifies four classes of pre-
dictions between the two catalogs. Grey tracks represent 
identical stretches of the genomic assembly. Either blue or 
green boxes distinguish exons in the two catalogs. (A) Pre-
dictions are exact overlaps; (B) Predictions show a partial 
gene overlap with an exact overlap of the 5' exon and partial 
overlap of the 3' exon; (C) Predictions show a partial gene 
overlap with an exact overlap of the terminal exons and an 
extra exon in one catalog but not the other; (D) A unique 
prediction present in one catalog but not present in the 
other catalog.
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dicted identically in gg2v3 and another 67% partially
overlap with gg2v3 models (Table 4). The remaining 22%
of FGC07 models have no overlap with gg2v3 models.
Additionally, there are 2,859 (23%) gg2v3 models with-
out interval overlaps to any model in FGC07.

Predictions in gg2v3 that have partial interval overlaps to
FGC07 models can be categorized into models with par-
tially overlapping exons and models containing novel
exons. Because Genie does not allow non-canonical splice
sites, we determined the proportion of FGC07 exons that
partially overlap gg2v3 exons with either canonical or
non-canonical splice sites. Not all splice sites in
Chlamydomonas follow the canonical rules [19]. However,
allowing non-canonical splice sites might improve the
sensitivity slightly, the marginal gain would come with
the cost of many additional false positives.

15% of the partially overlapping FGC07 exons contain a
non-canonical splice 5' site (GT) and 7% contain a non-
canonical 3' splice site (AG). Therefore, about 20% of the
non-identical, but overlapping exons between the gg2v3
and FGC07 catalogs are attributable to the fact that the
GreenGenie2 model does not allow non-canonical splice
sites. The set of partially overlapping models are of partic-
ular interest because they may include examples of alter-
native splicing as well as highlight incorrect models in
each catalog. Each partially overlapping gg2v3 gene model
with three or more exons (N = 6,885) was compared to
the corresponding FGC07 model at the exon level. These
exons were classified as initial, internal or terminal. The
number of novel gg2v3 exons and partially overlapping
exons was determined (see Additional file 3). The four
largest groups have 1) partial overlaps for all three exon
types (N = 761) and no new exons in the gg2v3 model, 2)
an alternative initial exon (N = 480), 3) partially overlap-
ping internal exons and both a novel initial and novel ter-
minal exon (N = 461) and 4) an alternative terminal exon

(N = 453). Overall, 28% of these models have new exon
splice sites and no new exons in the gg2v3 model. Only
4% of the partially overlapping gg2v3 models have only
novel exons (See Additional file 3). A small number of
each of the partially overlapping models was tested using
RT-PCR (see Methods). Figure 1B shows one type of
model that has at least one exactly overlapping exon and
at least one alternative exon terminus. No experimental
support for any of the five FGC07 models tested was
found, but support for four of the five corresponding
gg2v3 models tested was found (Table 5, Additional File 4,
Additinal File 5). Figure 1C illustrates the second type that
has at least one exactly overlapping exon and at least one
additional exon in the gg2v3 prediction that is absent
from the FGC07 model. We find support for seven of the
eight predictions tested (Table 5, Additional File 4, Addi-
tional File 5).

Predictions in one catalog that have no overlapping coun-
terpart in the other catalog (Figure 1D) make up a signifi-
cant proportion of both gg2v3 and FGC07 and may
represent substantive sets of true genes that reflect the
complementarity of the two catalogs. Our analysis finds
that 22% (N = 2,723) of complete FGC07 models lack any
overlap to models in gg2v3 and that 23% (N = 2,859) of
gg2v3 models do not have interval overlap with any com-
plete or incomplete model in FGC07. A small sample of
predictions that are exclusive to each catalog was tested by
RT-PCR. Four of the five gg2v3 predictions tested were
supported by RT-PCR results (Table 6, Additional File 6,
Additional File 7). Similarly, three of the five novel FGC07
predictions were supported by RT-PCR (Table 6, Addi-
tional File 6, Additional File 7). In silico analysis indicates
that a majority of predictions exclusive to each catalog
have EST or cross-species sequence similarity support or
both. WU-BLASTP sequence similarity analysis indicates
that 92.2% of gene models exclusive to gg2v3 align to
some protein in the Eukaryotic Clusters of Orthologous

Table 5: Experimental analysis of 13 randomly selected predictions that differ between the gg2v3 and FGC07 catalogs

Models with alternate exon termini predicted in gg2v3 and FGC07 Novel exons predicted in gg2v3 not present in FGC07

gg2v3 Gene ID Support for gg2v3 Support for FGC07 gg2v3 Gene ID gg2v3 support

4t254 + -- 1t16 +
11t344 + -- 1t34 +
25t123 + -- 1t147 +
24t200 + -- 11t344 +
5t126 -- -- 15t291 +

30t106 +
30t170 +
3t257 --

+: A product of the correct size was found in samples by RT-PCR
--: No product was obtained by RT-PCR
*For primers see Additional files 4 and 5.
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Genes database (KOG) [20] or to some sequence in the
Chlamydomonas EST database. Similarly, WU-BLASTP sim-
ilarity analysis indicates that 94.5% of the FGC07 exclu-
sive models are supported by evidence in the KOG or
Chlamydomonas EST databases.

GreenGenie2 is a robust, effective gene-finder across 
different genome assemblies
Our results in the previous section indicate that
GreenGenie2 whole-genome predictions complement
FGC07 [1] and suggest the potential value of including
GreenGenie2 models in the annotation of future
Chlamydomonas assemblies, so we used GreenGenie2 to
predict a whole-genome catalog from the latest assembly
of the Chlamydomonas genome, denoted as gg2v4.
Sequence analysis of the two Chlamydomonas genome
assemblies reveals that v4 contigs are seven times longer
than v3 contigs on average, which highlights improved
continuity in the v4 assembly compared to v3 assembly.
GreenGenie2 predicts 11,135 models in the v4 assembly
that satisfy the quality control constraints discussed previ-
ously. We mapped the gg2v4 models onto v3 scaffolds
using BLAT [21] to facilitate the interval overlap analysis
of the gg2v4 catalog with gg2v3. Only 20 of the gg2v4
models do not have matches in the v3 genome assembly.
Conversely, 303 (2.4%) of the gg2v3 models do not have
matches on the v4 assembly, which indicates a loss of
some sequences in v4 compared to v3. 82.5% of the gg2v4
models (N = 9,184) map completely to a unique locus in
v3 and likely represent loci that are shared between the v3
and v4 genome assemblies. 77% of these models are iden-
tical to models in gg2v3 despite the large changes in the
genome contigs that are used for prediction. 21% of them
have partial overlaps and only 1% is novel in the gg2v4
model set. Of the 17.1% of the gg2v4 models that do not
map entirely to a single v3 locus, most of them (73%)
have matches to two or more v3 loci, and the remainder
contains additional sequences that do not occur on any v3
locus. The results indicate that the gg2v4 predictions from
the updated v4 assembly are typically the same as the pre-

dictions on the shorter genome contigs of v3, which sug-
gests that the predictions are not overly sensitive to the
length of the contigs used as input. Furthermore, models
that either were previously split across multiple contigs or
were missing from the v3 assembly explain most of the
differences. In both cases it appears that the updated v4
assembly has led to improved accuracy of the predicted
gene catalog.

Discussion
Determining genomic and EST sequence allows for the
identification of the protein coding genes of a particular
organism. We have used the information obtained from
EST sequences to train the ab initio gene-finder Genie [13]
on a filtered group of PASA assembled models that have
both a start codon and a stop codon (complete) to create
an accurate ab initio gene-finder for the GC-rich genome of
the green alga Chlamydomonas reinhardtii.

The Program to Assemble Spliced Alignments (PASA) [2]
was used to assemble Chlamydomonas EST sequences that
were pre-aligned to the v3 Chlamydomonas genome assem-
bly. This training set of 2,384 PASA assembled gene mod-
els has extensive biological evidence. Interval overlap
analysis and homology search indicate that a majority of
the PASA predictions align either to an existing
Chlamydomonas gene model (21%) or have homologs in
other organisms (40%). 39% of the PASA models are
novel. Support for 10 of 13 novel predictions tested with
RT-PCR suggests the potential for using the assembly of
pre-aligned EST data as a primary basis of gene modeling,
rather than as a supplementary source of predictive infor-
mation.

One primary application of ab initio gene-finders is to
accurately predict genes within short genomic sequences.
Such short-sequence queries are often regions where the
user has knowledge of a gene, but depends on the ab initio
gene-finder to predict, confirm or correct the exon level
structure of the gene. To test the short-sequence prediction
accuracy of GreenGenie2, we compared the predictions of
GreenGenie2 to the predictions of the most current, pub-
licly available ab initio gene-finder trained for
Chlamydomonas, GeneMark.hmm-ES 3.0 [18] on a set of
140 Chlamydomonas genomic sequences. Each of these
genomic sequences contains a single known GenBank ref-
erence Chlamydomonas mRNA and the corresponding
upstream (average length: 564 bp) and downstream (aver-
age length: 731 bp) flanking regions. Sensitivity and spe-
cificity of the two gene-finders was determined by
comparing the prediction from each gene-finder against
the reference GenBank annotation. Comparing the pre-
dictions on the gene level, GreenGenie2 is significantly
more sensitive and specific (Table 3; p < 0.001) than Gen-
eMark.hmm-ES 3.0. Results also indicate that

Table 6: Experimental analysis of 10 randomly selected 
predictions unique to the gg2v3 or FGC07 catalogs

Predictions exclusive to gg2v3 Predictions exclusive to FGC07

gg2v3 Gene ID Outcome FGC07 Gene ID Outcome

3t69 + 141597 +
19t170 + 181956 +
30t189 + 184911 +
76t11 + 141023 --
69t65 -- 180935 --

+: A product of the correct size was found in samples by RT-PCR
--: No product was obtained by RT-PCR
*For primers see Additional files 6 and 7.
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GreenGenie2 outperforms GeneMark.hmm-ES 3.0 across
all four types of exons (initial, internal, terminal and sin-
gle), in particular, the initial and terminal exons.

Another application of ab initio gene-finders is the predic-
tion of whole-genome gene catalogs. GreenGenie2 was
used to predict a whole genome gene catalog on
Chlamydomonas genome assembly v3 and this catalog,
gg2v3, was compared to the existing FGC07 gene models
by interval overlap analysis. The two catalogs predict a
similar number of genes and a significant number of the
models are identical. However, the two catalogs differ in
several ways. First, there are a substantial proportion of
complete FGC07 gene models that overlap but are not
identical to gg2v3 models (54%). Exon level analysis of
partially overlapping gg2v3 models shows that there are
multiple causes (see Additional file 3). The four most fre-
quent causes include partial exon overlap devoid of any
new exons in gg2v3, models that are identical except in the
initial exon, models where GreenGenie2 predicts entirely
new initial and terminal exons and models that are iden-
tical except in the terminal exon. The third class reflects
our observation that 32% of FGC07 models are incom-
plete. This analysis illustrates the range of complementa-
rity that exists between the two catalogs. RT-PCR analysis
found support for four out of five gg2v3 models (Figure
1B; Table 5), but failed to provide support for any of the
five FGC07 models tested. In addition, seven of eight ran-
domly selected gg2v3 models with additional exons that
are absent from their FGC07 counterparts were validated
by RT-PCR (Figure 1C; Table 5). Although the number of
genes tested is small, the results suggest that GreenGenie2
complements the existing catalog by successfully identify-
ing and correcting gene models that may be incorrect in
the current Chlamydomonas annotation. Second, there is a
set of gg2v3 predictions (N = 2,859) that is absent from
FGC07, and a set of FGC07 predictions (N = 2,723) that is
absent from gg2v3. We tested five randomly selected mod-
els from each set of exclusive predictions using RT-PCR
and found support for four gg2v3 models and support for
three of the FGC07 models tested. Furthermore, BLASTP
alignment and EST alignment reveal that there is extensive
support for almost all predictions that are absent from just
gg2v3 (93.8%) or absent from just FGC07 (92.2%). These
results indicate that each prediction method comple-
ments the other by identifying potentially true genes that
are missing from the other catalog. Finally, GreenGenie2
completes 2,261 incomplete FGC07 models, which dem-
onstrates another benefit of including GreenGenie2
whole-genome predictions into current and future
Chlamydomonas gene catalogs.

The average contig length from assembly v3 to assembly
v4 increases seven-fold, which indicates a greater degree of
assembly continuity. The robustness of our gene-finder

was tested across more continuous genome assemblies by
using GreenGenie2 to predict a whole-genome gene cata-
log with the v4 genome assembly. If GreenGenie2 predic-
tions were sensitive to the exact genome assembly used,
and in particular if they varied substantially when the
length of the genomic contigs changed, it would indicate
unreliability in the predictions. However, we find that
77% of the gg2v4 models are identical to models in gg2v3,
and most of the remainder overlaps significantly with the
gg2v3 models. A large fraction of the differences are mod-
els where the gg2v4 predictions extend or merge models in
gg2v3 based on the longer contiguous sequences in v4.
These results are consistent with improvements in the
updated assembly of v4 and with GreenGenie2 providing
reliable predictions on a more contiguous genome assem-
bly.

Overall, GreenGenie performance results on short-
sequence and whole-genome predictions suggest that
optimizing ab initio gene-finding parameters based on the
assembly of a large collection of pre-aligned EST
sequences as a rapid, low-cost and effective method by
which ab initio gene-finders can be established.

Conclusion
The ab initio gene-finder Genie was trained on a large set
of complete PASA predicted gene models assembled from
available Chlamydomonas EST sequence data. Short-
sequence performance analysis indicates that
GreenGenie2 is more accurate than the most recent
Chlamydomonas gene-finder in the literature [18]. Interval
overlap analysis between the GreenGenie2 v3 whole-
genome catalog and the FGC07 catalog reveals that
GreenGenie2 complements the current Chlamydomonas
gene catalog [1] by accurately predicting new v3 gene
models that are incomplete, incorrect or absent in FGC07.
When GreenGenie2 was applied to the latest available
Chlamydomonas genome assembly and the predicted v4
models were mapped back onto v3 scaffolds,
GreenGenie2 appears to be robust against a seven-fold
improvement in assembly continuity. These results illus-
trate a potential new application of EST sequence data to
gene prediction and underscore the value of including the
predictions of a fast, accurate ab initio gene-finder like
GreenGenie2 into present and future catalogs. We have
made the GreenGenie2 gene-finder described in this study
available online. The submission form is available at
http://bifrost.wustl.edu/cgi-bin/greengenie2/
greenGenie2.

Methods
Sequence datasets
This study uses the Chlamydomonas genome assembly ver-
sion 3 ftp://ftp.jgi-psf.org/pub/JGI_data/Chlamy/v3.0/
Chlre3.allmasked.gz. Genome assembly version 4 (v4)
Page 7 of 11
(page number not for citation purposes)

http://bifrost.wustl.edu/cgi-bin/greengenie2/greenGenie2
http://bifrost.wustl.edu/cgi-bin/greengenie2/greenGenie2
ftp://ftp.jgi-psf.org/pub/JGI_data/Chlamy/v3.0/Chlre3.allmasked.gz
ftp://ftp.jgi-psf.org/pub/JGI_data/Chlamy/v3.0/Chlre3.allmasked.gz


BMC Genomics 2009, 10:210 http://www.biomedcentral.com/1471-2164/10/210
was obtained from Alan Kuo at the Joint Genome Insti-
tute.

Sequences longer than 1 Mb are pre-processed into
shorter sequences prior to annotation by GreenGenie2.
Pre-processing involves the removal of stretches of ambig-
uous nucleotides longer than 50 bp and treating the prefix
and suffix as independent sequences. This pre-processing
is advantageous for computational efficiency but to pre-
serve maximal continuity in the assembly, all splitting
events were chosen to minimize the final number of
sequences. We found that requiring a minimum length of
greater than 50 bp greatly increased the necessary number
of splitting events. The v3 assembly was split from 1,557
sequences totaling 120,186,811 bases (~77.2 Kb/
sequence) into 1,636 sequences totaling 120,076,271
bases (~73.4 Kb/sequence) following the removal of
110,540 ambiguous positions. The v4 assembly was split
from 88 sequences totaling 112,305,447 bases (~1.3 Mb/
sequence) into 218 sequences totaling 111,935,880 bases
(~513.5 Kb/sequence) following the removal of 369,567
ambiguous positions.

A total of 140 experimentally verified Chlamydomonas
annotations from GenBank http://
www.ncbi.nlm.nih.gov/Taxonomy/Browser/
wwwtax.cgi?id=3055 constitute a reference set for short
sequence analysis and are referred to as gb140 (see Addi-
tional file 1). Initially, 222 GenBank records were
retrieved by identifying records that indicated experimen-
tally determined gene structure by direct sequencing of a
complete cDNA and the genomic DNA and thus were not
generated by automated assembly methods. The records
were then filtered to remove genes with misannotated or
missing start sites (N = 17), non-canonical splice sites (N
= 46), misannotated or missing termination sites (N = 6)
or open reading frames that are not multiples of three (N
= 13). The included upstream and downstream flanking
regions averaged 534 bp and 731 bp in length, respec-
tively. The 167,613 EST records used to construct the
PASA EST assemblies are from GenBank http://
www.ncbi.nlm.nih.gov/Taxonomy/Browser/
wwwtax.cgi?id=3055. All PASA EST assemblies were
screened for significant alignment (BLAST E-value < 1.0 ×
10-20) to gb140 before training to remove any bias in the
subsequent short-sequence performance evaluation.

Chlamydomonas gene catalogs
Three Chlamydomonas whole-genome catalogs were evalu-
ated in this study: the GreenGenie2 whole-genome pre-
diction on assembly v3 http://bifrost.wustl.edu/
greengenie2/, the GreenGenie2 whole-genome prediction
on assembly v4 http://bifrost.wustl.edu/greengenie2/ and
the Frozen Gene Catalog (FGC07) from Merchant et al. [1]
(transcript file: ftp://ftp.jgi-psf.org/pub/JGI_data/

Chlamydomonas_reinhardtii/v3.1/
Chlre3_1.GeneCatalog_2007_09_13.transcripts.fasta.gz;
model file: ftp://ftp.jgi-psf.org/pub/JGI_data/
Chlamydomonas_reinhardtii/v3.1/
Chlre3_GeneCatalog_2007_09_13.gff.gz). Prior to fur-
ther analysis all models from all catalogs were screened
for a minimum coding length of 270 bp and lack of signif-
icant alignment to known transposable elements
ftp:ftp.jgi-psf.org/pub/JGI_data/Chlamy/v3.0/CHL
REP.fn.gz. The choice of 270 bp as a minimum coding
length is somewhat arbitrary, but there are very few veri-
fied genes shorter than this in Chlamydomonas. In Saccha-
romyces cerevisiae, recent studies show that there are about
200 genes (5%) that are less than 90 amino acids or 270
bp [22]. However in a genome that is 2/3 G+C like
Chlamydomonas, prediction of genes 270 bp long or
shorter will occur with a probability of 0.12. This proba-
bly in yeast about is about ten-fold lower (0.013). Thus,
the inclusion of predicted genes that are less than 270 bp
is likely to increase the number of falsely predicted genes
greatly. Many models in FGC07 lack a start codon, a stop
codon or both are thus considered incomplete models.

Programs
Seven publicly available programs are used in this study.
They are PASA [2]http://pasa.sourceforge.net, Genie [13],
GeneMark.hmm-ES 3.0 [18]http://opal.biol
ogy.gatech.edu/GeneMark/eukhmm.cgi, BLAT [21], WU-
BLAST [23], NCBI-BLAST http://blast.ncbi.nlm.nih.gov
and Primer3 [24]http://frodo.wi.mit.edu/. EST sequence
assembly was performed using PASA (Program to Assem-
ble Spliced Alignments). The initial EST alignments were
performed by PASA using the built-in GMAP algorithm
option [25]. The GreenGenie2 program is based on the
latest version of the Genie gene-finder
[13]http:brl.cs.umass.edResearcGenePredictionWithCon
straints. Genie implements a general hidden Markov
model (gHMM) to predict protein-coding regions in
genomic DNA. The most recently published gHMM gene-
finder trained specifically for Chlamydomonas is Gene-
Mark.hmm-ES 3.0 [18], which is used in this study as the
short-sequence performance benchmark for
GreenGenie2. Unless otherwise stated, all sequence align-
ments were performed using WU-BLAST and significant
alignments are those with BLAST E-value < 1.0 × 10-5.
PASA EST assembly alignment to the NCBI non-redun-
dant database (NRdb) was conducted by NCBI using
NCBI-BLAST (default BLAST E-value < 1.0 × 10-3). Align-
ment of v4 models onto v3 was performed using BLAT
with the -fine and -maxIntron = 5000 program
options invoked. All primers used in this study were
designed using Primer3 [24].
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Short-sequence prediction performance evaluation
The evaluation of predictions requires independent and
high quality annotated test sequences against which pre-
dictions are compared to determine sensitivity and specif-
icity statistics and a quantitative evaluation of prediction
accuracy. When comparing the predicted genes for a given
test sequence to the reference annotation of that sequence,
the predicted structure can be evaluated at three different
levels: nucleotide accuracy, exonic accuracy and whole
gene accuracy [26]. Whole gene accuracy is the most strin-
gent level because a prediction is correct only when the
prediction matches the reference at every position; a single
mismatched exon boundary is an error and renders the
entire prediction incorrect. Nucleotide accuracy is the
least stringent level; each individual nucleotide is either
correctly or incorrectly labeled as coding or non-coding.
At each level, predictions are classified as either true posi-
tive, false positive, true negative or false negative. True
positives and true negatives are those regions where the
predicted structure agrees with the reference annotation in
coding and non-coding regions respectively. Conversely,
false positives and false negatives are those regions where
the predicted structure does not agree with reference
annotations in non-coding and coding regions respec-
tively. Sensitivity is defined as the ratio of true positives to
actual positives. Greater sensitivity on the gene level indi-
cates that the prediction method being evaluated misses
fewer genes. Specificity is defined as the proportion of all
predictions that are true positives. Greater specificity at
the gene level indicates that there are fewer wrong predic-
tions being made by the prediction method under evalu-
ation. By determining the different relative ratios of each
of the four categories above, it is possible to gauge the
inherent accuracy of a set of predictions and to compare
the predictive performance across different sets of gene
predictions. Short-sequence prediction performance of
GreenGenie2 is performed by submitting the genomic
sequences corresponding to each of the 140 reference
annotations in gb140 to both GreenGenie2 and Gene-
Mark.hmm-ES 3.0. Each sequence yields a single set of
predictions from each of the gene-predictors. Standard
averaged sensitivity and specificity ratios are computed on
the nucleotide, exon and gene levels by the Tally.pl and
BaseCounts.pl, utilities that are included as a part of the
Genie software package http://brl.cs.umass.edu/Research/
GenePredictionWithConstraints. Statistical significance of
differences between two ratios is computed by a two-pro-
portion z-test that compares the corresponding ratios for
a given confidence level from each of the two independent
predictions. All such comparisons in this study are com-
puted using a confidence level of 0.99.

Interval overlap analysis
Whole-genome predictions are compared using interval
overlap analysis of predicted models and evaluated for

accuracy and complementarity. The interval overlap anal-
ysis of gene features is performed by directly comparing
two lists of coding sequence coordinates indexed on a
common genome assembly. Coding nucleotides are clas-
sified as either overlapping or not overlapping. A coding
nucleotide is overlapping if and only if that position is
annotated as coding in both predicted models, otherwise
the nucleotide is not overlapping. Exons are classified into
three classes: exact, partial and novel. An exon for which
every nucleotide is aligned is classified as an exact overlap.
An exon that is not classified as an exact overlap but has at
least thirty consecutive bases that overlap is classified as a
partial overlap. An exon that is neither exact nor partial is
classified as extra in the original catalog and absent in the
other catalog. A gene is classified into three classes: exact,
partial and novel. A gene for which every exon is classified
as exact is classified as exact. A gene for which every exon
is classified as novel is classified as novel. All other genes
are classified as partial, which indicates that the two pre-
dictions overlap but are not identical. Differing predic-
tions between two catalogs can then be targeted for
subsequent testing via RT-PCR and other in silico valida-
tion methods.

PCR and RT-PCR
A small subset of novel predictions with non-exact over-
laps was tested by RT-PCR. Two classes of predictions were
tested: predictions that overlap but are not exact and pre-
dictions that are exclusive to each catalog. To verify exons
whose intron boundaries do not agree between two cata-
logs, one primer aligns to the overhanging region of each
of the two partially aligned exons and the other primer
aligns to a nearby exon that is exactly overlapping
between the two catalogs. RT-PCR with these primers
unambiguously indicates which prediction (if either) is
correct, or whether both predicted genes are correct and
arise from alternative splicing. The designed primers were
also used in genomic DNA PCR to verify that they amplify
the correct regions of interest. For genomic DNA PCR,
crude Chlamydomonas DNA was prepared. A toothpick-tip-
full of Chlamydomonas cells was lyszed in 10 L lysis buffer
(10 mM Tris-HCl, pH 8.8, 50 mM KCl, 2 mM MgCl2, 0.1%
Triton-100, 1 mg/mL proteinase K) at 58°C for 1 hr fol-
lowed by 95°C 30 min to denature the proteinase K. Cell
debris was collected by a 10 sec centrifugation and 0.5 L
of the supernatant were used in a 10 L PCR reaction.
Total RNA from wild-type vegetative Chlamydomonas cells
was prepared as previously described [27]. Total RNA (30
g) was treated with 2 units of RNase-free DNase I (New
England Biolabs, Ipswitch, MA) to remove contaminating
genomic DNA from the sample. One g of total RNA was
used for cDNA synthesis with or without the addition of
SuperScript II reverse transcriptase (Invitrogen, Carlsbad,
CA) in a 20 l reaction. The same reaction mix without
reverse transcriptase serves as the control for the presence
Page 9 of 11
(page number not for citation purposes)

http://brl.cs.umass.edu/Research/GenePredictionWithConstraints
http://brl.cs.umass.edu/Research/GenePredictionWithConstraints


BMC Genomics 2009, 10:210 http://www.biomedcentral.com/1471-2164/10/210
of genomic DNA contamination. 0.5 L of cDNA synthe-
sis products was used in a 10 l PCR reaction with RedTaq
DNA polymerase (Sigma, St. Louis, MO) according to the
manufacturer's protocol. PCR conditions used were the
following: 95°C 2 min, followed by 30 cycles of 95°C 15
sec, 53°C 15 sec, and 72°C 1 min, and ending at 72°C for
2 min.
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