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Abstract

Background: The dog is an important model organism and it is considered to be closer to humans
than rodents regarding metabolism and responses to drugs. The close relationship between
humans and dogs over many centuries has lead to the diversity of the canine species, important
genetic discoveries and an appreciation of the effects of old age in another species. The superfamily
of G protein-coupled receptors (GPCRs) is one of the largest gene families in most mammals and
the most exploited in terms of drug discovery. An accurate comparison of the GPCR repertoires
in dog and human is valuable for the prediction of functional similarities and differences between
the species.

Results: We searched the dog genome for non-olfactory GPCRs and obtained 353 full-length
GPCR gene sequences, |8 incomplete sequences and |3 pseudogenes. We established
relationships between human, dog, rat and mouse GPCRs resolving orthologous pairs and species-
specific duplicates. We found that 12 dog GPCR genes are missing in humans while 24 human
GPCR genes are not part of the dog GPCR repertoire. There is a higher number of orthologous
pairs between dog and human that are conserved as compared with either mouse or rat. In almost
all cases the differences observed between the dog and human genomes coincide with other
variations in the rodent species. Several GPCR gene expansions characteristic for rodents are not
found in dog.

Conclusion: The repertoire of dog non-olfactory GPCRs is more similar to the repertoire in
humans as compared with the one in rodents. The comparison of the dog, human and rodent
repertoires revealed several examples of species-specific gene duplications and deletions. This
information is useful in the selection of model organisms for pharmacological experiments.

Background about 100 000 years ago dogs have shared living space
The dog is an important model in biomedical research for ~ and food sources with humans and have been selectively
several reasons. Dogs have unique evolutionary history.  inbred with periodic population bottlenecks [1,2]. The
Since their domestication from the grey wolf in East Asia ~ American Kennel Club (AKC) and similar organizations
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worldwide have provided easily accessible and extensive
genealogies which provide unique opportunities for
genetic analyses. Dogs show a high prevalence of specific
diseases; such as blindness, heart disease, cataracts, epi-
lepsy and deafness; that are relevant for human biology
[3,4]. Dogs are susceptible to a wide variety of genetic dis-
eases. For example, dogs have cancers that seem to affect
just one breed or a few closely related breeds. The dog also
has more similarities in general physiology, anatomy, dis-
ease susceptibility, morphological variation and behav-
ioural traits to humans than the most frequently used
experimental animals, mouse and rat. Regulatory author-
ities mandate the use of non-rodent species in safety
assessments for new medicines and dogs are the most fre-
quent choice. Furthermore, the dog is also an important
model in evolutionary analysis in which its relative diver-
gence in relation to other mammalian lineages allows for
valuable comparisons. The sequence of the dog (Canis
familiaris) genome has had contributions from two
breeds, the boxer [5] and the poodle [6]. Analysis have
revealed long-range haplotypes across the entire genomes,
crucial for defining the nature of genetic diversity within
and across breeds [5]. These maps provide good opportu-
nities for genome-wide association studies to identify
genes responsible for diseases and traits.

Automated gene predictions offer fast annotation of
genomes but they are error-prone and need to be followed
up by careful manual curation of the coding sequences.
For instance the Genscan gene prediction program has a
sensitivity and specificity of about 90% for detecting
exons, leading to frequent errors in multi-exon genes [7].
Our recent annotation of the G protein-coupled receptors
(GPCRs) within the chicken genome showed that over
60% of the Genscan gene predictions with a human
ortholog needed curation. Curation markedly increased
the quality of the dataset, raising the average percentage
identity between the human-chicken one-to-one ortholo-
gous pairs from 56% to 73% [8]. The quality of protein
sequences has a significant impact on phylogenetic analy-
ses and calculations of evolutionary distances. Accurate
comparisons of the dog and human proteins, such as cor-
rect assignment of orthologous pairs, are crucial for the
design and interpretation of physiological and pharmaco-
logical studies in which results are inferred between the
species.

The superfamily of GPCRs is one of the largest groups of
proteins within most mammals. GPCRs are signal media-
tors that have a prominent role in most major physiolog-
ical processes at both the central and peripheral level [9].
It has been estimated that about 80% of all known hor-
mones and neurotransmitters activate cellular signal
transduction mechanisms via GPCRs [10]. Many of
GPCRs are able to form and function as heterodimers of
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two GPCR monomers (for example, GABAZ;R1-GABAZR2,
TAS1R3-TAS1R1 and TAS1R3-TAS1R2) or even as het-
erodimers of a GPCR monomer and a receptor activity-
modifying protein (RAMP) (for example, PTHR1-RAMP2)
[11]. The key common structural components of the
GPCRs are the seven transmembrane a-helices that span
the cell membrane. GPCRs represent between 30-45% of
the current drug targets [12,13] and many pharmaceutical
companies devote up to 30% of their drug discovery
efforts toward them [14]. Even so, they have an enormous
unexploited therapeutic potential as drugs in the clinic
target only 30 of the approximately 400 non-olfactory
GPCRs [15].

The human GPCR repertoire has previously been divided
into five main families (GRAFS); Glutamate (clan C), Rho-
dopsin (clan A, includes the olfactory receptors), Adhesion
(clan B2), Frizzled/Taste2 and Secretin (clan B) [16]. The
GRAFS families are found in all bilateral species [17]. The
Rhodopsin family is the largest and includes hundreds of
olfactory receptors (ORs). The Rhodopsin family also con-
tains most of the GPCR drug targets, mainly amine and
peptide receptors [18]. In humans, the second largest fam-
ily is the Adhesion family. Adhesion GPCRs are character-
ized by long extracellular N-termini. Most of the receptors
in this family are still orphans (i.e their endogenous lig-
ands are unknown) [19,20] The Glutamate family includes
receptors that are activated by glutamate, GABA and cal-
cium as well as the two groups of sweet and umami taste
receptors (TAS1Rs) and vomeronasal receptors type 2
(V2Rs) that recognize pheromones. The Secretin family
has ligands that are large peptides such as secretin, parath-
yroid hormone, glucagon, glucagon-like peptide, calci-
tonin, vasoactive intestinal peptide, growth hormone
releasing hormone and pituitary adenylyl cyclase activat-
ing protein. The Frizzled receptors bind, among others, the
Wnt ligands and play an important role in embryonic
development. The Taste2 or bitter taste receptor family
was originally assigned together with Frizzled family, but
they form two very distinct clusters [16]. It is not clear if
Frizzled and Taste2 groups have a common evolutionary
origin and in this study we describe them as two different
families. Another family is the vomeronasal 1 receptors,
abbreviated V1R, which does not display similarity to any
of the GRAFS groups. VIR family has many members in
rodents [21], but very few in humans and was therefore
not included into the original GRAFS classification. A con-
sensus list of all human, mouse and rat 'non sensory'
GPCRs is maintained by IUPHAR [22]. The GPCR reper-
toire has also been studied in detail in non-mammalian
vertebrates such as the teleost pufferfish [23] and in inver-
tebrates such as the lancelet [24] and the mosquito [25].

The sense of smell, or odorant detection, is strongly

evolved in dogs for which 876 genes have been predicted
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to encode olfactory receptors, a figure almost double the
human repertoire and comparable to that of rodents [26].
The vomeronasal V2R receptors are also thought to serve
an olfactory function [21], but surprisingly no such func-
tional genes were found in dog only pseudogenes.
Rodents have a largely expanded V1R repertoire with over
100 genes, whereas dogs have 8 and humans have no
V1Rs [21]. The dog also has 14 Taste2 receptors for bitter
taste [27]. The non-sensory GPCRs have not previously
been studied in dog.

In this study we provide the subset of the non-olfactory
GPCRs in the dog genome. We have made comprehensive
searches for dog GPCR genes, put extensive efforts in man-
ually correcting coding sequences and performed detailed
phylogenetic analyses. Furthermore, we provide a com-
parison between the GPCR repertoires in human, dog,
mouse and rat.

Results

We performed a comprehensive search for non-olfactory
GPCR genes in the dog genome. A start dataset was pro-
duced from BLASTN searches in the Genbank non-redun-
dant database. This contained 325 full-length GPCRs and
5 pseudogenes. Around 13% of these needed manual
curation because they had an incorrect composition of
exons. TBLASTN and BLAT searches in the dog genome
assembly completed the analysis. A total number of 353
full-length sequences, 18 incomplete sequences and 13
pseudogenes were retrieved. A full-length dog GPCR gene
has been defined as one that contains an intact transmem-
brane domain. The incomplete GPCR gene sequences are
missing exons or parts thereof because they reside in
genomic regions that have not been sequenced. It is also
possible that whole GPCR genes are missing in the dog
genome assembly and these can be very difficult to distin-
guish from those that do not exist in this species unless
the specific genomic region is carefully analysed. The gene
sequences of MAS1, NPY2R, GPR52 and GPR37L1 were
found to include frameshifts and/or stop codons in the

Table I: The number of GPCR genes in human, dog, mouse and rat.
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Broad Institute genome assembly (from the boxer). How-
ever, in a second BLAST search of these sequences in the
TIGR poodle assembly [28] these 4 genes were found to be
intact/full-length. This may either reflect sequencing
issues or indicate real differences between breeds.

The dog GPCR gene sequences were divided into families
in line with the GRAFS classification: Glutamate, Rho-
dopsin, Adhesion, Frizzled, Secretin, Taste2 and VIR families
[29]. 18 genes do not have sequence similarity to any
GPCR family and these were treated as a separate group
called Other GPCRs according to our previous classifica-
tion of the rat GPCRs [30], the only difference being that
GPR149 was here moved to the Rhodopsin family. The
numbers of genes in each GPCR family; including previ-
ously published sensory GPCRs for human, dog, mouse
and rat; are presented in Table 1. A complete table of all
GRAFS GPCR genes in dog, human, rat and mouse is pre-
sented in Additional file 1. The amino acid sequences of
all dog GPCRs obtained in this study are included in Addi-
tional file 2.

We performed phylogenetic analyses of all dog and
human GRAFS GPCR protein sequences and identified
orthologs and species-specific genes. The latter represent
paralogous genes that have arisen or been lost specifically
in either human or dog or the lineages leading to them.
Consensus trees of 100 Maximum Parsimony phyloge-
netic trees and the average amino acid sequences identi-
ties of receptor orthologs are presented in Figure 1:
Rhodopsin family and Figure 2:Glutamate, Adhesion,
Frizzled and Secretin families. Dog genes missing in
human are listed in Table 2, whereas human GPCR genes
not found in the dog and/or rodent genomes are listed in
Table 3.

We identified 267 Rhodopsin GPCR genes in dog and this
can be compared with the corresponding number in
human that is 284 (Table 1 and Additional File 1). The
average protein sequence identity is 86% between dog

GPCR Family Total Number of GPCRs

Dog Dog Pseudogenes Human Mouse Rat
Adhesion 37 | 33 30 30
Frizzled I 0 I I 10
Glutamate 22 0 22 22 22
Rhodopsin non-olfactory 267 12 284 320 297
Secretin 15 0 15 15 15
Taste 2 14# 5# 258 358 358
VIR 8* 33* 5% 187+ 106*
V2R 0* 9% 0* 121%* 79*
Other GPCRs 18 0 18 19 19
217 # [27]; §[30]
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Table 2: Table showing the dog GPCR genes that are missing or pseudogenes in human.

Family GPCR Human Dog Rat Mouse
Adhesion EMR2b missing present missing missing
Adhesion EMR2c missing present missing missing
Adhesion EMR2d missing present missing missing
Adhesion EMR4b missing present missing missing
Adhesion EMR4c missing present missing missing
Rhodopsin GPRI166P pseudogene present present pseudogene
Rhodopsin GPR33 pseudogene present present present
Rhodopsin GPR79 pseudogene present present present
Rhodopsin TAAR4 pseudogene present present present
Rhodopsin GPR141b missing present missing missing
Rhodopsin MRGPR-likel missing present missing missing
Rhodopsin TRHR3 missing present missing missing

Table 3: Human GPCR genes that are missing (not found in genome assemblies) or are pseudogenes in dog and/or rodents.

Family GPCR Human Dog Rat Mouse
Adhesion EMR2 present present missing missing
Adhesion EMR3 present present missing missing
Adhesion GPR144 present present pseudogene pseudogene
Rhodopsin AGTRI present present missing missing
Rhodopsin CCRI present present missing missing
Rhodopsin FPRI present missing present present
Rhodopsin FPRL2 present missing missing missing
Rhodopsin GPR109B present missing missing missing
Rhodopsin GPRI35 present missing present present
Rhodopsin GPR148 present missing missing missing
Rhodopsin GPR150 present missing present present
Rhodopsin GPR32 present missing pseudogene pseudogene
Rhodopsin GPR42 present missing missing missing
Rhodopsin GPR75 present missing present present
Rhodopsin GPR78 present pseudogene missing missing
Rhodopsin HTRIE present present missing missing
Rhodopsin MASIL present missing missing missing
Rhodopsin MCHR2 present present missing missing
Rhodopsin MLNR present present missing pseudogene
Rhodopsin MRGPRE present missing present present
Rhodopsin MRGPRXI present missing missing missing
Rhodopsin MRGPRX2 present present missing missing
Rhodopsin MRGPRX3 present missing missing missing
Rhodopsin MRGPRX4 present missing missing missing
Rhodopsin NPBWR2 present missing pseudogene pseudogene
Rhodopsin OPNILW present missing missing missing
Rhodopsin OXERI present present missing missing
Rhodopsin P2RY11 present present missing missing
Rhodopsin P2RY4 present pseudogene present present
Rhodopsin P2RY8 present present missing missing
Rhodopsin RXFP4 present pseudogene pseudogene present
Rhodopsin SSTR4 present missing present present
Rhodopsin TAARI present pseudogene present present
Rhodopsin TAAR6 present missing present present
Rhodopsin TAARS8 present missing missing missing
Rhodopsin TAAR9 present missing present present
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Figure |

Consensus tree of the human (hs) and dog (cf) Rhodopsin family based on 100 Maximum Parsimony phyloge-
netic trees. The sequence alignment used for the phylogenetic calculation was based on the transmembrane segments. A pie-

chart displays the average pairwise percentages of protein sequence identity between human, mouse and dog one-to-one
orthologs.
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Figure 2

Consensus trees of the human (hs) and dog (cf) Adhesion, Frizzled, Glutamate and Secretin GPCR families. Each
tree is based on 100 Maximum Parsimony trees. The sequence alignments used for phylogenetic calculations were based on
the transmembrane segments. For each GPCR family a pie-chart displays the average pairwise percentages of protein sequence

identity between human, mouse and dog one-to-one orthologs.
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and human one-to-one orthologs and this is higher than
is observed for each of these two species to the mouse
orthologs. For ease of discussion we present the Rho-
dopsin family of GPCRs according to their broad phyloge-
netic grouping [16] (see Additional file 1).Rhodopsin o
subfamily in dog is missing the receptors GPR148, Red
opsin (OPN1LW), TAARG, TAARS and TAAR9 (Table 3).
In the rodent genomes, three of these receptors; GPR148,
OPNI1LW and TAARS; are absent, whereas two; TAARG
and TAARY; are present. In dog GPR78 and TAAR1 are
pseudogenes while TAAR4 is a full-length/intact gene in
contrast to its human ortholog, which is a pseudogene.
The gene sequences of dog ADRA1B, ADRA1D, ADRA2A,
DRD4 and MTNR1B are incomplete.

In the Rhodopsin B subfamily one new dog gene, TRHR3,
was identified. TRHR3 is not present in humans or rodents
and the receptor with the highest amino acid identity, 59%,
is the Xenopus laevis thyrotropin-releasing hormone recep-
tor 3 (TRHR3, GenBank accession: CAD12656). Two Rho-
dopsin B subfamily receptors, GPR75 and GPR150, are
missing in dog, but present in human and rodents. The dog
NPFFR1 and NPFFR2 gene sequences are incomplete.

In the Rhodopsin y subfamily the dog lacks the genes for
FPR1, FPRL2, GPR32, NPBWR2 and SSTR4, which are all
present in human (Table 3). GPR33, which is a pseudog-
ene in human, is a full-length gene in both dog and
rodents. In contrast, another gene, RXFP4, is a pseudog-
ene in dog, but full-length in both human and rodents.
The dog KISSR1 was found to have an incomplete
sequence in the genome assembly.

In the Rhodopsin & subfamily we identified one new dog
member of the Mas-Related GPCR (MRG) cluster,
MRGPR-likel. The dog assembly is missing, GPR109B,
GPR42 (FFAR1L), MASI1L, MRGPRE, MRGPRXI1,
MRGPRX3 and MRGPRX4, which are all present in the
human genome. GPR79 is a full-length gene in both dog
and rodents, but is a pseudogene in human. In contrast,
P2RY4 is a full-length gene in human and rodents, but not
in dog in which it is a pseudogene. The dog MRGPRX2
gene sequence is incomplete.

One additional new dog Rhodopsin GPCR was identified,
GPR141b. The most similar receptor, human GPR141, is
an orphan GPCR. GPR135, which is also an orphan Rho-
dopsin GPCR, was not found in dog. GPR166P, which is a
pseudogene in human, was found to be a full-length gene
in dog appearing to be functional. Two additional dog
Rhodopsin GPCRs, DARC and GPR88, have only incom-
plete gene sequences.

Figure 2 displays consensus trees of 100 maximum parsi-
mony phylogenetic trees of the Adhesion, Frizzled, Gluta-
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mate and Secretin families of GPCRs. All families are
relatively well conserved in terms of sequence identity (in
the order Frizzled > Glutamate > Secretin > Adhesion).

The results show that the Glutamate family is well con-
served having 22 orthologous receptor pairs and no spe-
cies-specific genes in dog and human. (Figure 2 and
Additional file 1). The average protein sequence identity is
89% between dog and human orthologs and lower for
each of these two species to the mouse orthologs. The
sequence of dog GRM3 is incomplete.

The Adhesion family displays have unconventional orthol-
ogy relationships between dog and human. All 33 human
Adhesion GPCRs are present in the dog genome. But, inter-
estingly, the dog also contains an additional 5 full-length
genes; EMR2b, EMR2¢, EMR2d, EMR4b and EMR4c¢; and
1 pseudogene GPR133b. These Adhesions GPCR genes
seem to be specific for the dog lineage as they have not
been found in other mammals studied [8,30,31]. We per-
formed a phylogenetic analysis based on the 5 dog-spe-
cific EMR receptor sequences together with the dog,
human, cow and opossum EMR1-EMR4 and CD97. The
phylogenetic analysis was based on the transmembrane
regions and the resulting consensus tree is presented in
Figure 3. The dog and human one-to-one Adhesion recep-
tor orthologs have an average protein sequence identity of
83% and this is higher than each of these species have to
their mouse counterparts (Figure 2). GPR144, EMR2 and
EMR3; which are full-length in human but pseudogenes
in rodents; appear to be functional (are full-length) in
dog. The gene sequences of BAI1l, EMR2d, EMR4c,
GPR123 and GPR124 are incomplete.

The Frizzled family is well conserved between dog, mouse
and human having 11 orthologous receptor pairs and no
species-specific genes in either species (Figure 2 and Addi-
tional file 1). A slight difference is observed for the rat Friz-
zled repertoire in which FZD10 appears as a pseudogene.
The average amino acid identity is 96.9% between dog
and human Frizzled orthologs. The gene sequence of dog
FZD8 is incomplete.

The Secretin family has the same 15 members in human,
dog, mouse and rat i.e. their repertoires are identical. The
average protein sequence identity between dog and human
Secretin family GPCR orthologs is 88.5% (Figure 2).

The group defined as Other GPCRs include 18 dog genes.
One of these, GPR172A, which is present in human but
missing in rodents, was found to be missing in the dog
genome. Another gene, TMEM185B, which is a pseudog-
ene in human but full-length in rodents, appears to be
functional (is a full-length gene) in dog.
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cowEMR2e
cowEMR2f
cowEMR3
100
humanEMR2
cowEMR2 100 humanEMR3
opossumEmr3 dogEMR3
opossumEmr2 dogEMR2
75 66 57
dogEMR2b
dogEMR4c 50
100 66
90 dogEMR2c
dogEMR4 86
91 96 opossumEmr1
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humanEMR4 50
62 cowEMR1
cowEMR4 100
dogEMR4b
opossumEmr4
100 dogEMR1
humanEMR1
cowCD97 opossumCD97
dogCD97 humanCD97
Figure 3

Consensus tree of the EGF-TM7 Adhesion family GPCRs derived from 100 Maximum Parsimony phylogenetic
trees. The sequence alignment used for the phylogenetic calculation was based on the transmembrane segments.

Discussion

In this study we present the overall repertoire of non-
olfactory GPCRs in dog and compared it with its counter-
parts in human, rat and mouse. Comparison of the dog
and human GPCR repertoires, tabulated in Tables 2, 3,
shows 12 GPCR genes that are only found in the dog

genome. Moreover, 20 human GPCR genes were not
found in dog while 4 human GPCR genes were found as
pseudogenes in the dog genome. There are a variety of
possible underlying reasons and consequences of why
some receptors have been lost or duplicated in some spe-
cies, but not affected in others. The general evolutionary
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explanation is that gene repertoires are altered in response
to the adaptation of the animals to environmental factors
such as the availability of food, disease, predators and
appropriate habitat. Behavioural factors such as coopera-
tivity, care of young, learning and social hierarchy also
come into play. Receptors would be gained if gene dupli-
cation offers a functional advantage by allowing for an
increased or altered expression (e.g. change in tissue dis-
tribution or expression level) of the protein or the gain of
a new function (e.g. a different ligand). If the redundancy
is physiologically insignificant gene duplicates are typi-
cally lost by pseudogenization.

The result of the dog genome provides interesting insight
into the differential evolutionary pressures among the
subgroups of GPCRs. The majority of the differences
observed in this study (7 of 12 GPCRs present in dog but
not in humans and 12 of 24 GPCRs present in humans
but not found in dogs) are found in only four sub-groups;
EGF-TM7 (epidermal growth factor GPCRs), MRGPRs
(Mas-related GPCRs), TAAR (trace amine-associated
receptors) and FPR (formyl peptide receptors). The TAAR
family is known to be highly variable between the mam-
malian species. For example, the number of intact TAAR
genes are 5, 15 and 22 in human, mouse and opossum,
respectively [32]. In dogs, there are only 2 intact TAAR
genes; TAAR4 and TAARS. The olfactory system is also
associated with high interspecies variation at the mamma-
lian level [26]. Pseudogenes are common in the olfactory
repertoire, a feature that may relate to its peculiar signal-
ling system, based on an olfactory neuron that has to have
a signalling neuron to allow its connection to the appara-
tus of perception. A relatively dysfunctional GPCR has rel-
atively little consequence as a result. The strong variations
in the repertoires of the TAAR family are consistent with a
common engine of evolution- sensory perception.
Another sensory system, that perceives sweet or umami
tastes, is mediated by three receptors in human, TAS1R1-
3 (members of the Glutamate family). In cats TAS1R2 is a
pseudogene and is therefore not available to form a criti-
cal heterodimer with TAS1R3 and this has resulted in loss
of the ability to sense sweet tastes [33]. Dogs, unlike cats,
are known to have an appetite for natural sugars. This fact
is supported by genetics as TAS1R1, TAS1R2 and TAS1R3
all have intact gene sequences in the dog genome and thus
can encode functional proteins. In contrast another recep-
tor family that senses bitter tastants, the Taste2 receptors,
are fewer in dog than in many other mammals. The
number of Taste2 receptors is 14 in dog, whereas the cor-
responding figures in human and mouse are 25 and 34,
respectively [27]. The number or bitter taste receptors in a
species is likely to correlate with exposure to environmen-
tal factors vital for survival as bitter taste is an indicator of
poison. Looking at other sensory genes such as the cluster
of opsin receptors, the dog, like rodents, is lacking the Red
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opsin (OPN1LW) gene, which is essential for normal
color vision in human. This difference has however a
more specific consequence as compared with changes in
the other sensory gene repertoires.

There is a large interest in the Adhesion family receptors,
many of which were recently discovered [34,35]. Adhesion
receptors have unique configurations of functional
domains within their N-termini and these are thought to
play different physiological roles by mediating a variety of
interactions with extracellular molecules. One group of
Adhesion receptors, the EGF-TM7 GPCRs, are equipped
with a variable number of epidermal growth factor (EGF)
and calcium binding domains and are reported to be
important components of the immune system [34]. In
dog, two EMR2-like GPCRs have been reported previously
[36] and here we present one additional EMR2 and two
EMR4 gene duplicates. Moreover, we found additional
EMR2 duplicates in cow (See Figure 3). The 5 dog-specific
EMR receptors are here termed EMR2b, EMR2¢, EMR2d,
EMR4b and EMRA4c. It has been suggested that EMR2 has
a chimeric structure [36]. The seven transmembrane
(7TM) segments of EMR2 are most similar to those in
EMR3 while the EGF domains in EMR2 are almost identi-
cal to those in CD97 [36]. Interestingly, in our phyloge-
netic analysis based on the 7TM segments (Figure 3),
EMR2 and EMR3 orthologs did not cluster together and
instead receptor paralogs grouped together. This is in line
with the previous hypothesis about chimeric gene struc-
tures in this group [36]. We find this pattern to be the
same for the human, dog, cow and opossum receptors
(Figure 3). The new genes that we found in dog provide
additional evidence for the unique evolution of the EMR
subfamily of Adhesion GPCRs that seem not only shuffle
domains within the N-terminal region but also larger seg-
ments of the N-termini.

Dogs are commonly used as model organisms in toxicity
and dose tests in drug development and it has been pro-
posed that the immune system is more similar between
dog and human, than between mouse and human [37].
The EGF-TM7 have a role in the immune system [20] and
it is intriguing to speculate if the additional members in
dog may give this species an immunologic advantage.
Chondroitin sulphate is a native ligand for both EMR2
and CD97, which can also bind decay-accelerating factor
(DAF/CD55). The EGF domains in the N-termini of CD97
have been suggested to be essential for DAF/CD55 bind-
ing [38,39] while several other Adhesion GPCRs also have
N-terminal EGF domains that could compensate for the
gene difference in the mammalian gene repertoire. Inter-
estingly, and a bit surprisingly, the formyl peptide recep-
tors, FPR1 and FPRL2, could not be found in the dog
genome. These receptors are also believed to participate in
immune responses and respond to a large number of var-
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ious ligands [40]. FPRL1 however has an intact gene
sequence and appears to encode a functional receptor. It
is possible that FPRL1 could have taken over the functions
of two missing receptors in dog, pending that the
sequence homology corresponds to a shared function.
The involvement of the FPR and EMR families in the
immune system could also be indicative of an immuno-
logical selection pressure that affects diverse groups of
receptors. In drug development it is crucial to select model
organism with genetics closely reflecting that of human
and a model organism might prove inadequate because of
differences in the gene repertoire. A missing dog ortholog
may cause difficulties in drug development because the
preclinical studies always include at least one non-rodent
species, usually dog. Dog is good for the assessment of
toxicity and it is easier to spot the effect of a drug in dog
and more analytical instruments can be used e.g. electro-
encephalography and impedance cardiography. Differ-
ences in the immune system could also be potentially
important for toxicity testing of a candidate drug, when it
is crucial to have complete and functional immune sys-
tem.

There are several other differences between the dog and
human genome that are mostly related to Rhodopsin
GPCRs. The MAS-related GPCRs (MRGPRs) family (in the
8-cluster) shows large variation between humans and dog.
Most of the MRGPRs are orphan receptors, but some of
them have known native ligands, like B-alanin, BAMS8-22,
cortistatin and angiotensin 1-7 [41]. This family is also
highly variable in rodents and it is reasonable to assume
that each of these receptor families is under strong selec-
tion pressure that is very species dependent. Also the Rho-
dopsin family y cluster has several differences between the
compared species. The neuropeptide B/W receptor 2
(NPBWR2) was not found in dog and is absent also in
rodents and chicken. The somatostatin receptor 4 (SSTR4)
seems to be missing only in dog and all five somatostatin
receptors (SSTR1-5) are present in both the human and
rodent genomes. However, it needs to be noted that con-
clusions on the effect of genes not found in dog are some-
what preliminary as it is possible that genes could be
missing due to incompleteness of the genome assembly.

Our extensive dog GPCR gene sequence searches and the
manual curation of the coding domains have resulted in
an improved dataset compared to what was previously
available in the public domain. We compared our dog
GPCR dataset to what is available in the NCBI non-redun-
dant (nr) database and found that our dataset contains 28
exclusive and 43 modified/curated full-length gene
sequences. 282 of our full-length dog GPCR gene
sequence have identical entries in nr. The corresponding
numbers for the 13 dog GPCR pseudogenes identified in
this study are; 2 identical in nr, 8 not found in nr and 3
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modified/curated compared to nr. The higher number
and significantly improved quality of the dog GPCR rep-
ertoire presented here clearly illustrates the value of man-
ual sequence curation and extensive sequence collation
from the genomic sequence.

In summary, we have presented the overall non-olfactory
GPCR repertoire in dog and analysed it in relation to the
human, rat and mouse counterparts. We have identified
new genes and established the relationships of orthologs
and species-specific receptors. This study describes in
detail gene losses or duplications of GPCRs in both dog
and rodents and this information is useful for the selec-
tion of model organism as it affects how to interpret phar-
macological results.

Conclusion

We present the first overall analysis of the non-olfactory
GPCR repertoire in dogs and compare this to the versions
in mouse, rat and human. The receptor sequences have
been manually curated to assure a higher level of com-
pleteness and quality. Our results show that the dog GPCR
repertoire is more similar to that in human than rodents
both with respect to the number of receptor family mem-
bers and the sequence similarity of orthologs. The com-
parison of the GPCR repertoires revealed several examples
of species-specific gene duplications and losses and these
were described in detail both for dog and rodents. This
information can be used to guide the selection of model
organism as gene redundancies or absences can have cru-
cial effect on the outcome of pharmacological experi-
ments and how they should be interpreted.

Methods

Identification of dog Glutamate, Rhodopsin, Adhesion,
Frizzled and Secretin GPCRs

BLASTN searches in the non-redundant database

The human GRAFS GPCR genes were used as queries in
individual BLASTN searches [42] against the NCBI non-
redundant database [43]. For each query, the accession
numbers of the 10 first hits (representing orthologs, para-
logs and homologs) were collected and a non-redundant
list was obtained which was used to collect the sequences
of the hits using fastacmd of the NCBI blast package.

Manual curation of predicted gene sequences

The dataset obtained from the above search contained
many predicted genes and these were manually curated
for incorrectly included or left out exons. Incorrect
sequences were identified from pair-wise comparison
with the human ortholog or most similar homolog. Miss-
ing exon sequences were obtained from BLAT searches in
the dog genome assembly using the human protein
sequence as a query. Because of the genomic complexity
of the dog Adhesion GPCRs only their TM regions were

Page 10 of 13

(page number not for citation purposes)



BMC Genomics 2009, 10:24

checked and corrected. For other GPCR families the full-
length sequences were curated.

TBLASTN searches in the dog genome assembly

Previously published datasets of the human, rat and
mouse GPCR protein sequences were used as queries
[30,44]. The query dataset was searched using TBLASTN
against the May 2005 assembly of the dog genome with
expectation cut-off value set to 1.0. The results were proc-
essed so that overlapping hits on the same strand were
merged using a custom made Java program (available
upon request). The chromosome coordinates of the
merged hits were used to extract the corresponding
sequences from the genome using fastacmd of the NCBI
blast package. Each sequence was elongated upstream
until the first start codon and downstream until the first
stop codon using a custom made Java program (available
upon request). The preliminary dataset was "cleaned"
from non-GPCRs and GPCRs from other families by que-
rying it against the Refseq database using BLASTN with the
default settings. The criterion for including new GPCRs
was that the first two hits belonged to the same GPCR
family. Protein translations were obtained using transeq
from the EMBOSS package [45] and from these the long-
est intact coding domain was extracted.

BLAT searches for missing dog orthologs

Missing dog orthologs were searched for using online
BLAT [46]. Dog orthologs were defined as BLAT hits with
higher sequence similarity to the human query than any
other protein sequence in the Refseq database or in our
dog GPCR repertoire dataset.

Naming dog GPCR gene sequences

The dog sequences were named according to official Gene
names of human, rat and mouse orthologs. Genes that are
specific to dog, i.e. not found in other species, were
assigned the name of the most similar paralog and
appending a lower case single character suffix e.g.
"EMR2b". Orthologous and paralogous gene relation-
ships were initially assigned based on reciprocal BLAST
searches of dog and human GPCRs and subsequently ver-
ified by phylogenetic analysis.

Phylogenetic analysis

Human and dog GPCR sequences were divided into
Glutamate, Rhodopsin, Adhesion, Frizzled and Secretin fam-
ilies. Phylogenetic analysis was performed for each of the
groups. The 7TM helices (excluding loops and N-/C-ter-
mini) for amino acid sequences were determined from a
multiple alignment with bovine rhodopsin. produced
with ClustalW 1.81. The reason for using only the
sequences of the helices is that these regions have family-
wide similarity, whereas the similarity of other parts are
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typically subfamily-specific hindering broader compari-
son. The alignment was bootstrapped 100 times and 100
Maximum Parsimony trees were calculated with Phylip
3.67 [47]. The consensus tree of the 100 Maximum Par-
simony phylogenetic trees was calculated with Phylip
3.67, plotted with Treeview and manually edited in
CANVAS.

GPCR family sequence similarity analysis

Human, mouse and dog GPCR protein sequences were
divided into separate datasets for the Glutamate, Rho-
dopsin, Adhesion, Frizzled and Secretin families. Full-length
amino acid sequences were aligned with Clustalw 1.81.
The percentages of protein sequence identity were calcu-
lated individually for each orthologous pairs from
human, mouse and dog and used to derive an overall
average for each GPCR family.
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genesis inhibitor 1; BLAST: Basic Local Alignment Search
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Additional material

Additional file 1

Comparative table of the GRAFS family receptors in dog, human, rat
and mouse. A table listing the dog (cf), human (hs), rat (rn) and mouse
(mm) GPCRs of the Glutamate, Rhodopsin, Adhesion, Frizzled and
Secretin families. Pseudogenes are marked with a "P" in the column to
the right of the respective species. When several species- or lineage-specific
duplicates (paralogs) exist the paralog with the highest sequence identity
has been given as the primary ortholog whereas the other genes are present
on separate rows in the table and without a counterpart in the other spe-
cies.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-24-S1.xls]

Additional file 2

Dog GPCR amino acid sequences. Complete list of dog GPCR amino
acid sequences and pseudogenes in FASTA format.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-24-S2.txt]
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