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Abstract
Background: The protozoan pathogens Leishmania major, Trypanosoma brucei and Trypanosoma cruzi (the
Tritryps) are parasites that produce devastating human diseases. These organisms show very unusual mechanisms
of gene expression, such as polycistronic transcription. We are interested in the study of tRNA genes, which are
transcribed by RNA polymerase III (Pol III). To analyze the sequences and genomic organization of tRNA genes
and other Pol III-transcribed genes, we have performed an in silico analysis of the Tritryps genome sequences.

Results: Our analysis indicated the presence of 83, 66 and 120 genes in L. major, T. brucei and T. cruzi, respectively.
These numbers include several previously unannotated selenocysteine (Sec) tRNA genes. Most tRNA genes are
organized into clusters of 2 to 10 genes that may contain other Pol III-transcribed genes. The distribution of genes
in the L. major genome does not seem to be totally random, like in most organisms. While the majority of the
tRNA clusters do not show synteny (conservation of gene order) between the Tritryps, a cluster of 13 Pol III
genes that is highly syntenic was identified. We have determined consensus sequences for the putative promoter
regions (Boxes A and B) of the Tritryps tRNA genes, and specific changes were found in tRNA-Sec genes. Analysis
of transcription termination signals of the tRNAs (clusters of Ts) showed differences between T. cruzi and the
other two species. We have also identified several tRNA isodecoder genes (having the same anticodon, but
different sequences elsewhere in the tRNA body) in the Tritryps.

Conclusion: A low number of tRNA genes is present in Tritryps. The overall weak synteny that they show
indicates a reduced importance of genome location of Pol III genes compared to protein-coding genes. The fact
that some of the differences between isodecoder genes occur in the internal promoter elements suggests that
differential control of the expression of some isoacceptor tRNA genes in Tritryps is possible. The special
characteristics found in Boxes A and B from tRNA-Sec genes from Tritryps indicate that the mechanisms that
regulate their transcription might be different from those of other tRNA genes.
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Background
The parasites Leishmania major, Trypanosoma brucei and
Trypanosoma cruzi, referred together as Tritryps, are
trypanosomatid protozoa that cause deadly human dis-
eases known as leishmaniasis, African sleeping sickness
and Chagas disease, respectively. Collectively, these path-
ogens cause millions of deaths in developing countries in
tropical and subtropical regions of the world. Analyses of
the recently reported genomic sequences of the Tritryps
revealed a striking feature: their genomes are organized
into large directional gene clusters, i.e. tens-to-hundreds
of protein-coding genes arranged sequentially on the
same strand of DNA [1-3]. Transcription of the gene clus-
ters is polycistronic, and mature mRNAs are generated
from long precursors by trans-splicing and polyadenyla-
tion [4,5]. Most chromosomes contain at least two poly-
cistronic gene clusters (PGCs), which can be either
divergently transcribed (towards the telomeres) or conver-
gently transcribed (away from the telomeres). Chromo-
some 3 from L. major contains two convergent PGCs (of
67 and 45 genes) that are separated by a tRNA gene. Inter-
estingly, Pol II-transcription of both PGCs terminates
within the tRNA-gene region [6]. The L. major nuclear
genome is distributed among 36 relatively small chromo-
somes that range from 0.28 to 2.8 Mb. T. cruzi possesses
~28 medium-sized chromosomes, while T. brucei has 11
large chromosomes. Regardless of having diverged more
than 200 million years ago, the genomes of trypanosoma-
tids show a remarkable conservation of gene order (syn-
teny) [7].

We are interested in the study of transcription by RNA
polymerase III (Pol III), which produces small essential
RNA molecules, such as tRNA [8]. All tRNAs have
sequences of 74–95 bases that fold into a characteristic
cloverleaf secondary structure with four constant arms.
The acceptor arm binds to a particular amino acid, speci-
fied by the anticodon triplet located in the anticodon arm.
The anticodon is complementary to an mRNA codon, spe-
cific for the amino acid carried by the tRNA. Therefore,
tRNAs serve as adaptor molecules that mediate the trans-
fer of information from nucleic acid to protein [9]. Organ-
isms must have at least one tRNA for each of the 20 amino
acids. Because different types of relaxed base pairings are
allowed at the "wobble" position of the anticodon, certain
tRNAs (known as isoacceptors) can read two or more syn-
onymous codons differing by the third base. Conse-
quently, cells do not carry tRNAs with anticodons
complementary to all of the 61 possible codons in the
genetic code. Interestingly, several organisms contain a
large proportion of tRNA genes that have the same antico-
don sequence, but differences elsewhere in the tRNA body
[10]. The number of these tRNA genes, called isodecoders,
varies from very low (10 in yeast) to very high (225–246)

in chimp and human. Thus, the diversity of tRNA genes is
higher than originally thought [10].

Most organisms usually contain several hundred tRNA
genes distributed randomly over their entire genome. One
of the distinctive features of most genes transcribed by Pol
III is that their promoter sequences are located within the
transcribed region. In the case of tRNA genes, the pro-
moter consists of two conserved elements: Boxes A and B.
While Box A is normally positioned close to the transcrip-
tion start site, the location of Box B is variable, partly
because some tRNAs have short introns within the coding
region [8,11].

Here we report the in silico analysis of tRNA genes in
trypanosomatids. We found that, unlike in most other
organisms, the distribution of genes in the genomes of L.
major and T. brucei does not seem to be totally random,
being confined to a subset of chromosomes. In addition,
14 out of 39 convergent strand-switch regions found in L.
major contain at least one tRNA gene, which suggests that
the use of tRNA genes as signals for termination of tran-
scription of PGCs might be a common process in this par-
asite. Our analysis also indicated that the majority of the
tRNA clusters do not show conservation of gene order
among Tritryps. Analysis of the putative transcription ter-
mination signals in all the tRNA genes showed an average
of 5 Ts (+/- 1) in L. major and T. brucei, and 6 Ts (+/- 2) in
T. cruzi. Also, special features were found in promoter ele-
ments from tRNA-Sec genes from Tritryps. Finally, we
have identified several tRNA isodecoder genes in the Trit-
ryps.

Results and discussion
Number of tRNA genes
Analysis of the GeneDB databases from L. major, T. brucei
and T. cruzi (Tritryps) revealed the presence of 82, 65 and
115 tRNA genes, respectively (see Table 1 and Additional
File 1). By using the tRNAscan-SE program, we confirmed
the identity of all the annotated tRNA genes in L. major
(Fig. 1). However, we found a few discrepancies in the T.
brucei and T. cruzi annotated genomes. In the case of T.
brucei, it was observed that the tRNA-Sec (Tb04_tRNA-
SeC1) gene annotated on chromosome 4 actually corre-
sponds to the sRNA76 (see cluster chr04-V in Fig. 2),
which is a tRNA-like molecule that associates to the 7SL
RNA in trypanosomatids [12]. By doing a search of the T.
brucei genome with the tRNA-Sec gene sequence reported
previously [13], we located two copies of the genuine gene
on chromosome 9 (see clusters chr09-II-III in Fig. 2). One
of these tRNA genes is located within an open reading
frame (ORF), annotated as a "hypothetical protein,
unlikely" (Tb09.160.1080). We also identified one tRNA-
Sec gene in L. major (see cluster chr06 in Fig. 1). Interest-
ingly, eight tRNA-Sec genes were found in the T. cruzi
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genome (see Additional File 1); they all are organized as
independent genes, not clustered with other Pol III genes
(data not shown). The tRNA-Sec is a component of a
translational mechanism that reads UGA (normally a stop
codon) as a selenocysteine codon in selected mRNAs that
contain a specific cis-acting RNA regulatory sequence in
their 3' untranslated regions (3'-UTRs) [14]. The presence
of selenoproteins, and all the machinery required for its
synthesis, has been demonstrated in L. major and T. cruzi
[13,15].

In T. cruzi, it was found that three tRNA genes annotated
as Val-CAC (Tc00.1047053457717.10, Tc00.1047053483
321.10 and Tc00.1047053506321.220) do not seem to
correspond to the assigned amino acid (or to any other).

They showed only 61% identity with
Tc00.1047053506459.249, which we consider is the
"real" tRNA-Val-CAC gene, since it is 100% identical to
the tRNA-Val-CAC gene from T. brucei (and shows 98%
identity to its orthologue in L. major). Interestingly, we
observed that they show 75% identity to the sRNA76 from
T. brucei (data not shown), which suggests that they might
actually encode the orthologue of this gene in T. cruzi.
Alternatively, they may correspond to tRNAs with unde-
termined or unknown type. tRNA genes with undeter-
mined type have been found in several species, including
Caenorhabditis elegans, yeast and human, and their func-
tion is unknown. Additionally, Tc00.1047053507579.16,
annotated as an Ile-TAT gene, seems to be a pseudogene
(or an undetermined tRNA); since it shows only 22%

Organization of tRNA genes in L. majorFigure 1
Organization of tRNA genes in L. major. The 83 tRNA genes found in the genome of the parasite are shown in orange. 
The predicted anticodons are indicated in parentheses. 5S rRNA, snRNA and 7SL genes are shown in green, purple and gray, 
respectively. Genes are drawn to scale, and the sizes of intergenic regions are indicated (in base pairs). Protein-coding genes 
that flank Pol III-transcribed genes are shown in blue (not to scale). The tRNA-Sec gene on chromosome 6 is located at posi-
tions 69,586 to 69,673, in the complement strand. Putative pseudogenes are not shown. For practical purposes, we regarded 
protein-coding genes as the limits of a particular Pol III locus. For that reason, we considered cluster chr09-II, III as two inde-
pendent Pol III loci. More of such cases are shown in Fig. 2.
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identity to the other two annotated Ile-TAT genes in T.
cruzi (Tc00.1047053504427.231 and
Tc00.1047053508043.11) (data not shown). Also, we
identified an extra copy of tRNA-Ala-TGC on contig 8001
(see Additional File 1).

Thus, our analysis indicates the presence of 120 tRNA
genes in T. cruzi, excluding four genes that might be unde-
termined tRNAs or encode orthologues of the sRNA76,
and including the eight tRNA-Sec genes and the tRNA-Ala-
TGC gene (Table 1 and Additional File 1). In T. brucei the
number of identified tRNA genes is 66, including the two
newly identified tRNA-Sec genes and excluding the gene
of the sRNA76 orthologue (Fig. 2 and Table 1). In L. major
there are 83 tRNA genes (Fig. 1 and Table 1), in addition
to a pseudogene that we do not include in our analyses.
The number of tRNA genes in trypanosomatids is rela-
tively low, considering that eukaryotic organisms usually
contain several hundred tRNA genes. For instance, C. ele-

gans has 568 tRNA genes, Homo sapiens presents 497 tRNA
genes and Saccharomyces cerevisiae contain 271 tRNA genes
[9,10]. In an extreme case, Danio rerio (zebra fish) has
~6000 predicted tRNA genes. On the other hand, the
microsporidian parasite Encephalitozoon cuniculi has only
44 tRNA genes. Bacterial genomes usually have between
29 and 167 tRNA genes in their genomes [9,10].

tRNA genes from eukaryotes typically contain introns,
which are usually located between bases 37 and 38 of the
anticodon loop. Archaeal tRNA genes also have introns
that can be found at the same location of the anticodon
loop or in other regions of the tRNA gene. The size of
introns is variable, ranging from 7 to 121 bases [9]. In bac-
terial genomes, a very small number of tRNA-gene introns
have been reported, but they correspond to self-splicing
introns (group I autocatalytic introns). Analysis of the
tRNA genes in Tritryps indicated that only the tRNA-Tyr
genes contain an intron; which was previously reported in

Organization of tRNA genes in T. bruceiFigure 2
Organization of tRNA genes in T. brucei. The 66 tRNA genes, distributed into 23 loci, are indicated in orange. The pre-
dicted anticodons are shown in parentheses. snRNA and 7SL genes are shown in purple and gray, respectively. The sRNA76 
(misannotated in GeneDB as a tRNA-Sec gene) is shown as a stripped box in locus chr04-V. The two tRNA-Sec genes that we 
found are located in loci chr09-II, III (at positions 505,606 to 505,693 and 509,443 to 509,530 of chromosome 9). The gene 
from locus chr09-II overlaps a putative Pol II gene (Tb09.160.1080, dotted blue box), annotated as hypothetical protein 
(unlikely). Also, the tRNA-Gly from locus chr09-I overlaps a putative Pol II gene (Tb09.211.4080, dotted blue box), annotated 
as hypothetical protein (unlikely). The U5 snRNA gene (locus chr10-II) also overlaps a Pol II gene (Tb10.6k15.2990, sequence 
orphan), but located on the opposite strand. Genes are drawn to scale, and the sizes of intergenic regions are indicated (in 
base pairs). Protein-coding genes that flank Pol III-transcribed genes are shown in blue (not to scale). In locus chr08-V, the Leu-
TAA gene (Tb_08_TRNA_Leu_2) and the first Gln-CTG gene (Tb_08_TRNA_Gln_2) are annotated in the wrong (opposite) 
strand in GeneDB. Maps of an incomplete repertoire of tRNA genes from T. brucei were previously reported [16].

Chr03

Chr04-III

Chr05-II

Chr07-II,III

Chr08-II

Chr08-V

Chr10-I

Chr10-II Chr10-III

Chr11-I Chr11-III

54444192

Ser (AGA)

59205

Leu (CAA) Ser (CGA)
Thr (CGT)

Chr04-I,II
5087 34831482 1265 1951

Pro (CGG)

6897

U6 Tyr (GTA)

Leu (TAG) eMet (CAT)

1405
63

Val (AAC)

4180
58 4387

898

Glu (CTC) Ser (TGA)
eMet (CAT) Val (AAC)

116
1333

Chr04-IV Chr04-V
sRNA76

6393

Val (CAC)

70
2104

1082 1006

Arg (ACG)

Chr05-I
Glu (CTC)

22892500

Gly (GCC)

1126 318

Chr07-I

681 1432
Chr07-IV

Ala (CGC)

Asn (GTT)

2630

Trp (CCA)

85
905

Chr08-I

2970
94

Lys (CTT)Gln (TTG) Val (TAC)

475
56

Ile (TAT)

70 978387

Gly (TCC) Leu (CAG)
Thr (TGT)

Arg (TCG)
U1

260 2325

7SL RNA Arg (ACG)
U3

109

Lys (CTT)

89 96
3768

Chr08-III

Cys (GCA)

4597

Cys (GCA)

142 3885
Chr08-IV

Arg (ACG)

38
2965

Ile (AAT)
Leu (TAA) Gln (CTG)

Gln (CTG) Ile (AAT)

764 9549 89 79 6085
Chr09-I

Gly (GCC)

408 746

1989
230935

60

Thr (AGT)

U5
2641

Pro (AGG)
iMet (CAT)

Leu (AAG) Pro (TGG)

61 72 34

Asn (GTT)
Ala (TGC)

Arg (TCT)

3635
102 59

Lys (TTT) Arg (CCT)

85
2230

78

1622 4777

Gly (CCC)

Chr11-II
His (GTG) Glu (TTC)

2853
61 59

Phe (GAA)

4605

Phe (GAA)
Ala (CGC) Arg (CCG)

1193
66 111

3536

1308

Ser (GCT)

76

Asp (GTC)

69
3172 1556

76 69

Asp (GTC)
Ser (GCT) Ala (AGC) Lys (CTT)

10415 56372736

Ala (AGC)

U4

2347

Gly (GCC)

459
1989

Chr09-II,III
257 488

Sec (TCA) Sec (TCA)

246 1306
Page 4 of 18
(page number not for citation purposes)



BMC Genomics 2009, 10:232 http://www.biomedcentral.com/1471-2164/10/232
Table 1: Repertoire of tRNA genes and codon usage in Tritryps.

Amino acid Codon tDNA 
anticodon

L. major gene 
copy number

T. brucei gene 
copy number

T. cruzi gene 
copy number

Anticodon2 L. major 
Codon usage 

%

T. brucei 
Codon usage 

%

T. cruzi 
Codon usage 

%

Ala GCT AGC 2 2 2 (98%) 1 IGC 1.83 2.08 1.61
GCC GGC 0 0 0 3.61 1.82 1.62
GCA TGC 1 1 2 (97%)1 UGC 2.02 2.32 2.16
GCG CGC 2 2 (97%) 1 2 CGC 3.62 2.07 2.36

Arg CGT ACG 4 3 4 (98%) 1 ICG 1.05 1.59 1.60
CGC GCG 0 0 0 3.18 1.45 1.75
CGA TCG 1 1 2 UCG 0.73 0.9 1.58
CGG CCG 1 1 2 CCG 1.38 1.21 1.85
AGA TCT 1 1 2 UCU 0.27 0.68 1.56
AGG CCT 1 1 2 CCU 0.55 1 1.86

Asn AAT ATT 0 0 0 GUU 0.53 1.82 1.37
AAC GTT 3 2 4 2.07 1.92 1.45

Asp GAC GTC 3 2 2 GUC 3.42 2.27 1.60
GAT ATC 0 0 0 1.44 2.81 1.57

Cys TGT ACA 0 0 0 GCA 0.42 1.09 1.78
TGC GCA 1 2 2 1.46 1.13 2.34

Gln CAA TTG 1 1 2 UUG 0.76 1.69 1.66
CAG CTG 3 2 4 CUG 3.32 2.1 1.8

Glu GAA TTC 1 1 1 UUC 1.14 3.17 2.17
GAG CTC 2 2 4 (95%) 1 CUC 3.32 3.81 2.21

Gly GGT ACC 0 0 0 GCC 1.25 2.27 1.51
GGC GCC 4 3 4 3.36 1.49 1.95
GGA TCC 1 1 2 UCC 0.64 1.56 2.16
GGG CCC 1 1 2 CCC 1.19 1.39 1.64

His CAT ATG 0 0 0 GUG 0.65 1.13 1.37
CAC GTG 2 1 4 (98%) 1 2.04 1.3 1.64

Ile ATT AAT 3 2 4 IAU 0.82 1.9 1.42
ATC GAT 0 0 0 1.88 1.16 1.10
ATA TAT 1 1 2 UAU 0.27 1 0.75

Leu TTA TAA 1 1 2 UAA 0.16 0.98 0.89
TTG CAA 1 1 2 CAA 1.1 1.96 2.33
CTT AAG 3 1 4 IAG 1.11 2.23 1.59
CTC GAG 0 0 0 2.5 1.56 1.27
CTA TAG 1 1 2 UAG 0.47 0.82 0.54
CTG CAG 2 1 2 CAG 3.83 1.85 1.95

Lys AAA TTT 1 1 2 UUU 0.54 2.06 1.94
AAG CTT 3 3 4 CUU 2.78 2.66 1.88

Met ATG CAT 4 3 6 CAU 2.25 2.34 2.12

Phe TTT AAA 0 0 0 GAA 1.04 2.05 2.17
TTC GAA 2 2 4 1.91 1.59 1.49

Pro CCT AGG 2 1 2 IGG 0.86 1.11 1.05
CCC GGG 0 0 0 1.24 1.11 1.03
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T. brucei [16]. The intron is 11 bases long in L. major and
T. brucei, and 13 bases long in T. cruzi; and as in other
organisms, it is located between bases 37 and 38 (data not
shown). Thus, introns are very rare in Tritryps, not only in
protein-coding genes, but also in tRNA genes.

Isoacceptor tRNA species
Analyses of the anticodon sequences of the tRNA genes in
Tritryps showed the presence of 46 isoacceptor types in
each of the three species (Table 1) [17]. These 46 isoaccep-
tor types are able to read the 61 codons that specify the
canonical amino acids, in addition to Sec, the 21st amino
acid. The number of isoacceptor species found in Tritryps
is similar to that found in other organisms (from 41 to 55
isoacceptors) [10]. It is important to mention that the two
methionine isoacceptors, the initiator and elongator, have
been identified (see below), but for practical purposes
these two isoacceptors will be considered as one.

Sixteen anticodons were not found in the tRNA genes of
trypanosomatids, even though their corresponding
codons are present in the protein-coding genes of these
organisms [17]. For example, the tRNA with anticodon
Ile-GAU is not present in the genome of trypanosomatids,

but the codon AUC is present in their protein sequences
(Table 1). As mention above, this is possible because
some tRNAs are able to recognize more than one codon
by allowing flexible base-pairing between the first nucle-
otide of the anticodon and the third position of the codon
(tRNA wobble recognition). Analysis of the data shown in
Table 1 indicates that C3 or U3 in the codon are recog-
nized by G1 or A1 of the anticodon (A is converted to the
nucleotide inosine in the mature tRNA, which can pair
with U3 or C3 in the codon). Thus, trypanosomatids use
the A1- or G1-sparing strategy as a decoding mode [9].
This anticodon-choice pattern is similar to that of other
eukaryotes such as C. elegans, H. sapiens and A. thaliana.
Other eukaryotic organisms, like yeast and D. mela-
nogaster, use the A1- or G1 and C1-sparing strategy [9]. As
observed previously [17], the spared anticodons are used
equally, since 50% (8/16) of the U3 and C3 codons are
read by A1 (or I1) and the remaining 50% are read by G1.
In most four-fold degenerate codon families (i.e. Leu, Val,
Ser, Pro, Thr, Ala and Arg, but not Gly) A1 reads the
codons containing U3 and C3, since the corresponding
tRNAs with G1 are not present in the Tritryps. We found
the same for the Ile family, which contains three codons.
On the other hand, all the two-fold degenerate families

CCA TGG 1 1 2 UGG 1.05 1.39 1.44
CCG CGG 2 1 2 CGG 2.61 1.18 1.57

Ser TCT AGA 1 1 2 IGA 1.02 1.26 1.37
TCC GGA 0 0 0 1.69 1.25 1.24
TCA TGA 1 1 2 (98%) 1 UGA 0.73 1.35 1.41
TCG CGA 1 1 2 CGA 2.17 1.16 1.2
AGT ACT 0 0 0 GCU 0.73 1.51 1.21
AGC GCT 2 (98%) 1 2 2 2.6 1.35 1.60

Thr ACT AGT 3 1 2 IGU 0.68 1.3 1.13
ACC GGT 0 0 0 1.77 1.21 1.18
ACA TGT 1 1 2 UGU 1.04 1.74 1.74
ACG CGT 2 1 2 CGU 2.48 1.48 1.98

Trp TGG CCA 1 1 2 CCA 1.07 1.09 2.33

Tyr TAT ATA 0 0 0 GUA 0.4 1.13 0.84
TAC GTA 3 1 2 1.99 1.41 1.04

Val GTT AAC 2 2 2 IAC 0.86 2.29 1.49
GTC GAC 0 0 0 1.92 1.14 1.26
GTA TAC 1 1 2 UAC 0.54 1.26 0.83
GTG CAC 2 1 1 CAC 3.82 2.87 2.65

SeC TGA TCA 1 2 8

TOTAL 83 66 120

1 One isodecoder tRNA was identified in L. major, one in T. brucei and six in T. cruzi. The percentage of identity between isodecoders is shown 
between parentheses. The rest of the genes with the same anticodon are 100% identical.
2 Underlined anticodons are those that recognize more than one codon; for exemple, the Tyr anticodon GUA recognizes two codons, TAT and 
TAC, since anticodon Tyr-AUA is missing in trypanosomatids. A1 of the anticodon is modified to inosine (I).

Table 1: Repertoire of tRNA genes and codon usage in Tritryps. (Continued)
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use G1 to read U3 or C3, given that the tRNAs with A1 are
missing. The families that use this strategy are: Asn, Asp,
Cys, Gly (although it is fourfold-degenerated), His, Phe,
Ser (AGU and AGC codons) and Tyr.

The genomes of L. major, T. brucei and T. cruzi contain
four, three and six tRNA-Met genes, respectively [16,17].
Further analysis of these genes indicated that in L. major
two of them (LmjF09.TRNAMET.01 and
LmjF36.TRNAMET.01) correspond to initiator tRNAs
(iMet) and two (LmjF11.TRNAMET.01 and
LmjF34.TRNA.01) correspond to the elongator form
(eMet) (Fig. 3). In T. brucei, one iMet
(Tb10_tRNA_Met_1) and two eMet genes
(Tb04_tRNA_Met_1, Tb04_tRNA_Met_2) were found,
although only one of each type was previously reported
[16]. Finally, two iMet (Tc00.1047053508231.92,
Tc.00.1047053506251.88) and four eMet genes

(Tc00.1047053504055.87, Tc00.1047053504055.91,
Tc00.1047053506435.327 and
Tc00.1047053506435.345) were located in T. cruzi. As
shown in Fig. 3, the two types of tRNA-Met possess spe-
cific features, and most of them were found in the genes
from the Tritryps. One of the main characteristics is the
highly conserved A:T base pair that is present in all tRNA-
iMet in eukaryotes at position A1:U72 (A1:U71 in Tritr-
yps), whereas a G:C pair is found in tRNA-eMet [9]. In
yeast, it has been reported that the A1:U72 base pair is the
most important determinant for a tRNA-Met to play the
role of iMet, since it is necessary for binding to Initiation
Factor 2 (eIF2) [18]. When this sequence is mutated, the
tRNA-iMet is able to bind to Elongation Factor Tu (EF-Tu)
and participates in translation elongation. It is likely that
this base pair has a similar function in trypanosomatids.

Secondary structures of initiator and elongator tRNA-Met in L. majorFigure 3
Secondary structures of initiator and elongator tRNA-Met in L. major. Important features for iMet and eMet tRNAs 
function are indicated. These two molecules correspond to class I tRNAs. The secondary structure of a class II tRNA (Leu) is 
also presented. The names of the different arms are shown. The position of the internal control elements (Boxes A and B) is 
also indicated.
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Other determinants for iMet function are: A53, A58 and
A59 in the TψC loop (U54, U59 and C60 in eMet); the
base pair C3:G69 (G3:C70 in eMet); bases A19 and A20
(G19 and C20 in eMet); a D-loop composed of 7 nucle-
otides (8 nt in eMet); and an anticodon loop of 7 nt (9 nt
in eMet) [9,19]. All these features are conserved in the Tri-
tryps (Fig. 3). Another distinctive characteristic of the iMet
tRNA is the presence of three consecutive G:C pairs at the
bottom of the anticodon stem, which is conserved not
only in eukaryotes, but also in eubacteria and archaeobac-
teria. In E. coli, it has been shown that mutations in these
three consecutive G bases reduce the efficiency of initia-
tion of protein synthesis, by affecting the interactions
between the tRNA and the ribosomal P site; thus, these
bases are essential to discriminate between initiator and
elongator tRNA-Met [9,20]. Tritryps iMet tRNAs have
these conserved G:C pairs but, surprisingly, we found
them in the eMet tRNAs as well (Fig. 3). Thus, in the Trit-
ryps these base pairs are not a discriminator between iMet
and eMet tRNAs, and these organisms must use other fea-
tures of the iMet to direct it to the P site of the ribosome.

In several organisms it has been observed that there is a
correlation between tRNA gene copy number and codon
usage [21,22]. Apparently, selection on synonymous
codon positions causes co-adaptation of codon usage and
tRNA content, in order to optimize the effectiveness of
protein synthesis [23]. In Tritryps, it has been reported
that bias in codon usage correlates with tRNA gene copy
number and with protein expression level [17]. This con-
clusion was made after analyzing around 60,000 codons
from highly expressed (tandem duplicated) protein-cod-
ing genes from the three parasites. We conducted a similar
analysis, but including all the 8272 protein coding genes
from L. major (5,249,748 codons), and 5119 randomly
selected genes from T. brucei (2,620,035 codons), as well
as 1779 genes from T. cruzi (986,435 codons). We plotted
codon usage (see Table 1) against the number of tRNA
genes for each isoacceptor, for the three species, and a pos-
sible correlation was evaluated by the Spearman test (Fig-
ure 4, panels A-C). The data indicated a positive
correlation between these variables for L. major (rs = 0.80)
and T. brucei (rs = 0.64), which indicates that, similar to
other organisms, codon usage patterns seem to be co-
adapted with the relative abundance of the corresponding
tRNAs in these parasites. However, in the case of T. cruzi,
the obtained Spearman value (rs = 0.35) indicated a low
degree of correlation between the two variables. This may
reflect the fact that the T. cruzi strain used for the sequenc-
ing project is a hybrid of two strains, and some of their
genes might be duplicated, while others might not be; as
shown in Fig. 4C and Table 1, in T. cruzi the vast majority
of the isoacceptor species are encoded by either two or
four genes (only two isoaceptors have one gene, and none
of them has three genes), whereas in L. major and T. brucei

a high number of the isoacceptors are encoded by a single
gene. The correlation analysis was repeated, but now plot-
ting the percentage of codon usage versus the number of
tRNA genes per amino acid (Fig. 4, panels D-F). This time,
the Spearman value was high in T. cruzi (rs = 0.78), indi-
cating a strong correlation between both parameters. As
before, strong correlations were found in L. major (rs =
0.84) and T. brucei (rs = 0.85).

Organization of tRNA genes
In L. major, the 83 tRNA genes are distributed among 31
loci, on 19 different chromosomes (Fig. 1 and Additional
File 1). Most tRNA genes are organized into clusters of 2
to 10 genes, on either top or bottom strand, which may
contain other Pol III-transcribed genes. For example, in
the locus located on chromosome 23 (chr23 in Fig. 1)
there are 10 tRNA genes, a 5S rRNA gene and the U1 and
U3 snRNA genes. Locus IV on chromosome 36 (chr36-IV)
has four tRNA genes and the U5 snRNA gene. The eleven
5S rRNA genes found in the L. major genome are distrib-
uted in six chromosomes, and are always associated to
tRNA genes (Fig. 1 and Additional File 1). Only eight loci
contain single tRNA genes (chr03, chr06, chr07, chr16,
chr24-I, chr24-III, chr30 and chr36-III). In most cases,
intergenic regions that separate Pol III-transcribed genes
are short, with an average size of 202 bases (Fig. 1). How-
ever, they can be as small as 35 bases (intergenic region
between tRNA-eMet and tRNA-Leu on cluster chr34-I)
and as long as 5406 bases (intergenic region between
tRNA-Gly and tRNA-Ala on cluster chr11-I). Intergenic
regions between the protein-coding genes that flank the
clusters and the first or last Pol III gene of the cluster are
normally longer than the ones that separate Pol III genes.
The average length of such regions is 1490 bp, with a min-
imum of 238 bp (intergenic region between tRNA-Lys and
the "right" Pol II gene on cluster chr21-II) and a maxi-
mum of 7949 pb (intergenic region between tRNA-Glu
and the "left" Pol II gene on cluster chr09-III) (Fig. 1). The
mean length of intergenic regions between protein-coding
genes in the L. major genome is 2045 bp [1].

In T. brucei, the 66 tRNA genes are located on 26 loci, on
eight different chromosomes (Fig. 2 and Additional File
1). As in L. major, in T. brucei the number of tRNA genes
per cluster ranges from 2 to 10. Eleven of the 66 tRNA
genes are single genes in T. brucei (loci chr04-I, chr05-I,
chr05-II, chr07-I, chr07-III, chr07-IV, chr08-IV, chr09-I,
chr09-II, chr09-III and chr11-I). Similarly to L. major,
intergenic regions that separate Pol III genes in T. brucei
are short in most cases (average length is 327 bp, ranging
from 43 to 3172 bp) (Fig. 2). Regarding intergenic regions
between the protein-coding genes that flank the clusters
and the first or last Pol III gene of the cluster, the mean
size is 2473 bp (showing a range from 34 to 10415 bp).
In the T. brucei genome the average length of intergenic
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regions between protein-coding genes is 1279 bp [2].
Since it has not been possible to assemble fully adjacent
sequences for the chromosomes of T. cruzi, at the present
we are unable to determine the genomic organization of
the tRNA genes in this parasite. In contrast to L. major, the
5S rRNA genes in T. brucei and T. cruzi are organized into
tandem arrays, which are not associated to tRNA genes
[24,25].

In most eukaryotic organisms, tRNA genes seem to be dis-
persed randomly throughout the genome. However, in
human cells the distribution is non-random, since more
than 25% of the tRNA genes are located in a region of only
about 4 Mb on chromosome 6. This region represents
only 0.1% of the human genome, but contains an almost
complete set of tRNA genes. Moreover, 280 out of 497
tRNA genes (more than half) are found on either chromo-

some 1 or chromosome 6 [26]. The distribution of genes
in the L. major genome does not seem to be totally ran-
dom, since half of the chromosomes do not contain even
a single tRNA gene. Additionally, 60 tRNA genes (72%)
are located in only 7 chromosomes (9, 11, 23, 24, 31, 34
and 36), which represent only 26% of the genome (Fig. 1
and Additional File 1). In T. brucei, 40 (61.5%) of the
tRNA genes are found in just 3 chromosomes (4, 7 and 8),
which is only about 24% of the genome (Fig. 2 and Addi-
tional File 1). tRNA genes in S. cerevisiae, though dispersed
in the linear genome, co-localize with 5S rDNA at the
nucleolus. Nucleolar localization requires tRNA gene
transcription, because inactivation of the internal pro-
moter eliminates its nucleolar location [27]. It remains to
be tested whether tRNA genes in trypanosomatids show
such a specific cellular localization.

Correlation between number of tRNA genes and codon usage in TritrypsFigure 4
Correlation between number of tRNA genes and codon usage in Tritryps. Panels A-C show the correspondence 
between codon usage and the number of tRNA genes for each isoacceptor (45 types), for the three species (see Table 1). Pan-
els D-F show the correlation between codon usage and the number of tRNA genes per amino acid. Correlation coefficients 
were evaluated by performing a Spearman test. rs values are indicated in each panel; p < 0.0001 for panels A, B, D and E; p < 
0.02 for panel C; p < 0.0001 for panel F.
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In Schizosaccharomyces pombe and C. elegans, tRNA genes
are often clustered in centromeres [28]. These tRNA genes
contribute to centromere function by defining domain
boundaries important for centromere activity [29]. Puta-
tive centromeric regions have been reported in a few chro-
mosomes in T. cruzi and T. brucei [30], where they localize
to strand-switch regions that separate divergent PGCs.
While these regions do not seem to contain tRNA genes,
two clusters of tRNA genes in L. major (chr09-II and
chr10), and one cluster in T. brucei (chr04-I) are located in
divergent strand-switch regions (Figs. 1 and 2), and thus
might be candidates to contain centromeric regions.
Therefore, it is possible that in trypanosomatids, like S.
pombe and C. elegans, some tRNA genes might be impor-
tant for centromeric activity.

Spatial relation between Pol III and Pol II genes
We have previously shown that transcription of two con-
vergent PGCs on L. major chromosome 3 terminates on
the convergent strand-switch area, within the tRNA-gene
region [6]. Interestingly, 14 of the 39 convergent strand-
switch regions (35.9%) in the L. major genome contain at
least one tRNA gene (Fig. 1), representing 45.2% of the 31
tRNA loci. A similar situation was found in T. brucei,
where 34.6% of the tRNA loci are located within conver-
gent strand-switch regions (Fig. 2). This suggests that the
use of tRNA genes as signals for termination of transcrip-
tion of convergent clusters of protein-coding genes might
be a common process in trypanosomatids. Indeed, recent
evidence suggest that this is the case for tRNA clusters
located within PGCs, since peaks of acetylated histone H3
are found immediately downstream of the tRNA cluster in
all cases [31]. Acetylated histones are markers for open
chromatin in all eukaryotes and have been found at the 5'
end of all polycistronic gene clusters in L. major.

Synteny of Pol III genes
It has been found that the genomes of the Tritryps are
highly syntenic, that is to say, they show conservation of
gene order, with the T. brucei and L. major genomes con-
taining 110 blocks of synteny spanning 19.9 and 30.7 Mb,
respectively [7]. Many of these synteny blocks correspond
to intact PGCs, which are transcribed by Pol II. In contrast,
the majority of the tRNA clusters do not show synteny, but
a few of them do show conservation (Fig. 5). Among the
latter, the most remarkable example is a cluster of 13 Pol
III genes that is highly syntenic; corresponding to chr23 in
L. major, chr08-II from T. brucei, and the cluster located on
contig Tc6288 from T. cruzi (Fig. 5A). Surprisingly, the
order of the genes in this cluster is identical between T.
brucei and T. cruzi, although the U1 snRNA, the 7SL RNA
and the tRNA-Leu genes are located on different strands.
Most of the 13 Pol III-transcribed genes are present in the
L. major cluster, but their order is not identical to either of
the other two clusters (Fig. 5A). Additionally, a 5S rRNA

gene replaced a 7SL RNA gene and a tRNA-Trp gene
replaced one of the tRNA-Lys genes. Another Pol III-gene
cluster that exhibits synteny is chr24-II in L. major, chr08-
V in T. brucei and contig Tc6223 from T. cruzi (Fig. 5B).
Here, we found tRNA genes for Ile, Leu and Gln that are
syntenic among the three species. A second copy of a
tRNA-Ile is conserved between L. major and T. brucei. One
difference is that the L. major cluster contains an U6
snRNA gene that is replaced by a tRNA-Gln gene in T. bru-
cei. Other syntenic tRNA clusters are chr33-I from L. major,
chr10-III from T. brucei and contig Tc8001 from T. cruzi
(Fig. 5C), and chr34-I from L. major, chr04-III from T. bru-
cei and contig Tc4886 from T. cruzi (Fig. 5D). Several of
the protein-coding genes that flank these four syntenic
tRNA-gene clusters are also syntenic among Tritryps (Fig.
5). As in Tritryps, an overall weak synteny of Pol III-tran-
scribed genes has been observed between two species of
the oomycete Phytophthora [32], indicating a reduced
importance of genome location of Pol III genes compared
to protein-coding genes.

Consensus sequences of promoter elements
One of the distinctive features of most genes transcribed
by Pol III is that their promoter sequences are internal,
located within the transcribed region. In the case of tRNA
genes, the promoter consists of two conserved elements:
Boxes A and B [33]. While Box A is normally positioned
close to the transcription start site, the location of Box B is
variable, partly because some tRNAs have short introns
within the coding region. In contrast, tRNA genes in
prokaryotic cells contain promoter elements similar to
those found in protein-coding genes: the start-point (usu-
ally a purine), the -10 sequence (the TATA Box) and the -
35 sequence (the hexamer) [34]. Consensus sequences of
trypanosomatid tRNA promoter elements (Fig. 6A) were
determined by analyzing the sequences of all tRNA genes
in L. major, T. brucei and T. cruzi and comparing them to
the sequences of Boxes A and B from S. cerevisiae [9]. The
tRNAs were divided into two classes, depending on the
size of the variable loop (Fig. 3). Class I tRNAs have a
short variable loop of 4 or 5 nucleotides, whereas class II
tRNAs posses a long variable arm, with a double helical
stem of 3 to 7 base pairs and a loop of 3 to 5 nucleotides
(Fig. 3) [9]. In the Tritryps, 43 genes belong to class II (all
Leu and Ser tRNA genes, but excluding tRNA-Sec genes),
and 215 genes are class I. Since we observed sequence dif-
ferences between class I and class II tRNA genes, we ana-
lyzed them separately. Half of the bases from the
consensus sequence of Box A (positions 1, 2, 4, 7, 10 and
11) are identical between class I and class II genes (and
identical to the S. cerevisiae consensus sequence) (Fig. 6A).
However, position 5 is different between both classes,
since class I genes may have any nucleotide, whereas class
II genes always have a C. Also, class I tRNA genes present
C or T at position 6, while class II genes always have A or
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G. Regarding Box B, position 8 is different between both
classes: an A is always present in class II genes, while class
I genes may have any nucleotide. Around 20% of the class
I tRNA genes in Tritryps have an additional nucleotide in
Box A, between positions 9 and 10 (marked with an aster-
isk in Fig. 6A). These tRNA genes are: eMet-CAT, Asn-GTT,
Ile-AAT, Ile-TAT, Lys-CTT, Phe-GAG and Tyr-GTA. Regard-
ing class II tRNAs, the Leu-TAA genes have a T between
positions 9 and 10 of Box A (Fig. 6A).

A few exceptions to the consensus sequence were found
among Tritryps. For Box A from class I genes, these include
the following: four tRNA-Val genes (LmjF09.VAL.01,
LmjF09.VAL.02, Tb08_tRNA_Val_1 and Tc00.104705350
6459.249) have a C at position 2 (instead of A or G); all
four tRNA-Val-TAC genes (LmjF23.VAL.01,
Tb08_tRNA_Val_1, Tc00.1047053504427.233 and
Tc00.1047053508043.13) present an A at position 3
(instead of G); all six tRNA-Ala-AGC genes (LmjF17.TRNA

ALA.01, LmjF31.TRNAALA.01, Tb07_tRNA_Ala_1,
Tb07_tRNA_Ala_2, Tc00.1047053510057.40 and Tc00.1
047053508909.130) have an extra base (an A) between
positions 8 and 9; and the six tRNA-Val-AAC genes from
Tritryps (LmjF21.TRNAVAL.01, LmjF34.TRNAVAL.01,
Tb_04_tRNA_Val_1, Tb_04_tRNA_Val_2,
Tc00.1047053506435.363 and
Tc00.1047053504055.95) also have an additional base (a
G) between positions 8 and 9.

Concerning class II genes, the exceptions to Box A consen-
sus sequence are the four tRNA-Leu-TAA genes present in
the Tritryps genomes (LmjF24.TRNALEU.01,
Tb08_tRNA_Leu_2, Tc00.1047053510721.13 and
Tc00.1047053511909.9), which have a T at position 2
(instead of G or A). In regard to Box B, the genes that do
not have the consensus sequence are: LmjF09.TRNA-
HIS.01 and LmjF09.TRNAHIS.02 present a C at position
4; Tb07_tRNA_Ala_3 has a T at position 5;

Comparative order of Pol III-transcribed genes in TritrypsFigure 5
Comparative order of Pol III-transcribed genes in Tritryps. Clusters that present some degree of synteny among Trit-
ryps are shown. In L. major, they correspond to loci chr23 (panel A), chr24-II (panel B), chr33-I (panel C) and chr34-I (panel D). 
The order of genes in clusters chr24-II and chr34-I was inverted compared to the maps shown in figure 1. The corresponding 
orthologous regions in T. brucei and T. cruzi are indicated. Orthologous genes are joined by grey lines. Figure is not to scale.
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Tc00.1047053511241.10 presents an A at position 10;
and tRNA-Ala-AGC and tRNA-iMet genes have an A at
position 3 (data not shown).

Analysis of the promoter sequences from tRNA-Sec genes
in Tritryps indicated that Box A contains an additional A
between bases 2 and 3, compared with the consensus
sequences (see Fig. 6B). This insertion was previously
reported in tRNA-Sec genes from other organisms [35]
(Fig. 6B). Regarding Box B, tRNA-Sec genes from Tritryps
present two changes compared to the highly conserved
consensus sequence: a C at position 1 (instead of a G) and
a G at position 11 (in lieu of C) (data not shown). In other
species, the sequence of Box B from tRNA-Sec is identical

to the corresponding consensus sequence. In Xenopus lae-
vis, transcription of tRNA-Sec genes is directed by three
extragenic domains (a TATA Box, a proximal sequence ele-
ment and an activator element) and Box B. Apparently,
Box A is not part of the promoter [36,37]. Since both
internal control elements from Sec genes in Tritryps differ
from the corresponding consensus sequences, it is possi-
ble that synthesis of tRNA-Sec is regulated only by external
elements in these parasites. We are currently exploring
this possibility.

tRNA isodecoder genes
Sequence analysis of isoacceptor tRNAs in several organ-
isms indicated the presence of tRNA isodecoder genes

Consensus sequences for Box A and Box B from tRNA genes in TritrypsFigure 6
Consensus sequences for Box A and Box B from tRNA genes in Tritryps. Sequences from class I and class II tRNA 
genes from Tritryps are compared to the S. cerevisiae consensus sequences (panel A). In Box A, some tRNA genes contain an 
extra base between positions 9 and 10 (marked with an asterisk) (see text). Conserved positions are shown in bold type. Panel 
B shows a comparison of Box A from selenocysteine tRNA genes from the indicated species. Conserved nucleotides are indi-
cated with an asterisk. An A in the third position (in bold and underlined) seems to be specific to Box A from Sec genes. H rep-
resents C, T or A.
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          Box B           

  1 2 3 4 5 6 7 8 9 10 11 

Tritryps class I G/A G T T C G/A A N H C C/T 

Tritryps class II G G T T C G/A A A C/T C C 

S. cerevisiae  N G T T C G/A A N C/T C N 
 
 
 

B  

tRNA-Sec box A 

H.sapiens           T G A T C C T C A G T G G   13 
X.laevis            T G A C C C T C A G T G G   13 
D.melanogaster      T G A A C T T C G G T G G   13 
C.elegans           T G A A C C A T G G C G G   13 
P.falciparum        T G A G T T A G C A T G G   13 
Tritryps            T G A G C T C A G C T G G   13 
                    * * *                 * *   
Page 12 of 18
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(tRNA genes having the same anticodon but different
sequences elsewhere in the tRNA body) [10]. In eukaryo-
tes, the number of isodecoder genes ranges from 10
(yeast) to 246 (chimp), while in bacterial genomes the
number of isodecoders varies from 0 to 26 [10]. By com-
paring the sequences of isoacceptor tRNAs in the Tritryps,
one isodecoder gene was found in L. major (tRNA-Ser-
GCT), and one was found in T. brucei (tRNA-Ala-CGC)
(Fig. 7 and Table 1). Since there are only two copies of the
corresponding isoaceptor class in each case, we have arbi-
trarily designated LmtRNA-Ser.01 (LmjF17.TRNASER.01)
and TbtRNA-Ala.01 (Tb07_tRNA_Ala_3) as the isodecod-
ers. Sequence identity between the isodecoder and the
"majority member" is 98% in L. major and 97% in T. bru-
cei. While in L. major the sequence difference locates near
Box A, in T. brucei one of the two observed differences lies
in one of the conserved bases of Box B (Fig. 7). In T. cruzi,
six isodecoder genes were identified: TctRNA-Glu.01
(Tc00.1047053506435.336), TctRNA-Ala.01
(Tc00.1047053510057.40), TctRNA-Ala.03
(Tc00.1047053475029.40), TctRNA-Arg.01
(Tc00.1047053504427.243), TctRNA-His.01
(Tc00.1047053511241.10) and TctRNA-Ser.01
(Tc00.1047053510057.50) (Table 1 and Fig. 7). In four
cases (TctRNA-Glu.01, TctRNA-Ala.03, TctRNA-Arg.01
and TctRNA-His.01), sequence differences were located to
variable nucleotides from Box B (Fig. 7). As in Tritryps,
sequence variations between human tRNA isodecoders
have been located within internal control elements [10].
In such cases, changes were found in variable nucleotides
from Boxes A and B. Thus, the occurrence of changes
within internal control elements in tRNA isodecoder
genes suggests that differential regulation of Pol III tran-
scription is possible in Tritryps; the fact that the highly
conserved C at position 10 of Box B from TbtRNA-Ala.02
is changed to T in the corresponding tRNA isodecoder
(TbtRNA-Ala.01) (Fig. 7) strongly supports this possibil-
ity. Sequence changes in isodecoders are not only
restricted to internal control elements, but they might be
present all along the tRNA body (Fig. 7) [10]. Therefore,
the diversity of tRNA genes is much higher than originally
thought. The functional meaning of such diversity has yet
to be investigated.

Signals for transcription termination
A cluster of several T residues in the coding DNA strand
acts as a signal to terminate Pol III transcription [33]. The
cluster of Ts is usually located within the first 30 bases fol-
lowing the gene. In human and mice, Pol III needs four Ts
to end transcription, and tRNA genes that have five or
more Ts are very rare in these species. On the other hand,
in the genomes of S. pombe and S. cerevisiae the majority
of the tRNA genes have six and seven Ts, respectively
[38,39]. Interestingly, they do not have any single gene
whose termination signal is shorter than five Ts. For a par-

ticular species, termination efficiency tends to increase
with the length of the T run. In L. major, it has been shown
that transcription of the tRNA located on chromosome 3
terminates within a tract of four Ts [6]. To gain insight into
Pol III termination signals in trypanosomatids, we
decided to analyze the sequences downstream of all the
tRNA genes. A cluster of Ts of variable length was found
on every single tRNA gene in the Tritryps (see Additional
File 2); the distance between the end of the gene and the
run of Ts varies from zero to seven bases. In L. major, the
mean length of the run of Ts is 4.87 bases, with a mini-
mum of four and a maximum of nine Ts (Fig. 8, panels A
and D). Similar results were obtained in T. brucei, where
the average T-run length is 4.89 bases (ranging from four
to ten Ts) (Fig. 8, panels B and D). In the tRNA genes from
T. cruzi, however, the stretches of Ts are longer, showing a
mean length of 6.56, with two genes presenting a run of
16 consecutive T residues (Fig. 8C and 8D).

The presence of a second stretch of Ts that acts as a poten-
tial "back up" termination signal is a common feature in
tRNA genes from eukaryotes [38]. The second run of Ts is
normally located within the first 30 bp downstream of the
first one. In the case of S. cerevisiae, S. pombe, H. sapiens
and Mus musculus, the percentages of tRNA genes that
have a back up T-run are 44, 53, 31 and 33%, respectively
[38]. Analysis of the sequences downstream of the T-runs
in T. cruzi showed that 58 tRNA genes (48.3%) have a
back up T-run, whose length is between 4 to15 bases
(Additional File 2). Therefore, the percentage of tRNA
genes with a second run of Ts in T. cruzi is very similar to
that found in S. cerevisiae and S. pombe. Interestingly, only
13 tRNA genes in L. major (15.6%) and 18 genes in T. bru-
cei (27%) present a back up T-track (which is from 4 to 10
bases long) (see Additional File 2); these percentages are
even smaller than those found in mammals. Thus, in L.
major and T. brucei a single and short run of Ts seems to be
sufficient to achieve proper transcription termination in
the majority of the tRNA genes. On the other hand, T.
cruzi seems to require longer T-runs, in addition to a sec-
ond T stretch, to direct transcription termination. This
indicates that the mechanism of Pol III transcription ter-
mination in L. major and T. brucei might be different from
that one in T. cruzi and other eukaryotes. Sequences
downstream and upstream of the run of Ts might contrib-
ute to the strength of the terminator, as observed in some
tRNAs in S. cerevisiae [38].

Although most tRNA genes are clustered in trypanosoma-
tids, the presence of runs of Ts located downstream of all
the tRNA genes suggests that they are transcribed as
monocistrons, which is common among eukaryotes. In
prokaryotic cells genes encoding tRNAs are transcribed in
either a monocistronic or polycistronic manner. In the lat-
ter case, an RNA containing several tRNA precursors in
Page 13 of 18
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Sequence comparison of tRNA Isodecoder genes in the TritrypsFigure 7
Sequence comparison of tRNA Isodecoder genes in the Tritryps. One isodecoder tRNA gene was found in L. major 
(LmTRNA-Ser) and T. brucei (TbTRNA-Ala), and six were found in T. cruzi (TcTRNA-Glu, -Ala.01, -Ala.03, -Arg, -His and -Ser). 
Bases that show variation are indicated in bold and underlined, and marked with an arrow. The position of internal control ele-
ments (Boxes A and B) and the anticodon are indicated. The genes included in this figure are the following (GeneDB names in 
parentheses): LmTRNA-SER.01 (LmjF17.TRNASER.01), LmTRNA-SER.02 (LmjF21.TRNASER.01), TbTRNA-ALA.01 
(Tb07_tRNA_Ala_3), TbTRNA-ALA.02 (Tb11_tRNA_Ala_1), TcTRNA-GLU.01 (Tc00.1047053506435.336), TcTRNA-
GLU.02 (Tc00.1047053504055.89), TcTRNA-GLU.03 (Tc00.1047053508999.180), TcTRNA-GLU.04 
(Tc00.1047053510959.8), TcTRNA-ALA.01 (Tc00.1047053510057.40), TcTRNA-ALA.02 (Tc00.1047053508909.130), 
TcTRNA-ALA.03 (Tc00.1047053475029.40), TcTRNA-ALA.04 (gene located in contig 8001, not annotated in geneDB), 
TcTRNA-ARG.01 (Tc00.1047053504427.243), TcTRNA-ARG.02 (Tc00.1047053506619.59), TcTRNA-ARG.03 
(Tc00.1047053508043.23), TcTRNA-ARG.04 (Tc00.1047053511191.29), TcTRNA-HIS.01 (Tc00.1047053511241.10), 
TcTRNA-HIS.03 (Tc00.1047053508087.5), TcTRNA-HIS.04 (Tc00.1047053508861.10), TcTRNA-HIS.02 
(Tc00.1047053506663.10), TcTRNA-SER.01 (Tc00.1047053510057.50), TcTRNA-SER.02 (Tc00.1047053508909.120).

 
LmTRNA-SER.01      GCAAATGTGGCCGAGTGGTTAAGGCGCCTGCCTGCTAAGCAGGTGTGATCTCACGCGAAGGTTCGAACCCTTCCGTTTGCG   81 

box A anticodon box B

LmTRNA-SER.02      GCAAACGTGGCCGAGTGGTTAAGGCGCCTGCCTGCTAAGCAGGTGTGATCTCACGCGAAGGTTCGAACCCTTCCGTTTGCG   81 
                   ***** *************************************************************************** 
 
 
TbTRNA-ALA.01      GGGCGTGTAGCTCAGTGGTAGAGCATCCGTTTCGCATACGGAAGGCCTAGGGTTTGATCCCCTACTCGTCCA    72 
TbTRNA-ALA.02      GGGCGTGTAGCTCAGTGGTAGAGCGTCCGTTTCGCATACGGAAGGCCTAGGGTTCGATCCCCTACTCGTCCA    72 
                   ************************ ***************************** ***************** 
 
 
TcTRNA-GLU.01      TCCGGTGTGGTATAGTGGTTAGAACAAGCGGCTCTCACCCGCTAGACCCGGGTTCAATTCCCGGCATCGGAA    72 
TcTRNA-GLU.02      TCCGGTGTGGTATAGTGGCTAGAACAAGCGGCTCTCACCCGCTAGACCCGGGTTCGATCCCCGGCATCGGAA    72 
TcTRNA-GLU.03      TCCGGTGTGGTATAGTGGCTAGAACAAGCGGCTCTCACCCGCTAGACCCGGGTTCGATCCCCGGCATCGGAA    72 
TcTRNA-GLU.04      TCCGGTGTGGTATAGTGGCTAGAACAAGCGGCTCTCACCCGCTAGACCCGGGTTCGATCCCCGGCATCGGAA    72 
                   ****************** ************************************ ** ************* 
 
 
TcTRNA-ALA.01      GGGGATGTAGCTCAGATGGTAGAGTGCCCGCTTAGCATGCGGGAGGTATTGGGATCGATACCCAACTTCTCCA   73 
TcTRNA-ALA.02      GGGGATGTAGCTCAGATGGTAGAGCGCCCGCTTAGCATGCGGGAGGTATTGGGATCGATACCCAACTTCTCCA   73 
                   ************************ ************************************************ 
 
 
TcTRNA-ALA.03      GGGCGTGTAGCTCAGTGGTAGAGCGCCTGTTTTGCATACAGGAGGCCTAGGGTTCAAACCCCTACTCGTCCA    72 
TcTRNA-ALA.04      GGGCGTGTAGCTCAGTGGTAGAGCGCCTGTTTTGCATACAGGAGGCCTAGGGTTCGATCCCCTACTCGTCCA    72 
                   ******************************************************* * ************** 
 
 
TcTRNA-ARG.01      GTCCGTGTGGCTCAATGGAAGAGCATCTGACTACGGATCAGAGGGTTGCAGGTTCGAGTCCTGTCACGGATG    72 
TcTRNA-ARG.02      GTCCGTGTGGCTCAATGGAAGAGCATCTGACTACGGATCAGAGGGTTGCAGGTTCGAGTCCTGTCACGGATG    72 
TcTRNA-ARG.03      GTCCGTGTGGCTCAATGGAAGAGCATCTGACTACGGATCAGAGGGTTGCAGGTTCGAATCCTGTCACGGATG    72 
TcTRNA-ARG.04      GTCCGTGTGGCTCAATGGAAGAGCATCTGACTACGGATCAGAGGGTTGCAGGTTCGAATCCTGTCACGGATG    72 
                   ********************************************************* ************** 
 
 
TcTRNA-HIS.01      GGGAAGATAGTTCAGTGGCAGAACATCAGATTGTGGCTCTGAATACCCGGGTTCGATAACCCGGTCTTCCCT    72 
TcTRNA-HIS.03      GGGAAGATAGTTCAGTGGCAGAACATCAGATTGTGGCTCTGAATACCCGGGTTCGATT-CCCGGTCTTCCCT    71 
TcTRNA-HIS.04      GGGAAGATAGTTCAGTGGCAGAACATCAGATTGTGGCTCTGAATACCCGGGTTCGATT-CCCGGTCTTCCCT    71 
TcTRNA-HIS.02      GGGAAGATAGTTCAGTGGCAGAACATCAGATTGTGGCTCTGAATACCCGGGTTCGATT-CCCGGTCTTCCCT    71 
                   *********************************************************  ************* 
 
 
TcTRNA-SER.01      GTCGACATACCCAAGTGGTTACGGGGTTTGACTTGAAATCAAATGCGATCTCGCGCGCAGGTTCGAACCCTGCTGTCGACG   81 
TcTRNA-SER.02      GTCGGCATACCCAAGTGGTTACGGGGTTTGACTTGAAATCAAATGCGATCTCGCGCGCAGGTTCGAACCCTGCTGTCGACG   81 
                   **** **************************************************************************** 
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tandem is processed to yield functional tRNAs [40]. In
plants, dicistronic transcripts containing a tRNA and a
snoRNA have been found [41]. Moreover, the presence of
precursor RNA molecules that contain both a tRNA and a
mRNA has been reported in E. coli [42].

Conclusion
In comparison to most eukaryotic organisms, Tritryps
present a low number of tRNA genes. A total of 46 isoac-
ceptor types were identified, which are able to read the 61
codons that specify the canonical amino acids, in addition
to Sec. Trypanosomatids use the A1- or G1-sparing strat-
egy as a decoding mode, by allowing flexible base pairing
between G1 or A1 of the anticodon and C3 or U3 in the
codon. Most tRNA genes in Tritryps are organized into
clusters (from 2–10 genes) that may contain other Pol III
genes. Some of the clusters show a remarkable conserva-
tion of gene order among Tritryps. The distribution of

tRNA genes in the genomes of L. major and T. brucei does
not seem to be totally random. We also found that 14 of
the 39 convergent strand-switch regions present in the L.
major genome are separated by at least one tRNA gene,
which raise the possibility that other tRNA genes (in addi-
tion to the one present on chromosome 3) are involved in
termination of Pol II transcription of convergent PGCs in
this parasite. A run of Ts of variable length was found
downstream of all the 269 tRNA genes present in the Tri-
tryps. In T. cruzi the clusters of Ts are larger than in L. major
and T. brucei (an average of 6 Ts versus 5 Ts, respectively);
moreover, the presence of a back up T run is more com-
mon in T. cruzi than in the other two Tritryps. Analysis of
the internal promoter elements allowed us to establish
consensus sequences for Boxes A and B of class I and class
II tRNA genes. Interestingly, special characteristics were
found in Boxes A and B from tRNA-Sec genes in Tritryps,
which suggests that the mechanisms that regulate their

Length distribution of termination signals from tRNA genes in TritrypsFigure 8
Length distribution of termination signals from tRNA genes in Tritryps. The size of the run of Ts in every tRNA 
gene from L. major (panel A), T. brucei (panel B) and T. cruzi (panel C) was plotted against frequency. Statistical data is shown in 
panel D.
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transcription might be different from those of other tRNA
genes. Lastly, we have identified several tRNA isodecoder
genes in the Tritryps, especially in T. cruzi. The fact that in
some cases the sequence differences occur within the
internal promoter elements suggests the possibility of dif-
ferential expression of tRNA genes in these organisms.

Methods
All tRNA genes annotated in the L. major, T. brucei and T.
cruzi genome databases http://www.genedb.org (versions
2.1) were analyzed with the tRNAscan-SE program http://
lowelab.ucsc.edu/tRNAscan-SE/[43] to verify the presence
and identity of the tRNAs. In addition to the examination
of all the features associated to the typical tRNA cloverleaf
structure, we also analyzed the presence of internal pro-
moter elements (Boxes A and B) and T-tracts at the 3' end
of the tRNA gene (which should be present in tRNA genes,
but not necessarily in pseudogenes). Sequence compari-
sons among putative tRNA isoacceptors were performed
using the ClustalW2 program http://www.ebi.ac.uk/
Tools/clustalw2/index.html. Information for the genomic
and synteny maps was obtained from the GeneDB data-
bases. BLAST searches were performed in these databases
to locate the tRNA-Sec genes [13], as well as the sRNA76
[12]. Codon usage data was obtained from the Sanger site
http://www.sanger.ac.uk/ for L. major, and from the
Kazusa web page http://www.kazusa.or.jp/codon/ for T.
brucei. Codon usage data for T. cruzi was calculated by
analyzing coding sequences (obtained from the Sanger
site) in the codon usage page from SMS http://www.bio
informatics.org/sms2/codon_usage.html. The Spearman
correlation analysis and the descriptive statistical analysis
of T-run data were performed with the GraphPad Prism5
program http://www.graphpad.com.
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