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Abstract

Background: MicroRNAs (miRNAs) are small non-coding RNAs affecting the expression of target
genes via translational repression or mRNA degradation mechanisms. With the increasing
availability of mRNA and miRNA expression data, it might be possible to assess functional targets
using the fact that a miRNA might down-regulate its target mRNAs. In this work we computed the
correlation of expression profiles between miRNAs and target mRNAs using the NCI-60
expression data. The aim is to investigate whether the correlations between miRNA and mRNA
expression profiles, either positive or negative, can be used to assist the identification of functional
miRNA-mRNA relationships.

Results: Predicted miRNA-mRNA interactions were taken from TargetScan 4.1 and miRBase
release 5. Pearson correlation coefficients between the miRNA and the mRNA expression profiles
were computed using NCI-60 data. The correlation coefficients were then subject to the Benjamini
and Hochberg correction. Our results show that the percentage of TargetScan-predicted miRNA-
mRNA interactions having negative correlation in expression profiles is higher than that of
miRBase-predicted pairs. Using the experimentally validated miRNA targets listed in TarBase,
genes involved in mRNA degradation show more negative correlations between miRNA and
mRNA expression profiles, comparing with genes involved in translational repression.
Furthermore, correlation analysis for miRNAs and mRNAs transcribed from the same genes shows
that correlations of expression profiles between intronic miRNAs and host genes tend to be
positive. Finally we found that a target gene might be down-regulated by more than one miRNAs
sharing the same seed region.

Conclusion: Our results suggest that expression profiles can be used in the computational
identification of functional miRNA-target associations. One can expect a higher chance of finding
negatively correlated expression profiles for TargetScan-predicted interactions than for miRBase-
predicted ones. With limited experimentally validated miRNA-target interactions, expression
profiles can only serve as a supplementary role in finding interactions between miRNAs and
mRNA:s.
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Background

MicroRNAs (miRNAs) were first identified in Caenorhabdi-
tis elegans. Since then more than 5,000 sequences have
been found and annotated in many organisms [1]. MiR-
NAs are small non-coding RNA molecules regulating gene
expression through various mechanisms [1-3]. Many bio-
logical processes, such as development, cell differentia-
tion, and even diseases, have been associated with the
activity of miRNAs [4,5]. Given that miRNAs function
through binding to the 3' untranslated regions (UTRs) of
mRNAs, computational algorithms, such as miRanda,
TargetScanS and PicTar, have been developed to search
potential miRNA target sites throughout a genome using
perfect or imperfect base paring at potential interaction
sites [6-8].

MiRNAs were initially reported to silence the target genes
by interfering translation without reducing the expression
levels of the target mRNAs [9]. However, subsequent stud-
ies proved that mRNA degradation can indeed be induced
by miRNAs [10,11]. Moreover, microarray analyses pro-
vide evidence that the expression of miRNAs decreases the
abundance of many transcripts carrying potential miRNA
target sites [12].

With the extensive applications of expression profiling,
microarray analysis on miRNAs has become a fast and
effective approach to detect distinctive signatures for spe-
cific tissues or disorders [13,14]. In cancer research, the
association between miRNAs and oncogene regulation
has been reported and miRNA's involvement in cancers
has also been identified through microarray experiments
[15-18]. With the increased availability of miRNA micro-
array expression data, systematic investigation on the
interactions between miRNAs and target genes using
expression data could give us information on miRNA reg-
ulation. For example, a novel algorithm predicting
miRNA targets, GenMiR++, has been recently developed
using microarray expression profiles in addition to
sequence matching [19]. To study the interactions
between miRNAs and target genes, correlations between
expression profiles of miRNAs and the target mRNAs in
brain tumors have also been studied [20]. Instead of man-
ually altering a miRNA's expression level, the brain tumor
study focused on the primitive associations between
endogenous miRNA levels and mRNA expression, which
does not potentially lead to artificial influences on the
underlying regulatory networks. Accordingly, more accu-
rate effects of miRNAs on mRNAs could be measured by
directly computing the paired correlations. However, the
samples used in the brain tumor study were derived from
a single tissue of origin, raising a question whether more
underlying information about miRNA-mRNA interac-
tions could be excavated when large-scale data are used.
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In the current study, we ask the question whether the
expression levels of the miRNA target genes show strong
correlation with that of the miRNA itself. We used the
miRNA and mRNA expression profiles of the NCI-60, a
panel of 60 human cancer cell lines from several distinct
tissues [21,22]. The hypothesis is that, assuming the
mRNA degradation mechanism is involved in miRNA-tar-
get interactions, computationally predicted or experimen-
tal validated miRNA-target pairs should demonstrate
negative correlations because of the degradation, whereas
intronic miRNAs might be co-transcribed with their host
genes thereby showing positive expression level correla-
tions [23]. Although we have made comparisons between
the prediction methods of TargetScan and miRBase, it is
not our intention to compare the prediction accuracy
between them. Firstly this cannot be done using the
expression data alone and secondly such a comparison
has been reported recently [24,25]. What we are trying to
do in this work is to provide suggestion to users who want
to assess the predicted target mRNAs using gene expres-
sion data. With the correlation analyses using the NCI-60
data, our results show that negative correlations in expres-
sion profiles are more likely to be found for TargetScan-
predicted miRNA-mRNA interactions than for miRBase-
predicted ones. This observation is consistent with an ear-
lier report[19]. Positive correlation profiles were also
found between intronic miRNAs and their host genes.
Overall the results suggest that simultaneously profiling
miRNA and mRNA expression could be informative when
exploring the regulation of miRNAs and mRNAs.

Results

Available probes on miRNA and mRNA microarrays
Filtering criteria (see Methods for more details) were
applied to 59 NCI samples from nine tissues for all the
expression profiles. The NCI-H23 cell line lacks mRNA
data. The retained probes for correlation analysis on the
microarray platforms should be those that appear in the
downloaded miRNA-target data set and display adequate
variability across the expression profiles. As illustrated in
Figure 1, the red circles denote the number of probes
whose corresponding targets or mature miRNAs can be
found in the miRNA-target pairs predicted by TargetScan
or miRBase, respectively. The blue circles indicate that
16,769 and 555 probes have at least two-fold difference in
expression level between the maximum and minimum
values among the 22,283 Affymetrix and 627 miRNA
probes, respectively. The number in the intersection
between the two circles is the set of probes used for corre-
lation analyses.

Correlation of expression profiles between miRNA and
TargetScan predicted targets

The data set was taken from the TargetScan 4.1 web site. It
contains 46,458 predicted pairs comprising 162 con-
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The number of microarray probes used for computing the correlations of expression profiles. The red circles
denote the number of probes found in the predicted miRNA-target pairs. Two predicted data sources were used, including
TargetScan 4.1 and miRBase::Target 5. The blue circles indicate the number of probes with at least two-fold intensity difference
between the maximum and the minimum values across the NCI-60 samples. The intersection of the red and the blue circles is

the number of probes used for the correlation analysis.

served miRNA families and 7,927 target genes. Using the
filtering criteria (described in Method, also see Figure 1),
we selected 284 miRNA probes and 8,813 Affymetrix
probe sets to compute correlations. Among the 138,919
Pearson correlation coefficients and the corresponding p-
values computed at the probe level, 2,976 probe-probe
interactions, representing 1,389 predictions between 113
conserved miRNA families and 940 target genes, show sta-
tistical significance (Benjamini and Hochberg-adjusted p
< 0.05). The percentages of positive and negative correla-
tions are 39.28% and 60.72%, respectively. The density
plot of the correlation is shown in Figure 2. As a random
control test, we computed all the 2,502,892 correlations
between 284 miRNA probes and 8,813 Affymetrix IDs,
then randomly selected 138,919 values for 100 times to
compare with those from the predicted pairs. The differ-
ence of the correlation coefficients between the TargetS-
can predicted pairs and the 100 random sets are all

statistically significant (p < 2.2 x 1016, Wilcoxon rank-
sum test).

In the microarray data used in our study, a miRNA or a tar-
get gene could be represented by more than one probe
thereby creating a problem of multiple probe-probe inter-
actions. We found 664 miRNA-target pairs carrying multi-
ple probe-probe correspondences that in turn lead to
multiple correlation coefficients when comparing their
expression profiles. For each of those 664 pairs, a standard
deviation can be computed to estimate the variation of
those correlation coefficients. Among the 664 pairs, 24
such standard deviations are found to be greater than 0.1,
and only four pairs produce correlation coefficients with
opposite signs. It suggests, in most cases, that probes rep-
resenting the same gene indeed have similar expression
profiles.
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Figure 2

The density plot of the positive and the negative cor-
relation coefficients computed using miRNA-mRNA
interactions predicted by TargetScan 4.1 and miR-
Base::Targets 5. Pearson correlation coefficients were
computed using both predicted miRNA-mRNA data. Signifi-
cantly correlated pairs were selected after adjusting the p-
values. The difference between the positive and the negative
is not evident for the interactions predicted by miRBase::Tar-
gets, whereas the negative set is more dominant for interac-
tions predicted by TargetScan.

Correlations of expression profiles between miRNAs and
miRBase predicted target

The predicted miRNA-target pairs provided by the miR-
Base::Targets database are presented as interactions
between individual miRNAs and target mRNA transcripts.
The miRBase::Targets 5 contains 676,265 paired predic-
tions for human, composed of 711 mature miRNAs and
34,525 Ensembl transcript IDs. As shown in Figure 1, 460
miRNA probes and 14,640 Affymetrix probe sets were
used to perform correlation analysis. We obtained 3,575
significant p-values for the 293,176 correlations by using
the Benjamini and Hochberg correction method. Those
significantly correlated probe-probe pairs consist of 3,210
miRNA-target interactions, among which 303 miRNAs
and 2,227 mRNA transcripts were found. As shown by the
density plot in Figure 2, the negative correlations cover
46.18% of the significant pairs, comparing with 60.72%
for the TargetScan predicted interactions. This observation
is consistent with the earlier claims [19] that the TargetS-
canS-predicted target genes are more likely to be down-
regulated owing to miRNA-mediated mRNA degradation.
For all the 6,734,400 correlations, we also tested whether
correlation coefficients from the predicted and randomly
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selected probe-probe pairs are different. The p-values from
the 100 random tests indicate significant difference (p <
10-¢, Wilcoxon rank-sum test).

As described earlier, certain miRNA-target pairs show
multiple probe-probe correspondences. Among the 715
such miRNA-target pairs, 39 of them produce standard
deviations greater than 0.1 for the multiple correlation
coefficients. In four cases, correlation coefficients with
opposite signs were found. The observation indicates that
in most cases the expression profiles produced by differ-
ent probes representing the same gene indeed resemble
each other.

Comparison between TargetScan and miRBase

The density plot shown in Figure 2 was prepared from the
miRNA-mRNA interactions predicted from TargetScan
and miRBase, respectively. Due to the different prediction
strategy adopted by the two methods, we found 284
miRNA and 8,813 mRNA probes in NCI-60 data for Tar-
getScan and 460 miRNA and 14,640 mRNA probes for
miRBase. The uneven data size raises a question that
whether the bias toward negatively correlated miRNA-
mRNA for TargetBase predictions can be attributed to the
algorithm design or simply to the differences in data sizes.

To address the concern, using the NCI-60 miRNA and
mRNA expression data, we identified 17,777 miRNA-
mRNA probe pairs that can be found in both the TargetS-
can and the miRBase predictions. We refer the 17,777
pairs as the common set. These pairs were then subject to
the computation of correlation coefficients. After correct-
ing the p-values of the correlation coefficients and keeping
the 392 significant correlations, the resulting density plot
is shown in Figure 3. Pairs predicted by TargetScan and by
miRBase cannot be distinguished in Figure 3 because in
the common set all data point come from the predictions
made by both methods. Nevertheless it is clear that nega-
tive correlations occur more often than positive ones indi-
cating that the expression levels of a miRNA and its target
mRNA are more likely to be negatively correlated across
the NCI-60 data than to be positively correlated, at least
for the common set described here.

To compare the two methods of TargetScan and miRBase,
one has to be able to distinguish the performance of both
methods using some measurements. The measurement
should produce different results for targets predicted by
different method. For example, Baek et al[25] evaluated
five target prediction methods by measuring the protein
level change for targets predicted by each method. They
also performed comparisons among the five methods
using the best-scoring targets predicted by the respective
approaches. Given that Figure 3 does not produce conclu-
sive comparison between TargetScan and miRBase using a
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Figure 3

The density plot of the correlation coefficients com-
puted using the 17,777 common miRNA-mRNA
pairs that were predicted by both TargetScan and
miRBase.

common probe set, in the following we will compare the
distributions of negative and positive miRNA-mRNA cor-
relations using three new experiments.

To compare TargetScan and miRBase predictions, here we
try to select equal number of statistically significant
miRNA-mRNA pairs from both datasets. Using NCI-60
expression data, only those miRNA-mRNA pairs that have
statistically significant Pearson correlation coefficients
were retained. The correlation coefficients were ranked
according to their absolute values. Only the top 1,000
pairs (from both datasets) with the most positive or nega-
tive correlation coefficients were used to draw the density
plot shown in Figure 4. The figure shows the distribution
of correlation coefficients of the 1,000 most correlated
pairs for each of the two datasets. The distributions indi-
cate that TargetScan-predicted miRNA targets tend to be
more down-regulated when the comparison was per-
formed using the same number, that is, 1,000, of the most
correlated miRNA-mRNA interactions.

Next we want to study the typical experimental scenario
where target mRNAs are to be predicted off a particular set
of candidate miNRAs that might have been selected using
microarray or qPCR experiments. That is, in this experi-
ment we had a common set of miRNAs and two sets of tar-
gets predicted by TargetScan and miRBase, respectively.
Corresponding probes were identified. The filtering crite-
ria were applied. The resulting pairs were subject to the
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The density plot of the 1,000 most positively or nega-
tively correlated miRNA-mRNA pairs drawn from
either TargetScan or miRBase datasets.

computation of Pearson correlation coefficients using
NCI-60 expression data. After p-value correction with the
Benjamini-Hochberg method, pairs with p < 0.05 were
considered as the statistically significant pairs. Their den-
sity plot is shown in Figure 5. For the 2,975 significantly
correlated TargetScan-predicted pairs, 60.63% of them
show negative correlations. For miRBase, 51.7% of the
3,027 significantly correlated pairs show negative correla-
tion. This result indicates that, starting from a common set
of miRNAs, expression profiles are more useful when
assessing targets predicted by TargetScan than by miR-
Base.

Sometimes we want to identify miRNAs that have poten-
tial interactions with a set of candidate mRNA transcripts.
Thus in this experiment we first selected common mRNAs
in TargetScan and miRBase databases. Then we retrieved
the predicted miRNA-mRNA interactions. The corre-
sponding probe sets in NCI-60 expression data were then
collected. The correlation coefficients were computed as
described. Figure 6 shows the distribution of the signifi-
cant correlation coefficients. The figure shows that 60.2%
of 2,450 significantly correlated TargetScan-predicted
pairs are negative, whereas 48.1% of 1,890 significantly
correlated pairs are negative for miRBase. This result sug-
gests that, given a common starting set of mRNAs, Target-
Scan predicted miRNA-mRNA interactions are more likely
to show negative correlations and hence are possibly
more suitable for the assessment using miRNA/mRNA
expression profiles.
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Figure 5

The density plot showing the distribution of the cor-
relation coefficients of 2,975 TargetScan-predicted
and 3,027 miRBase-predicted miRNA-mRNA pairs.
The predicted target mRNAs were obtained from a
common set of miRNAs.
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Figure 6

The density plot showing the distribution of the cor-
relation coefficients of 2,450 TargetScan-predicted
and 1,890 miRBase-predicted miRNA-mRNA pairs.
The predicted miRNA-mRNA interactions were
obtained from a common set of mMRNAs.
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Correlations of expression profiles for validated miRNA-
target pairs

To investigate whether experimentally validated miRNA-
target interactions show negative correlations of expres-
sion profiles, we computed the correlation coefficients for
the validated miRNA-target pairs collected by TarBase
[26]. The validated miRNA-mRNA pairs in Tarbase are
divided into two classes according to their corresponding
regulatory mechanisms: the translational repression and
the mRNA degradation. The former class contains 96 pairs
while the latter has 358 pairs. Among the 358 pairs listed
by TarBase under the mRNA down-regulation or cleavage
class, 274 of them have corresponding probes in the NCI-
60 expression arrays. Similarly, probes in NCI-60 data can
be found in 75 of the 96 translationally repressed miRNA-
mRNA pairs.

Using Wilcoxon rank-sum test, the pairs involved in
mRNA degradation show more negative correlations (p <
10-8) than those involved in translational repression.
However, due to the multiple probe-probe correspond-
ences, among the 349 (274+75) miRNA-target interac-
tions we computed, 327 pairs have more than one
correlation coefficient. Among the 327 pairs, the standard
deviations of the correlation coefficients for 106 pairs are
greater than 0.1, indicating that the profile correlation
method is not reliable when applied to the validated data.

Correlation of expression profiles for predictions made by
GenMiR++

GenMiR++ [19] was developed to identify functional
miRNA targets. GenMiR++ classifies putative human
miRNA targets that were originally predicted by TargetS-
canS into confident and unsupported ones using mRNA
expression profiles. The expression data were obtained
from 88 common normal and cancerous tissue samples
[27,28]. Here we are to compute Pearson correlation coef-
ficients for such miRNA-mRNA pairs to investigate
whether GenMiR++'s confident and unsupported pairs
show different correlations in terms of NCI-60 expression
profiles. For the 5,572 miRNA-target interactions pre-
dicted by GenMiR++, a total of 16,388 miRNA-mRNA
pairs at the probe-probe level were found in NCI-60 data.
Among them, 3,467 are classified into the high-confi-
dence class by GenMiR++, 4,421 the low-confidence and
8,500 the unsupported class. The computation of Pearson
correlation coefficients and the subsequent Benjamini/
Hochberg correction lead to 80, 41 and 291 significant
correlations for the high-confidence, low-confidence and
unsupported classes, respectively. Their density plot is
shown in Figure 7.

Looking at the GenMiR++ prediction set as a whole (see
the subfigure of Figure 7 that is labeled "All"), the density
plot is similar to the one produced from TargetScanS's
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Figure 7

The density plot of the correlation coefficients computed using miRNA-mRNA pairs predicted by TargetS-
canS and then filtered by GenMiR++. The algorithm GenMiR++ provides a scoring system that determines the confidence
level of the miRNA-mRNA interactions predicted by TargetScanS. There are three such levels: the high-confidence, the low-
confidence and the unsupported. Using NCI-60 data, the distributions of Pearson correlation coefficients for the four catego-
ries specified by GenMiR++ (all, high-confidence, low-confidence and unsupported) are shown here. Only those correlations
presenting Benjamini/Hochberg-corrected p-values < 0.05 are included. There are 412 such correlations in "All", 80 in "High-
confidence”, 41 in "Low-confidence" and 291 in "Unsupported".
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predictions, that is, negative correlations appear to be
more dominant than positive ones. This result is expected
because GenMiR++ takes TargetScanS's predictions as the
input in the first place. What is worth noting is that the
dominance of negative correlations seems to be more
obvious in the unsupported class than in the high or low-
confidence ones. While definite conclusion cannot be
drawn from such a limited number of significant correla-
tions (80 and 41 for the high and low-confidence classes,
respectively), the observation might be attributed to two
facts: (1) GenMiR++ and NCI-60 expression data come
from different tissue samples; (2) For a given miRNA-
mRNA interaction, GenMiR++ does not make its predic-
tion using only the simple correlations in expression pro-
files. Instead, GenMiR++ considers all other predicted
miRNA regulators of the mRNA using sophisticated infer-
ence algorithms [19].

Among the interactions that were validated by Huang et
al.[19], the NCI-60 data show that the expression profile
of let-7b is negatively correlated with the validated targets,
SMARCCI (r = -0.40, p = 0.06), CDC25A (r = -0.27, p =
0.29) and BCL7A (r = -0.37, p = 0.09). Furthermore,
because miRNAs having identical seed regions are classi-
fied into the same family in the current released version of
TargetScan 4.1, different putative targets of a miRNA fam-
ily may actually interact with different members in the
family. For this reason, we decided to see whether the
experimentally validated let-7b targets are correlated with
other members within the let-7 family. We found highly
correlated let-7 member-target pairs, including let-7f/
SMARCCI (r = -0.49, p = 9.41 x 10-3), let-7a/CDC25A (r
=-0.57,p = 9.54 x 104), and let-7c/BCL7A (r = -0.43, p =
3.84 x 102). Because a single miRNA recognition site
could be targeted by miRNAs sharing the same seed
sequence, we speculate that multiple miRNAs within the
same family might simultaneously regulate the expression
of the same target gene. As a result, the overexpression or
suppression of different miRNA members in a miRNA
family could lead to different changes in the expression
levels of the target genes.

Associations between intronic miRNAs and host genes

We now ask whether intronic miRNAs have consistent
expression profiles compared with their host genes. Here
139 probe-probe correlation coefficients representing 74
miRNA-host interactions were obtained. As shown in Fig-
ure 8, the distribution of those correlation coefficients is
biased toward the positive correlation. Moreover, 41 sig-
nificantly correlated pairs were found (Benjamini and
Hochberg-adjusted p < 0.05), representing 25 interactions
between 25 intronic miRNAs and 18 host genes. All of
them are positively correlated (Table 1). This result sug-
gests that the transcriptional regulation of intronic miR-
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Figure 8

The density plot of the correlation coefficients
between intronic miRNAs and transcripts from their
host genes. The distribution of Pearson correlations
between intronic miRNAs and their host genes is clearly
biased toward to positive side.

NAs is, at least in some cases, similar to that of the mRNAs
from the same host genes.

Discussion

In this study we investigated whether interactions
between miRNAs and mRNAs are discernible as expected
when computing correlations between miRNA and
mRNA expression profiles. We first examined the pairs of
miRNAs and predicted targets from TargetScan 4.1 and
miRBase::Targets 5, respectively (Additional files 1 and 2).
Pearson correlation coefficients were computed using
both data sets. It is not surprising that the majority of the
correlation coefficients are not statistically significant pos-
sibly due to that the true positive discovery rate of the two
prediction programs cannot be accurately estimated in
spite of the constant improvement of the algorithms.
Besides, miRNA-target interactions that are involved in
the repression of protein synthesis may not result in con-
siderable alterations in the transcript expression level,
hence leading to uncorrelated expression profiles. The
results produced by different target prediction algorithms
often diverge greatly by producing different sets of targets
[29].
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Table I: Intronic miRNAs and their corresponding host genes
show significantly correlated expression profiles.

Intronic miRNA Host gene Correlation coefficient
hsa-mir-335 MEST 0.851
hsa-mir-342 EVL 0.8I1
hsa-mir-126 EGFL7 0.742
hsa-mir-452 GABRE 0.639
hsa-mir-26a-2 CTDSP2 0616
hsa-mir-93 MCM7 0.584
hsa-mir-128a R3HDMI 0.548
hsa-mir-27b C9orf3 0.536
hsa-mir-152 COPZ2 0.526
hsa-mir-224 GABRE 0.529
hsa-mir-21 | TRPMI 0.522
hsa-mir-26b CTDSPI 0.520
hsa-mir-25 MCM7 0.481
hsa-mir-15b SMC4 0.479
hsa-mir-106b MCM7 0.475
hsa-mir-23b C9orf3 0.469
hsa-mir-24-1 C9orf3 0.461
hsa-mir-218-2 SLIT3 0.461
hsa-mir-489 CALCR 0.425
hsa-mir-218-1 SLIT2 0.406
hsa-mir-425 DALRD3 0.406
hsa-mir-7-1 HNRPK 0.383
hsa-mir-191 DALRD3 0.381
hsa-mir-26a-1 CTDSPL 0.360
hsa-mir-16-2 SMC4 0.354

Among the correlations between intronic miRNAs and the host
genes, the significant correlations are all positive.

Figure 4 shows an experiment where equal number of sta-
tistically significant miRNA-mRNA pairs was selected
from both TargetScan and miRBase. Here the statistical
significance means that the adjusted p-value of the corre-
lation coefficients in terms of the expression profiles
between a miRNA and an mRNA is smaller than 0.05. In
other words, a statistically significant miRNA-mRNA pair
is the one who has a fairly negative or positive correlation.
Given the condition, the figure shows that TargetScan pre-
dicted miRNA-mRNA pairs are more likely to present neg-
ative correlations. In Figures 5 and 6, we demonstrate that
using a common set of miRNAs or mRNAs to start off the
prediction, the percentage of TargetScan predicted
miRNA-mRNA pairs having negative correlation is higher
than that of miRBase predicted pairs.

For experimental biologists, the implication is as follows.
If you were to assess whether a predicted miRNA-mRNA
relationship is functional or not using negative correla-
tion in expression profiles, for TargetScan predicted pairs,
you are more likely to find supporting experimental evi-
dence that their expression profiles are indeed negatively
correlated. For miRBase predicted pairs, it is slightly less
likely that your miRNA-mRNA pairs will show negative

http://www.biomedcentral.com/1471-2164/10/218

correlation thereby giving you a hint that the pairs are not
functional. Our conclusion is consistent with a previous
statement made by Huang et al[19] that "interactions pre-
dicted by TargetScan are more likely to lead to mRNA degrada-
tion rather than translational repression". A possible
explanation for this observation is, compared with the
miRanda algorithm used in the miRBase, that the latest
TargetScan has incorporated more structural features to
achieve higher predicting accuracy [30,31].

A Bayesian algorithm GenMiR++[19] claims that paired
expression profiles of miRNAs and mRNAs can be used to
differentiate functional and non-functional miRNA-target
interactions. The algorithm produces a score for each Tar-
getScanS-predicted miRNA-target pair. This score is then
used to classify the interactions into three categories, the
high-confidence, low-confidence and unsupported pairs.
Using NCI-60 data and the interactions classified by Gen-
MiR++, we ask the question whether high-confidence
miRNA:target interactions indeed show more negative
correlation in their expression profiles. Our result shows
that, considering the high-confidence, low-confidence
and the unsupported GenMiR++'s predictions as a whole,
no considerable difference can be seen between the pre-
dictions made by GenMiR++ and by TargetScanS (see Fig-
ure 2 and 7). This is expected because GenMiR++ takes
TargetScanS's results as the input data source (Additional
file 3).

Because the tissue samples used to generate the microar-
ray expression data adopted by GenMiR++ [27,28] are dif-
ferent from those used in NCI-60 experiments,
experimental biases could arise due to such differences in
data source. For example, the interactions between let-7b
and its targets with high GenMiR++ scores have been
experimentally validated by GenMiR++ authors [19]. Nev-
ertheless in NCI-60 expression data, these experimentally
validated pairs do not show significant negative correla-
tions. On the other hand, the target genes of let-7b are
found to be negatively correlated with other members of
the let-7 family instead. Because all let-7 miRNA members
share the same seed region, we speculate that more than
one member in let-7 miRNA family may simultaneously
regulate the expression of the same target gene. The over-
expression or suppression of a family member could thus
alter the expression level of the target gene. Furthermore,
the seed regions of miRNAs are believed to be more
important than the minor differences of nucleotides
within the non-seed regions when targeting the 3' UTRs of
mRNAs [8]. Many studies have also demonstrated the
impact of structural factors other than sequence pairing
when miRNAs recognize their targets [30,32,33]. Hence,
we anticipate that a gene targeted by a miRNA could be
regulated by more than one miRNA in the same family
under different biological environments or conditions.
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In addition to the putative miRNA-target interactions, we
also tested whether Pearson correlation coefficients can be
used to characterize miRNA-mRNA relationships, includ-
ing the one between miRNA and validated targets and that
between intronic miRNAs and their host genes. For the
experimentally validated data, we tested the correlations
of the paired expression profiles using miRNA-target pairs
listed in TarBase (Additional file 4). Between the transla-
tionally repressed and post-transcriptionally downregu-
lated target genes, the difference of the Pearson
correlation coefficients in expression profile is significant.
However we did not find significant negative correlations
between miRNAs and their degraded targets. We propose
the following explanations. (1) For a validated miRNA-
target pair, there exist multiple correspondences between
the miRNA and mRNA microarray probes. Not all mRNA
array probes represent the transcripts having the miRNA
recognition sites. (2) The miRNAs and target genes listed
in TarBase are not updated according to the latest annota-
tion, causing uncertainty when looking for corresponding
probes on respective microarray platforms. (3) Most of
the experimentally supported miRNA-target interactions
leading to mRNA degradation were validated by a small
number of research articles [12,34,35]. Those studies
relied on mostly indirect evidences using microarray or
real-time RT-PCR. (4) It has been suggested that expres-
sion or inhibition of miRNA targets could be tissue-spe-
cific [2,4]. Because our data are limited to the NCI-60
panel that are derived from specific cancer cells, associa-
tions between miRNAs and mRNAs might be overlooked
if their relation can only be detected in a single tissue that
is not included in NCI-60.

The positive correlations in our data reveal different rela-
tionships between miRNAs and genes, for example, the
co-expression of intronic miRNAs and their host genes. As
expected, we did not find any significant negative correla-
tions between an intronic miRNA and transcripts from it
host gene (Figure 8). Furthermore, 25 pairs of miRNAs
and their host genes are found to be positively correlated.
(Table 1, Additional file 5), among them the correlated
expression of mir-126/EGFL7 and that of mir-342/EVL
have been shown to play important roles in gene regula-
tion of cancers [36,37]. At present, it is still unclear that
whether a miRNA originating from non-coding regions
could regulate its own host gene. Some hypothetical mod-
els have been proposed to infer the regulatory control of
intronic miRNAs and their protein-coding host genes
[38]. Those hypotheses would become another research
subject in addition to investigating the connections
between miRNAs and their target genes.

Conclusion
Computing correlations between miRNA and mRNA
expression profiles gives us an opportunity to study the

http://www.biomedcentral.com/1471-2164/10/218

effects of gene expression between miRNAs and their tar-
get genes. Our results suggest that microarray expression
profiles could be used to assist the computational identi-
fication of functional miRNA-target associations. Expres-
sion profiles are more useful when assessing miRNA
targets predicted by TargetScan than by other prediction
methods. Using TarBase, we did not find significant nega-
tive correlations for the experimentally validated miRNA-
target interactions. Because our analysis was only per-
formed on the known and predicted miRNA-mRNA inter-
actions, some significantly correlated probe-probe pairs
might be ignored in our work due to the lack of informa-
tion for their miRNA-target relationships. Those pairs
might represent true miRNA-target interactions, the indi-
rect miRNA-involved regulation, or just the coincident
similarity in expression profiles. With the limited knowl-
edge of miRNA-mediated gene regulations, systematic
strategies to uncover true miRNA-target interactions by
using expression profiles remain a challenge.

Methods

miRNA and mRNA microarray data

The NCI-60 mRNA microarray data were downloaded
from ArrayExpress database http://www.ebi.ac.uk/
arrayexpress, accession number E-GEOD-5720. The data
were collected using the Affymetrix GeneChip® HG-
U133A platform [22]. The miRNA microarray data and
the array design (Ohio State University Comprehensive
Cancer Center, OSUCCC, version 3.0) can also be down-
loaded from ArrayExpress, accession number E-MEXP-
1029. The miRNA array contains 627 probes from the two
arms of selected human miRNA precursors. The mRNA
data were normalized using the GCRMA algorithm [39],
whereas the miRNA data were normalized according to
the method described previously [21]. Both the miRNA
and mRNA expression intensities were then transformed
in logarithms of base 2. To investigate if spatial biases
caused by autocorrelation exist in the miRNA microarray
experiments, we applied an autocorrelation analysis using
methods described in a previous report [40]. The next step
is to determine the number of probes that are to be used
for computing correlations. To ensure the quality of corre-
lation tests, probes were selected using the following crite-
ria. First, for mRNA, a probe set must have at least one
corresponding target gene. Similarly, a miRNA probe
should match one mature miRNA sequence stored in the
prediction databases. Second, the difference between the
highest and the lowest intensity values must be at least
1.0, meaning the range of variability among NCI-60 sam-
ples is at least two fold. Filtering out probes with low var-
iability can reduce the chance of correlations from noisy
values.
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miRNA and their targets

Two web databases of miRNA target prediction were used
in this research. One is the miRBase::Targets (release 5)
database http://microrna.sanger.ac.uk/targets, which uses
the miRanda algorithm to predict miRNA targets [6,31].
Because the predicted targets are showed in the form of
Ensembl Transcript IDs, we retrieved the corresponding
Affymetrix probe set IDs via the BioMart website http://
www.biomart.org. The other database is the TargetScan
(release 4.1) http://www.targetscan.org, which provides
the prediction results computed by the TargetScanS algo-
rithm [8,30,41]. In TargetScan, the predicted targets are
presented as gene symbols, some of which are not HGNC-
approved. The RefSeq IDs of predicted target genes are
also retrieved. To correctly map target genes to microarray
probe set IDs, we then accessed the Affymetrix website
http://www.affymetrix.com to obtain the detailed HG-
U133A annotation [42]. Because the miRNA annotation
is continuously updated, to unambiguously mapping
miRNA probes to mature miRNAs, we kept the sequence
information of miRNAs provided by the target prediction
web sites. Combining the oligo probe sequences of the
OSUCCC miRNA microarray retrieved from the ArrayEx-
press, the annotation of the oligo probes were obtained by
running BLAST against mature miRNAs (Additional file
6).

Unlike databases offering putative targets of miRNAs, the
TarBase http://diana.cslab.ece.ntua.gr/tarbase/ collects
the experimentally validated miRNA-target pairs [26]. We
use TarBase to test whether the expression levels of the
true miRNA-target pairs show correlations. The current
version of TarBase is version 4. Because certain names of
miRNAs and target genes provided by TarBase are not
updated, we needed to update them using the latest
microarray annotations.

To test whether using the correlation information of
miRNA and mRNA expression profiles helps in the predic-
tion of miRNA targets, we also downloaded the TargetS-
canS result that has been further processed by GenMiR++
[19]. In their result, 6,387 TargetScanS-predicted miRNA-
target pairs are classified into confident and unsupported
ones according to the GenMiR++ scores. We applied the
profile correlation computation to each pair.

Intronic miRNAs and their host genes

For miRNA genes located within non-coding regions, the
expression patterns might be found similar to those
mRNAs transcribed from the same protein-coding genes.
We therefore collected published information about
intronic miRNAs and their host genes [38]. The Pearson
correlation coefficients for corresponding probe-probe
pairs were then computed as the estimation of correla-
tions.

http://www.biomedcentral.com/1471-2164/10/218

Statistical analysis

All data were analyzed with the R software [43]. To test the
association between paired miRNA-mRNA profiles, the
Pearson correlation coefficients and p-values were com-
puted. Because significant results might occur by chance
during multiple tests, we adjusted the p-values with the
Benjamini and Hochberg method to control the false dis-
covery rate [44].
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Additional material

Additional file 1

Significantly correlated microarray probe pairs. Significantly correlated
microarray probe pairs, predicted by TargetScan 4.1. Pearson correlation
coefficients, p-values and Benjamini and Hochberg adjusted p-values are
listed.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-218-S1.xls]

Additional file 2

Significantly correlated microarray probe pairs. Significantly correlated
microarray probe pairs, predicted by miRBase. Pearson correlation coeffi-
cients, p-values and Benjamini and Hochberg adjusted p-values are
listed.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-218-S2.xls]

Additional file 3

Probe-probe correlations for GenMiR++ predicted miRNA-target
pairs. Significantly correlated microarray probe pairs, data taken from
GenMiR++. Pearson correlation coefficients, p-values and Benjamini and
Hochberg adjusted p-values are listed.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-218-S3.xls]

Additional file 4

Probe-probe correlations for experimentally supported miRNA-target
pairs in TarBase. Significantly correlated microarray probe pairs, data
taken from Tarbase version 4. Pearson correlation coefficients, p-values
and Benjamini and Hochberg adjusted p-values are listed.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-

2164-10-218-S4 xls]
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Additional file 5

Significant correlations between known intronic miRNAs and host
genes. Significantly correlated microarray probe pairs for intronic miR-
NAs and their host genes. Pearson correlation coefficients, p-values and
Benjamini and Hochberg adjusted p-values are listed.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-218-S5.xls]

Additional file 6

Study on spatial biases of the miRNA array design. To study the spatial
biases problem found on microarray design, we performed the autocorre-
lation analysis on the OSUCCC miRNA microarray. The procedure has
been described in [40]. The analysis was applied to the 60 cancer cell lines
in MCI-60 miRNA expression profiles. Among which we show four results

to illustrate that periodic autocorrelations were not obvious.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-218-S6.doc]
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