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Abstract

Background: Aberrant activation or expression of transcription factors has been implicated in the
tumorigenesis of various types of cancer. In spite of the prevalent application of microarray
experiments for profiling gene expression in cancer samples, they provide limited information
regarding the activities of transcription factors. However, the association between transcription
factors and cancers is largely dependent on the transcription regulatory activities rather than
mRNA expression levels.

Results: In this paper, we propose a computational approach that integrates microarray
expression data with the transcription factor binding site information to systematically identify
transcription factors associated with patient survival given a specific cancer type. This approach was
applied to two gene expression data sets for breast cancer and acute myeloid leukemia. We found
that two transcription factor families, the steroid nuclear receptor family and the ATF/CREB family,
are significantly correlated with the survival of patients with breast cancer; and that a transcription
factor named T-cell acute lymphocytic leukemia | is significantly correlated with acute myeloid
leukemia patient survival.

Conclusion: Our analysis identifies transcription factors associating with patient survival and
provides insight into the regulatory mechanism underlying the breast cancer and leukemia. The
transcription factors identified by our method are biologically meaningful and consistent with prior
knowledge. As an insightful tool, this approach can also be applied to other microarray cancer data
sets to help researchers better understand the intricate relationship between transcription factors
and diseases.

Background expression or activation/inactivation of TFs has been
Transcription factors (TFs) play important roles in thereg-  implicated in a variety of human cancer types [3-6]. As a
ulation of many biological processes, such as cell prolifer- ~ matter of fact, a large number of oncogenes and tumor

ation, cell cycle progression, and apoptosis [1,2]. Aberrant ~ suppressor genes are actually TFs in nature [7]. P53, the
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most well studied tumor suppressor gene, has been found
to mutate in over 50% of human cancers, mostly impair-
ing its capability of transcriptional activation [8].

Association between TF expression and patient survival
has been demonstrated in various cancer types [9-15].
Bamham et al. showed that in patients with diffuse large
B-cell lymphoma (DLBCL) the transcription factor
FOXP1-positive group had a significant decreased overall
survival in comparison with the FOXP1-negative group (P
= 0.0001) [12]. Anttilla et al. found that the expression
level of cytoplasmic AP-2alpha, a transcription factor, is
positively correlated with patient survival in epithelial
ovarian cancer [15]. In lung adenocarcinoma, positive
thyroid transcription factor 1 (TTF1) staining is strongly
correlated with the survival of patients [11]. In gastric can-
cer, expression of the transcription factor Sp1 is negatively
correlated with patient survival [13]. These studies indi-
cate the importance of TFs in cancers as well as their prog-
nostic value in clinical outcome predictions. Nevertheless,
systematic association between TF activities (the capabil-
ity for a TF to regulate gene expression) and patient sur-
vival has not previously been investigated due to the lack
of high-throughput techniques to measure TF activities.

In cancer research, microarray technologies have been
widely used to identify differentially expressed genes [16],
to classify tumor samples into different sub-types [17], to
predict clinical outcome based on gene expression profiles
and so on [18]. However, in general, gene expression pro-
files in microarray data represent the down-stream read-
out of a few genetic alterations such as mutations,
amplifications and deletions [19]. The regulatory mecha-
nisms underlying the observed expression changes (e.g.
the alterations in TF activities) are often not directly
observable from the microarray data due to relatively low
abundance of TF mRNAs and post-transcriptional modifi-
cations to TFs. Namely, the mRNA expression levels for
TFs may not reflect their protein abundance or transcrip-
tion regulatory activities. As a consequence, a mutation in
the P53 gene, for instance, may not be reflected by its own
expression change, but we would more likely observe the
differential expression of its target genes. Thus, it is useful
to infer the activity alterations of TFs in cancers from the
expression changes of their target genes.

For many microarray cancer data sets, the survival infor-
mation of patients after diagnosis is also provided. With
this kind of data at hand, we propose a method to infer TF
activities and identify TFs that are associated with patient
survival in a systematic manner. Given gene expression
profiles for tumor samples, we use the BASE method
[20,21] to infer TF activities based on expression changes
of their target genes. The complete list of target genes for
human TFs is generally not available, so we used compu-
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tational methods to predict the TF-gene regulatory rela-
tionships by examining the occurrence of TF binding sites
(represented as positional weighted matrices, PWMs)
within the promoter-proximal regions of genes. The
resulting TF-gene binding affinity profiles were taken
together with gene expression profiles as inputs to the
BASE algorithm to infer the activities of TFs (PWMs) in
each patient sample. We obtained 565 PWMs from the
TRANSFAC database [22] and inferred their activities
(reflect the activities of TFs binding with them) in each
sample of the given microarray cancer data. We then iden-
tified all the PWMs whose activities were significantly cor-
related with patient survival.

We applied our method to two microarray data sets, a
breast cancer data set with ER-positive and ER-negative
subtypes [18] and a leukemia data set [23]. In breast can-
cer, the activities of steroid nuclear receptors and the ATF/
CREB family are significantly correlated with the disease-
free survival time of patients. In leukemia, TAL1 (T-cell
acute lymphocytic leukemia 1) activity is significantly cor-
related with patient survival. Further investigation of these
TFs may provide new insight into the mechanisms of tum-
origenesis in breast cancer and leukemia. Moreover, our
method can be readily applied to other microarray cancer
data sets.

Results and discussion

Overview of breast cancer analysis

565 PWMs were obtained from the TRANSFAC database
[22], and for each of them a binding potential profile was
created by investigating its presence in the upstream pro-
moter region of all human genes. These binding profiles
were integrated with gene expression profiles for 98 breast
cancer samples [18] to infer TF activities. For each of these
565 PWMs, our calculations yielded an activity profile,
which represents the relative activities of the TF associated
with the PWM in these samples. The correlations between
these PWM activity profiles and the patient survival times
were calculated to identify the PWMs (TFs) that are asso-
ciated with patient survival. In total, we identified 26
PWMs at the 0.01 significance level (Q < 0.01); 6 of these
are positively associated with patient survival while 20 are
negatively associated, as shown in Table 1. We define a
PWM as a positive predictor when its inferred activity is
positively correlated with patient survival. Conversely, a
PWM is called a negative predictor when its inferred activ-
ity is negatively correlated with patient survival. We note
that the survival times for breast cancer patients in this
dataset are actually represented as disease-free survival
time (referred as "survival time" in this paper for simplifi-
cation), denoted as the time from first diagnosis of breast
cancer to development of distant metastases.
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Table I: PWMs associated with patient survival in breast cancer.

PWM TF Correlation q-value PWM TF Correlation q-value
V$PR_02 PR -0.46 0.00096 V$GRE_C GR -0.37 0.0051
V$E2F 03 E2F -0.43 0.0012 V$SRF_Q5_01 SRF -0.36 0.0060
V$CREBPI_Q2 CRE-BPI -0.44 0.0013 V$HELIOSA_02 Helios -0.35 0.0077
V$AR_02 AR -0.41 0.0017 V$CREBATF_Qé6 CREBATF -0.35 0.0078
V$GR_OI GR -0.40 0.0017 V$AR 0l AR -0.35 0.0079
V$PAX3_B PAX3 -0.41 0.0019 V$TAACC_B Lentiviral -0.35 0.0080
V$PR_OI PR -0.41 0.0019 V$NFY_OlI NF-Y -0.34 0.0095
V$CREB_Q4 CREB -0.40 0.0022 V$LXR_DR4_Q3 LXR 0.37 0.0090
V$AR_03 AR -0.38 0.0033 V$s8_ 0l S8 0.39 0.0049
V$ATF4_Q2 ATF4 -0.39 0.0033 V$PAX9_B PAX9 0.44 0.0015
V$OCTI_B OCTI -0.38 0.0037 V$MAF_Qé6 MAF 0.40 0.0038
V$CHX10_0l CHXI10 -0.37 0.0046 V$CEBPDELTA_Q6 C/EBPdelta 0.39 0.0055
V$CEBP_C C/EBP -0.37 0.0047 V$HNF3_Q6 HNEF-3 0.40 0.0056

The table includes 20 negative and 6 positive PWM predictors that are significantly associated with patient survival at the 1% FDR. Correlation is
based on the Spearman correlation coefficient between PWM activity and patient survival.
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Survival analysis of breast cancer subgroups defined based on activities of negative PWM predictors. The
"AC>2" and "AC<-2" subgroups are defined based on the AC scores of V$PR_02 in (A), V$E2F_03 in (B), VSCREBPI_Q?2 in
(C), or V$AR_02 in (D). The survival curves are estimated using the Kaplan-Meier method and the difference between sub-
groups is examined by the log-rank test.
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Negative PWM predictors for patient survival

From the 20 negative PWM predictors, 7 are binding
motifs for the steroid nuclear receptor TF family: 2 for pro-
gesterone receptor (PR), 3 for androgen receptor (AR),
and 2 for glucocorticoid receptor (GR). For example, the
activities of V$PR_02 (PR binding motif) are negatively
associated with patient survival (r = -0.46, Q = 0.00096).
Based on the inferred activities of V$PR_02, we define two
groups of cancer samples: group I (AC scores < -2) and
group II (AC scores > 2). Figure 1A shows their survival
curves obtained by the Kaplan-Meier method. The log-
rank test indicates that patients in group I have signifi-
cantly longer survival times than those in group II (P =
8.2E-7). Similarly, the negative association of V$AR_02
with patient survival (AR binding motif) is suggested by
their correlation, -0.41 (Q = 0.0017), as well as the sur-
vival curves shown in Figure 1D. We use + 2 as the cut-off
values because an AC score within [-2,2] suggests no sig-
nificant activity change of the corresponding PWM (TF) in
the sample relative to the common reference. We have
repeated the analysis using other cut-off values ranging
from + 3 to + 6 and similar results were obtained.

These results are strongly supported by previous studies of
association between steroid nuclear receptors and breast
cancer. As a subfamily of the nuclear receptor TF super-
family, steroid nuclear receptors bind specifically to ster-
oid hormones (e.g. androgen and estrogen) and mediate
transcriptional regulation. Their involvement in growth,
development and progression of breast cancer has been
well established. First, ER, PR, AR and GR have been
found to be frequently co-expressed in breast tumors; spe-
cifically, ER and PR are expressed in 70-80% and 70-90%
of primary breast tumors, respectively [24], AR is
expressed in 70-90% of primary breast tumors and 75%
of breast cancer metastases [24], and GR is expressed in
over 50% of human breast specimen [25]. Second, muta-
tions or functional polymorphisms in steroid nuclear
receptors cause or are associated with breast cancer [26-
30]; for example, a germline mutation in the AR gene was
reported as the causation of breast cancer in two brothers
[31]. Third, therapeutic strategies directed at inhibiting
activities of steroid nuclear hormones have been widely
used for the treatment of breast cancer, e.g. the tamoxifen
therapy for ER-positive breast cancer [32]. Fourth, ER, PR,
AR and GR have been used as standard biomarkers of
breast cancer. According to the status of these receptors,
breast cancer has been categorized into different sub-
types, e.g. ER-positive/PR-negative breast cancer. For dif-
ferent subtypes, different therapeutic treatments should
be applied. The clinical outcome (the response to a certain
therapeutic treatment) can be predicted based on the
activities of these receptors [33,34]. Our results indicate
that the activities of PWMs for PR, AR and GR are signifi-
cantly correlated with survival times of breast cancer
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patients. As known, certain therapeutic treatments such as
hormone therapy may lead to expression or activity
change of steroid nuclear receptors. In our case, however,
this possibility can be ruled out, since all patients in our
analysis were treated by modified radical mastectomy or
breast conserving treatment and no hormone therapy was
applied [18]. Therefore, the association between these TFs
with patient survival is not caused by the treatment effect.

Another TF family related to the negative PWM predictors
is the ATF/CREB family. Among the 20 negative PWM pre-
dictors, 4 are binding motifs of the TFs in this family:
V$CREBP1_Q2, V$CREB_Q4, V$ATF4_Q2  and
V$CREBATF_QG6, which correspond to CRE-BP1 (ATF2),
CREB (cAMP response-element binding protein), ATF4,
and CREBATF, respectively. For instance, the correlation
between the activity profile of VSCREBP1_Q2 and the
patient survival is -0.44 (Q = 0.0013). When we define
two patient groups based on the inferred AC scores of
V$CREBP1_Q2, the low AC score group has significantly
longer survival times than the high AC score group, as
shown in Figure 1C.

The ATF/CREB family represents a large group of basic-
region leucine zipper (bZIP) TFs, which have diverse func-
tions in controlling cell proliferation and apoptosis [35].
In those ATF/CREB family members identified by our
analysis, CRE-BP1/ATF2 has been implicated in transcrip-
tional control of stress response genes [36]; CREB is
involved in modulating transcription in response to intra-
cellular cAMP concentrations [37] and ATF4 acts as nega-
tive regulator of cAMP responsive element (CRE)-
dependent transcription [38]. Direct correlation between
ATF/CREB family and breast cancer has never been
reported, but several recent studies raise the possibility of
its regulatory roles in human breast cancer. (1) They may
act as co-activators for nuclear receptors, which are well-
established risk factors of breast cancer, as mentioned
above. For instance, CREB has been shown to be a co-acti-
vator of AR and mediates cross-talk with AP-1 [39]. (2)
The ATF-2 mRNA levels in human breast cancers were
lower than those in normal breast tissues [40]. (3) Studies
in mouse models have shown that Atf2+/- mice were
highly prone to mammary tumors and that ATF2 may act
as a tumor susceptibility gene of mammary tumors
[40,41]. (4) Transcriptional regulation of mouse brac2
gene, which together with bracl is responsible for most
hereditary breast cancers, has been shown to be driven by
this TF family [42]. Consistently, our results indicate that
the activities of TFs in the ATF/CREB family are negatively
correlated with survival times of breast cancer patients.

In addition to the PWMs for TFs in the steroid nuclear
receptor and the ATF/CREB families, there are several
other negative PWM predictors for patient survival in
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breast cancer. For example, the AC scores of the E2F bind-
ing motif V$E2F_03 are associated with patient survival as
revealed by their negative correlation -0.43 (Q = 0.0012).
The predictability of VEE2F_03 to patient survival is also
revealed by the survival curves of the two patient groups
based on its activities as shown in Figure 1B. E2F plays a
key role in the mammalian cell cycle regulation and many
of its target genes have a function in cellular proliferation
[2]. High activity of PWM for E2F may be indicative of
high proliferation rate of cells. Furthermore, the involve-
ment of E2F in breast cancer has been demonstrated in
several studies [43]. Taking these together, it is not surpris-
ing to observe the negative correlation between the activ-
ity of PWM for E2F and the survival times of breast cancer
patients.

Positive PWM predictors for patient survival

As shown in Table 1, there are 6 positive PWM predictors
for patient survival in breast cancer. Figure 2 shows the
ability of V$PAX9_B and V$LXR_DR4_Q3 to predict
patient survival times. As shown, patients in the group
with higher AC scores of V$PAX9_B (Figure 2A) or
VS$LXR_DR4_Q3 (Figure 2B) have significantly longer sur-
vival times than those in the group with lower AC scores.
The p-values are 4.5E-4 and 3.4E-4 for V$PAX9_B and
V$LXR_DR4_Q3, respectively. LXR, the so-called liver X
receptor, also belongs to the superfamily of nuclear recep-
tors but is not a member of the steroid nuclear receptor
sub-family. LXR controls estrogen homeostasis by regulat-
ing the hepatic expression of estrogen sulfotransferase
(Est), an enzyme critical for metabolic estrogen deactiva-
tion [44]. Moreover, genetic or pharmacological activa-
tion of LXR results in Est induction, which in turn inhibits
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breast cancer growth in a nude mouse model of tumori-
genicity [44]. The complete results for positive and nega-
tive PWM predictors for patient survival can be found in
the Additional file 1.

We identified the PWM activity profiles that can best pre-
dict patient survival based on the Cox proportional-haz-
ards model [45,46]. The model results in 20 significant
PWMs, among which 9 have a positive effect (V$PAX9_B,
V$ISRE_01, V$LXR_DR4_Q3, V$AHR_Q5, V$USF_01,
V$S8_01, VSLEF1_Q2_01, V$NRSF_01, VSMEF2_01) and
11 have a negative effect (VSAR_02, V$SRF_Q5_01,
V$E2F1_Q3, V$CREBP1_Q2, V$EVI1_06, VS$E2F 03,
V$PAX3_B, VIMYCMAX_B, V$CHX10_01, V$E2F_Q2,
V$CREBATF_QG6) on patient survival. To investigate the
effect of sample size, we randomly selected a fraction of
the 98 samples (70-95%) and applied our analysis to
these subsets. As expected, more significant PWMs were
identified when more samples were used owning to the
increase of statistical power. Meanwhile, similar results
have been obtained for different randomly selected sub-
sets. Moreover, we have applied our analysis to another
breast cancer data set performed by van de Vijver et al [47]
(some samples in this data have also been used in van't
Veer's study [18]; these samples were excluded from our
analysis) and the results again highlighted the critical
roles of the nuclear receptor and ATF/CREB TF families in
breast cancer. Among the 39 PWMs that are significantly
correlated with patient survival (Q < 10%), 5 are binding
motifs for nuclear receptors (3 for AR, 1 for PR and 1 for
GR) and 7 others for ATF/CRBP TF family. However, there
are only 15 PWMs in common between the two datasets
when using a FDR of 10% (39 PWMs for van de Vijder's
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Survival analysis of breast cancer subgroups defined based on activities of positive PWM predictors. The "AC>2"
and "AC<-2" subgroups are defined based on the AC scores of V$PAX9_B in (A) or V$LXR_DR4_Q3 in (B).
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data and 77 for van't Veer's data). Though significant (P =
1E-4), the overlap is not large, which may reflect the sam-
ple difference between the two data sets. While all patients
in van't Veer data had lymph node-negative breast cancer,
approximately half of the patients in van de Vijver data
were lymph node-positive.

The method we suggest is intrinsically less sensitive to the
platform effect, since it measures an average involvement
of TFs. To investigate the platform effect, we applied our
method to the breast cancer data set by Wang et al. [48],
which contained the expression profiles for 286 samples
measured by the Affymetrix one-channel arrays (in our
analysis we only used the expression profiles for non-cen-
sored samples). The results were consistent with those
from the cDNA array platforms (the van't Veer's and the
van de Vijder's data). At the 0.01 false discovery rate, we
identified a total of 9 significant PWMs including
V$AR_03 (p = -0.36, Q = 0.008) and V$CREB_02 (p = -
0.35, Q = 0.01). If we relax the false discovery rate to 0.1,
2 PWMs for AR and 11 PWMs for the ATF/CREB family are
detected to be negative predictors for patient survival.

Logistic regression model for patient survival prediction

A logistic regression model was created to predict the
prognostic outcome of breast cancer patient survival
based on the activity inferences of only 4 PWMs:
V$PR_02, V$E2F_03, V$CREBP1_Q2, and V$PAX9_B. In
the model, the inferred AC scores of these PWMs are used
as predictors. The 98 patients are divided into two catego-
ries according to their survival times. Patients that did not
relapse for at least 60 months are included in the good
prognosis category; the remaining patients are included in
the poor prognosis category. The predictive power of this
model was assessed using the leave-one-out cross-valida-
tion method. Our results indicate that this model correctly
predicted the actual outcome for 75 out of 98 patients
(76%), with 11 poor prognosis and 12 good prognosis
patients assigned to the opposite category. The logistic
regression model based on gene expression levels instead
achieves a prediction accuracy rate of 83% [18], however,
as many as 70 well established marker genes are included
in this model. Despite the small decrease in prediction
accuracy, our results indicate that it might be useful in
practice to include TF activity information for breast can-
cer prognosis. We would like to highlight our belief that
the small loss of accuracy is overshadowed by the biolog-
ical gain in the understanding of this cancer, since, in
addition to the predictions, our analysis provides a list of
candidate transcription factors that may be involved in
the cancer mechanism.

Activity versus expression level of TFs
As demonstrated above the activity score of TFs has a
strong correlation and predictive power towards patient
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survival, however, a TF's expression level from the micro-
array experiments, is generally either less correlated or not
at all correlated to patient survival. For instance, the corre-
lation of patient survival with ATF4 mRNA expression (p
=-0.24, Q = 0.052) is much less than its correlation with
the inferred activity for V$ATF4_Q2 (p = -0.39, Q =
0.0033). Biological functions mediated by TFs are largely
determined by their activities rather than expression lev-
els, hence it is more reasonable and sensitive to examine
the correlation between TF activity and patient survival.

We also calculated the correlations between the expres-
sion levels of steroid nuclear receptors and patient sur-
vival. Interestingly, we find that ER, PR, AR and GR are
positively correlated with patient survival at the expres-
sion level, with the Spearman correlation coefficients 0.45
(Q = 0.0035), 0.34 (Q = 0.053), 0.33 (Q = 0.059) and
0.04 (Q = 0.98), respectively. In contrast, as described
above, the inferred AC scores of the PWMs for PR, AR, and
GR are negatively correlated with patient survival. We
compared the expression levels as well as AC scores of AR
in ER-positive (n = 53) and ER-negative (n = 44) breast
tumors using the Wilcoxon rank sum test. We find that the
expression levels of AR in the ER-positive group are signif-
icantly higher than those in the ER-negative group (p-
value = 8.8E-6), whereas the AC scores of AR binding
motif (V$AR_02) in the ER-positive group are signifi-
cantly lower than those in the ER-negative group (P =
1.1E-6). This indicates that PWMs for PR, AR and GR may
predominantly mediate transcriptional repression of
these TFs, because a higher AC score indicates higher activ-
ity of transcriptional activators but a lower activity of tran-
scriptional repressors. Alternatively, it may also result
from the difference between expression level and activity/
protein level of these receptors, which are caused by post-
transcriptional modifications, interactions with other co-
activators/co-repressors, or other complications. The dif-
ference between expression level and protein/activity level
has been frequently observed. For example, dihydrotesto-
sterone treatment for MDA-453, a breast cancer cell line,
has been found to decrease total AR mRNA but increase
AR protein [49]. On the other hand, we should note that
our method may fail to identify some cancer related TFs.
For example, we do not find out the correlation between
ER and patient survival based on the inferred activities for
ER PWMs. The possible reasons are: (1) the PWMs for ER
are not in high quality and do not reflect their binding
preference correctly; (2) ER regulates gene expression by
distant binding sites and focus on core promoter regions
fails to reveal the true TF-gene relationships. A recent
ChIP-chip experiment indicates that only 4% of ER bind-
ing sites can be mapped to 1-kb promoter-proximal
regions [50].
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ER status is a significant risk factor for breast cancer. As
shown by previous studies, our results show that patients
in the ER-positive breast cancer group have significantly
longer survival times than those in the ER-negative group
(P = 1.5E-4 according to the log rank test, see the figure in
the Additional file 2). Therefore, in the following analysis,
we divided patients into ER-positive and ER-negative
breast cancer groups and identified PWMs associated with
survival times in these two groups separately.

Significant PWM:s in ER-positive breast cancer

Table 2 shows the PWMs that are associated with the sur-
vival of ER-positive breast cancer patients; 6 are negative
predictors and 1 is a positive predictor. Among the nega-
tive PWM predictors, 2 correspond to PR and the others
correspond to GR, CRE-BP1/ATF2, NF-Y, and DEAFI1. In
ER-negative breast cancers, however, none of them is asso-
ciated with patient survival at the 0.10 significance level.
Figure 3A shows the survival curves of two sub-groups of
ER-positive breast cancer patients. As shown, based on
V$PR_02, the low AC score sub-group survives signifi-
cantly longer than the high AC score sub-group (P = 2.2E-
6). In ER-negative breast cancer patients, however, the
activity of V$PR_02 provides no predictive power regard-
ing the patient survival time as shown in Figure 3B.
V$CEBPDELTA_Q6 is the only positive PWM predictor in
ER-positive breast cancer. Its predictive power in ER-posi-
tive and ER-negative breast cancers is shown in Figure 3C
and Figure 3D, respectively. The complete results for sig-
nificant PWM predictors in ER-positive breast cancer can
be found in the Additional file 3.

Significant PWM:s in ER-negative breast cancer

Table 3 shows 3 PWMs associated with the survival of ER-
negative breast cancer patients; all of which are negative
predictors. They are respectively binding motifs for ATF4,
CREB and ATF3, all belonging to the ATF/CREB family. In
fact, among the top 9 PWMs which are most correlated
with the survival of ER-negative breast cancer patients, 7
are binding motifs of the TFs in ATF/CREB family. The sur-
vival predictive power of VSATF4_Q2 and V$ATF3_Q6 in

http://www.biomedcentral.com/1471-2164/10/225

ER-negative and ER-positive breast cancers is shown in
Figure 4A-D. In ER-negative breast cancer the low AC
score sub-groups have significant longer survival times
than the high AC score sub-group. But in ER-positive
breast cancers, no significant difference in the survival
time between these two sub-groups is observed at the 0.05
significance level. The complete results for significant
PWM predictors in ER-negative breast cancer can be found
in the Additional file 4.

In addition to van't Veer's data [18], we have also applied
our analysis to several other breast cancer data sets [48,51-
54] and for two of them the transcription factors associ-
ated with patient survival were successfully identified
(FDR < 0.01). Both data sets supported the involvement
of the steroid nuclear receptors and the ATF/CREB TF fam-
ily members in breast cancer. But it should be noted that
the specific association of the ATF/CREB family with ER-
negative breast cancer was detected only in van't Veer's
data. The discordance may reflect the difference in sample
preparation and patient treatment. Particularly, it is
known that the van't Veer's data may include a very biased
selection of patients and this bias explains at least partly
the fact that approximately 10% of genes show a signifi-
cant association with survival in van't Veer's data, while in
other data sets the proportion is only about 1% [55].
Therefore, the specific association of the steroid nuclear
receptors with ER-positive and the ATF/CREB family with
ER-negative breast cancer may result from this bias and
should be subject to more careful investigation in future
studies.

Summary of breast cancer analysis

Our results indicate that the steroid nuclear receptor and
the ATF/CREB families are associated with the survival
breast cancer patients. In van't Veer's data set we found
that the steroid nuclear receptor family is associated with
the ER-positive breast cancer, whereas the ATF/CREB fam-
ily is associated with the ER-negative breast cancer
patients. The involvement of steroid nuclear receptors in
ER-positive breast cancers has been known for decades,

Table 2: PWMs associated with patient survival in ER-positive breast cancer.

ER+ Breast Cancer

ER- Breast Cancer

PWM TF Correlation g-value Correlation g-value
V$PR_02 PR -0.53 0.016 -0.16 0.8l
V$CEBPDELTA_Q6 C/EBPdelta 0.49 0.057 0.16 0.98
V$CREBPI_Q2 CRE-BPI -0.43 0.079 -0.44 0.15
V$PR_OI PR -0.44 0.083 -0.14 0.82
V$GR_0I GR -0.43 0.086 -0.29 0.47
V$NFY_0lI NF-Y -0.46 0.094 -0.24 0.55
V$DEAFI_0l DEAFI -0.44 0.096 -0.06 0.91

For each PWM, the Spearman correlation coefficients between PWM activity and patient survival in both ER-positive (ER*) and ER-negative (ER)

breast cancer are shown.
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Survival analysis of subgroups defined based on PWM activities in ER-positive and ER-negative breast cancers.
The "AC>2" and "AC<-2" subgroups are defined based on the AC scores of (A): V$PR_02 in ER-positive breast cancer, (B):
V$PR_02 in ER-negative breast cancer, (C): V$CEBPDELTA_Q6 in ER-positive breast cancer, and (D): V$CEBPDELTA_Qé6 in

ER-negative breast cancer.

but the functions of ATF/CREB family in ER-negative
breast cancers are largely unknown. Further investigation
of this TF family may shed new light on the transcriptional
regulation in breast cancers, especially in the ER-negative
breast cancers. For ER-positive breast cancers, hormone
therapy that target to steroid nuclear receptors has
achieved great success. For example, tamoxifen blocks
estrogen's ability to trigger abnormal cell growth, and has
been used to treat or prevent ER-positive breast cancers.
But for ER-negative breast cancers, none of these drugs tar-

geting steroid nuclear receptors is effective. The specific
association of the ATF/CREB family with ER-negative
breast cancer revealed in van't Veer's data deserves further
experimental validation and transcription factors in this
family may serve as the targets of new drugs designed to
treat ER-negative breast cancers.

Several studies have been performed to explore the tran-
scriptional regulatory programs underlying distinct breast
cancer phenotypes such as estrogen receptor status and

Table 3: PWMs associated with patient survival in ER-negative breast cancer.

ER+ Breast Cancer

ER- Breast Cancer

PWM TF Correlation g-value Correlation q-value
V$ATF4_Q2 ATF4 -0.34 0.28 -0.60 0.0080
V$CREB_Q4 CREB -0.21 0.69 -0.54 0.030
V$ATF3_Qé6 ATF3 -0.18 0.76 -0.49 0.078

For each PWM, the Spearman correlation coefficients between PWM activity and patient survival in both ER-positive (ER*) and ER-negative (ER)

breast cancer are shown.
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itive breast cancer.

histological grades [56-59]. All these studies apply a simi-
lar strategy: to identify a set of genes that are differentially
expressed between two breast cancer categories (e.g. ER+
versus ER-) and then investigate the enrichment of motifs
in these genes. For example, Niida et al. searched for cis-
regulatory motifs associated with given histological grades
and prognosis, and found that motifs bound by ELK1,
E2F, NRF1 and NFY are potential regulatory motifs that
positively correlate with malignant progression of breast
cancer [57]. In contrast, our method applies a quite differ-
ent strategy to identify PWMs associated with breast can-
cer patient survival. We infer the transcriptional activity
profiles of all PWMs across the samples and then identify
significant PWMs by examining the correlation of their
activity profiles with patient survival. Despite the differ-
ence in methodology, our analysis confirms some of pre-
vious findings: e.g. we also detect the correlation of E2F
and NFY with breast cancer prognosis as revealed by
Nidda et al [57]. A collective application of these

approaches should be useful and can provide insight into
the disease mechanism for other cancer types.

Instead of BASE, the activity profiles for PWMs can also be
inferred by using other methods such as the REDUCE
[60], network component analysis [61], MA-Networker
algorithm [62], and partial least squares regression
method [63]. These methods are based on a model assum-
ing a linear relationship between gene expression changes
and TF-gene binding affinities. The linear models provide
a simultaneous inference of all TF activities in the model
and thereby take the overlapping of TF target gene sets
into account; whereas the BASE algorithm considers each
TF independently. When BASE is used for TF activity infer-
ence, we would expect to obtain a more complete list of
TFs that are associated with patient survival. In contrast,
the linear model based methods would result in a set of
TFs that can best predict patient survival if combined with
Cox proportional-hazards model.
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Acute myeloid leukemia

In the leukemia data, cDNA microarrays were used to
measure gene expression levels in peripheral-blood or
bone marrow samples from 116 patients with acute mye-
loid leukemia (AML) [23]. The survival times after diagno-
sis of these patients were also available. We applied our
analysis to this data set to identify the TFs (PWMs) associ-
ated with the survival of AML patients.

We identified two PWMs at the 0.10 significance level (Q
<0.10): VSTAL1BETAE47_01 and V$TAL1ALPHAE47_01.
They are similar in sequence and correspond to the tran-
scription factors TAL1-alpha and TAL1-beta, respectively.
Their ability to predict AML patient survival is shown in
Figure 5. It is notable that the majority of AML patients
have an AC score less than -2 (83 out of 116 for
V$TAL1BETAE47_01 and 87 out of 116 for
V$TAL1BETAE47_01), suggesting the enhanced activities
of TAL1-beta and TAL1-alpha (function as transcriptional
repressors) in AML samples.

TAL1, the so-called T-cell acute lymphocytic leukemia 1, is
a member of the basic HLH family of transcription factors
and is involved in the regulation of hematopoiesis
[64,65]. The TAL1 gene encodes two polypeptides, full-
length TALla and N-terminally truncated polypeptide
TAL1p [66]. Aberrant activation of TAL1 in the T-cell line-
age by recurrent chromosomal translocation, chromo-
somal deletion, and other unknown mechanisms is
implicated as the major pathway for the development of
T-cell acute lymphoblastic leukemia (T-ALL) [67,68].
According to the prevailing model of TAL1-induced leuke-
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mogenesis, TAL1 acts as a transcriptional repressor
through heterodimerization with the transcription factors
E2A and HEB, leading to the block of their transcriptional
activities [69,70]. Although most studies regarding TAL1
are focused on its association with T-ALL, our results indi-
cate that it may also be critical in the development of
AML. Further investigation of TAL1 function in AML
patients may enable us to better understand the underly-
ing mechanisms of oncogenesis, as well as to identify the
appropriate therapeutic strategies for AML. The complete
results for significant PWM predictors in acute myeloid
leukemia can be found in the Additional file 5.

Conclusion

In this paper, we propose a computational approach to
systematically identify TFs (PWMs) associated with
patient survival in human cancer. This approach was
applied to the breast cancer and AML microarray expres-
sion data sets. In breast cancer, we find that the members
of two TF families, the steroid nuclear receptor and the
ATF/CREB families, are significantly associated with
patient survival. This method can also be used to identify
transcription factors associated with a specific cancer sub-
type. For example, we find that in van't Veer's breast can-
cer data set the steroid receptor and the ATF/CREB
families are respectively associated with patient survival in
ER-positive and ER-negative breast cancer. Our analysis
reveals the possible regulatory programs underlying dif-
ferent breast cancer subtypes, which are largely unknown
and deserve further studies. The involvement of the tran-
scription factor TAL1 in T-ALL has been well established;
however, our results indicate that TAL1 may also play crit-
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Survival analysis of AML subgroups defined based on PWM activities. The "AC>2" and "AC<-2" subgroups are
defined based on the AC scores of VSTALIBETAE47_01I in (A) or V$TALIALPHAE47_01 in (B). The "+" signs mark the

events at which a sample is censored.
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ical roles in AML. Our approach provides a useful tool to
investigate TFs associated with patient survival and is
ready to be used for other microarray cancer data sets.

Methods

Overview

In this paper, we aimed to identify transcription factors
(TFs) associated with cancer patient survival by integrat-
ing gene expression data, survival data, and transcription
factor binding site (TFBS) information. First, we used a
method called BASE [20,21] to infer the TF activities from
cancer microarray data. Second, we downloaded 565 posi-
tional weighted matrices (PWM) from the TRANSFAC
database, which represent the TFBSs for 365 TFs in verte-
brates. Based on these PWMs, we inferred the TF activities
in all tumor samples, resulting in 565 PWM activity pro-
files. Third, the correlations between these activity profiles
and patient survival were calculated and their significan-
ces were assessed using permutation testing. Finally, to
show the advantage of TF activities in terms of patient sur-
vival prediction, we compared the prediction results of the
linear regression models based on TF activities with those
based on gene expressions.

Cancer expression data sets

Two cancer expression and survival data sets were
involved in the analysis of this paper: a breast cancer data
set and a leukemia data set. For the breast cancer data,
expressions of approximately 25,000 human genes were
measured using the cDNA arrays for tumor samples col-
lected from 98 patients with primary invasive breast carci-
noma [18]. In addition to the expression data, the survival
data as well as the histological data for these 98 patients
are also available [71]. The survival data is represented as
the disease-free survival times for all 98 patients with no
missing values (i.e. no sample has been censored).

To obtain the leukemia data, 65 peripheral blood samples
and 54 marrow samples from 116 patients with acute
myeloid leukemia (AML) were collected [23]. For each
sample, the expression levels of 26,260 human genes were
measured using the cDNA array. The complete microarray
data set is available at the gene expression omnibus
(GEO) with accession number GSE425. In addition, the
survival data for these 116 patients is also available [23].

Positional weighted matrices for human TFs

From the TRANSFAC database, we downloaded 565
PWMs for 365 vertebrate TFs. The MATCH program was
used to examine the presence of each of these PWMs in
the upstream regions (from the transcription start site to
1000 bp upstream) of all human genes, which is available
from the UCSC Genome Browser [72]. The pre-calculated
cut-offs for these PWMs (provided by the MATCH pro-
gram) were used to minimize the false positive rate [73].

http://www.biomedcentral.com/1471-2164/10/225

For each PWM, the MATCH program outputs all the
potential binding sites as well as their matching-scores in
the upstream regions of all genes. Based on these outputs,
we constructed a binding score matrix [By] of size N x M,
where N and M are the numbers of genes (N =20375) and
PWMs (M = 565), respectively. B;; was calculated by aggre-
gating the matching-scores of all the binding sites of PWM
j in the upstream region of gene i. The score was set to 0
when no binding site was found in the upstream region of
a gene. This binding score matrix B reflects the binding
potential of PWMs to genes.

Transcriptional activity inference

BASE was the method used in this study to infer the rela-
tionship between TFs and the survival probability of
patients with different cancer types. This method makes
use of gene expression data and TF-gene binding affinities.
The intuition behind this method is that if a TF is related
to the survival outcome of a patient given a certain dis-
ease, then the genes that are regulated by this TF will be
more differentially expressed between the patients that
survive or die. This method is substantially different from
finding a correlation, such as Pearson or Spearman corre-
lation coefficients, between gene expression and binding
affinity. We believe that a correlation coefficient should
not be used in this study as the information that the BASE
method is able to uncover is mainly contained at the
extremities of the e¢; values (i.e. most differentially
expressed genes); hence a correlation coefficient for the
entire range of ¢; values would not be significant.

The BASE method can be described as follows; given a TF
with binding affinity b; and an expression differentiation

profilee;(i=1,2,..,N and N is the number of genes), BASE

calculates the correlation between these two profiles using
a Kolmogorov-Smirnov test like method. First we sort ¢; in

the decreasing order and reorder b; accordingly to obtain
e and by, respectively. Then we calculate a function

2o le(ip(j)!

f(i) = a reference  function
i1 le(()
L Eilegyl .
g(i) = N f(i) can be regarded as the cumulative
Zjmilep!

distribution function (CDF) for e(;) weighted by b;), and
8 is the CDF for e(;). If the TF is significantly activated, we
would expect genes with higher binding affinities (b val-
ues) to have higher expression changes (e values), and
thereby f(i) increases rapidly relative to g;). So we can use
the maximum deviation between f(i) and g(i), denoted as
pre-score ps*, to measure the correlation between profiles
e(;yand b(;). The significance of ps* is estimated by permu-
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tation test: permute ¢; and redo the above calculation to

obtain the null distribution of pre-score. Finally, the pre-
score ps* is normalized to obtain an activity change score
(AC score), which can directly compared between differ-
ent TFs. A more detailed description of BASE can be found
in [20]. Essentially, the transcriptional inference is based
on expression changes of the target genes of a TF. But the
BASE method does not use a determined target gene set,
instead, it utilizes the binding affinity profile that reflects
the binding potential of a TF to genes. The BASE method
is relatively robust to false predicted TF targets: since the
activity change of a TF can be captured by AC score even if
only a subset of its targets shows expression change. This
is critical for PWM based analysis, as a considerable frac-
tion of TFBSs from PWM searching is non-functional.

For each PWM, BASE calculates an AC score profile, indi-
cating the relative activities of the corresponding TF in
each of the tumor samples. A positive AC score indicates
the activity enhancement for a transcriptional activator or
the activity reduction for a transcriptional repressor; while
a negative AC score indicates the opposite activity change.

Identification of PWMs associated with patient survival
The above described transcriptional inference results in a
total of 565 activity profiles, each corresponding to a
PWM. We then calculated the Spearman correlation coef-
ficients between each activity profile and the patient sur-
vival times, resulting in a correlation vector denoted as r.
In order to estimate the significances of these correlations,
we permuted the patient survival vector K (K = 10,000)
times. Spearman correlation coefficients are recalculated
between activity profiles and each of the permuted sur-
vival vectors, and denoted as the permutated correlation
vector as T, for the k-th permutation, wherek = 1, 2,...,.K.
We created a histogram of all these permutated correla-
tions, and used this null distribution to compute the FDR
q value for a given value r* in the original correlation vec-
tor r as following:

. #{icrj2r*} 20
Eszzl#{i:”k,iZT*}
qtr) = #{irj<r*}
e r* < 0.

1 .
?Zszl #{l:ﬂ,’k’iST* }

Logistic regression model for patient survival prediction

A logistic regression model was constructed to predict the
clinical outcome of patients with breast cancer. In this
model, the predictors are the inferred activities of 4 PWMSs
that are most associated with patient survival. Two
groups, the "good" and "poor" prognosis groups were

http://www.biomedcentral.com/1471-2164/10/225

defined based on the patient survival times. Out of the 98
patients, 46 who survived at least 60 months after diagno-
sis were categorized into the "good" prognosis group and
the remaining 52 were categorized into the "poor" prog-
nosis group. We used leave-one-out cross validation to
evaluate the accuracy of this model. Specifically, each
sample's prediction was obtained by the use of a model
that was fit by the remaining 97 samples. This procedure
was repeated until each sample was left out once, resulting
in 98 predictions. We finally compared the predictions
with the actual clinical outcome to estimate the prediction
accuracy of our model.

Cox proportional-hazards regression

We used the Cox proportional-hazards model to identify
the PWM activity profiles that can best predict the patient
survival. The shrinkage method, LASSO [74], was used for
parameter estimation and the tuning parameter for
LASSO was optimized by 10-fold cross validation. The R
package "penalized" was implemented for above analysis.
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Additional material

Additional file 1

Complete results for breast cancer. Spearman correlation coefficient
between PWM activity and survival is calculated based on 98 samples
from patients with breast cancer.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-225-S1.xls]

Additional file 2

Survival analysis of ER-positive and ER-negative breast cancer sub-
groups. The survival curves are estimated using the Kaplan-Meier method
and the difference between subgroups is examined by the log-rank test.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-225-S2.pdf]

Additional file 3

Complete results for ER-positive breast cancer. Spearman correlation
coefficient between PWM activity and survival is calculated based on 53
samples from patients with ER-positive breast cancer.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-225-S3 xls]
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Additional file 4

Complete results for ER-negative breast cancer. Spearman correlation
coefficient between PWM activity and survival is calculated based on 44
samples from patients with ER-negative breast cancer.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-225-84 xls]

Additional file 5

Complete results for acute myeloid leukemia. Spearman correlation
coefficient between PWM activity and survival is calculated based on 116
samples from patients with acute myeloid leukemia.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-225-85.xls]
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