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Abstract

Background: The requirements for growth and survival of the intracellular pathogen Trypanosoma
cruzi within mammalian host cells are poorly understood. Transcriptional profiling of the host cell
response to infection serves as a rapid read-out for perturbation of host physiology that, in part,
reflects adaptation to the infective process. Using Affymetrix oligonucleotide array analysis we
identified common and disparate host cell responses triggered by T. cruzi infection of phenotypically
diverse human cell types.

Results: We report significant changes in transcript abundance in T. cruzi-infected fibroblasts,
endothelial cells and smooth muscle cells (2852, 2155 and 531 genes respectively; fold-change > 2,
p-value < 0.01) 24 hours post-invasion. A prominent type | interferon response was observed in
each cell type, reflecting a secondary response to secreted cytokine in infected cultures. To identify
a core cytokine-independent response in T. cruzi-infected fibroblasts and endothelial cells transwell
plates were used to distinguish cytokine-dependent and -independent gene expression profiles.
This approach revealed the induction of metabolic and signaling pathways involved in cell
proliferation, amino acid catabolism and response to wounding as common themes in T. cruzi-
infected cells. In addition, the downregulation of genes involved in mitotic cell cycle and cell division
predicted that T. cruzi infection may impede host cell cycle progression. The observation of
impaired cytokinesis in T. cruzi-infected cells, following nuclear replication, confirmed this
prediction.

Conclusion: Metabolic pathways and cellular processes were identified as significantly altered at
the transcriptional level in response to T. cruzi infection in a cytokine-independent manner. Several
of these alterations are supported by previous studies of T. cruzi metabolic requirements or effects
on the host. However, our methods also revealed a T. cruzi-dependent block in the host cell cycle,
at the level of cytokinesis, previously unrecognized for this pathogen-host cell interaction.

Background host cell entry, trafficking to specific intracellular loca-
Establishment of infection by intracellular pathogens  tions and for nutrient acquisition [1-5]. Changes in host
involves appropriation of host cell functions to facilitate  cell gene expression that accompany the infection process
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are highly dynamic and reflect a wide array of responses to
a specific host-pathogen relationship [6]. As such, tran-
scriptional profiling is frequently used as a genome-wide
tool to screen for the impact of pathogens on host cell
functions [7-11]. However, deciphering the biological
information contained within transcriptional response
data is a major challenge in host-pathogen studies [12].
Transcriptional response data provide valuable insights
into pathogen-triggered host defense pathways and
changes in expression of host cell metabolic genes during
infection, the transcriptional outcomes of such events are
often obscured by compounded responses to diffusible
molecules released by infected or neighboring cells. The
ability to identify gene expression changes that occur
independently of cytokines and other diffusible mole-
cules provides a first step toward revealing transcriptional
changes that report the more intimate host-pathogen
interaction, and to providing novel insights into physical
and biochemical impact of infection. In this study, we
have carried out a comparative analysis of host cell tran-
scriptional response to the intracellular protozoan para-
site, Trypanosoma cruzi, in three phenotypically diverse
mammalian cell types with a view to uncovering a com-
mon signature response to parasite infection. We coupled
this approach with the use of a transwell plating system to
permit the identification of cytokine-dependent and -
independent responses to this pathogen.

T. cruzi, is the causative agent of human Chagas' disease
that affects several million people in South and Central
America [13]. Clinical manifestations arise during chronic
Chagas' disease and are the result of damage of the car-
diac, digestive and/or nervous systems [14]. While the
basis for the diverse organ disease patterns has not been
elucidated, differential cellular susceptibility to infection,
coupled with the nature of the host response elicited in
infected cells are likely to influence disease outcome. Try-
pomastigotes, the tissue invasive forms of T. cruzi, are
capable of establishing infection within in a variety of
nucleated cell types, including professional phagocytes
[15] and non-phagocytic cells, such as cardiomyocytes,
striated and smooth muscle cells, endothelial cells, adi-
pocytes and neurons [16-19]. To promote entry into non-
phagocytic cell types, T. cruzi trypomastigotes activate of a
number of host cell signaling pathways, including cal-
cium-dependent signaling [20-22], adenylyl cyclase [23],
phosphatidylinositol 3-kinases [24,25] and protein tyro-
sine kinases [26,27]. These early signaling events are
thought to orchestrate the host cellular events required for
invasion, such as actin microfilament remodeling [28] as
well as plasma membrane invagination [29] and targeted
lysosome fusion [30,31] that are involved in the forma-
tion of the parasitophorous vacuole. T. cruzi escapes the
vacuole several hours after entry resulting in cytosolic
localization of the parasite where transformation to the
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replicative amastigote stage is completed by 24 hours
[32,33]. Over the course of 3-5 days cytosolic amastigotes
divide every 12 hours giving rise to several dozen intracel-
lular parasites.

Intracellular growth and persistence of T. cruzi amastig-
otes within a range of host cell types in vivo represents an
important target for therapeutic intervention, however,
little is known regarding the requirements for intracellular
growth of T. cruzi in mammalian cells. Similar to other
kinetoplastid protozoan parasites, T. cruzi is a purine aux-
otroph [34] that can utilize both glucose and amino acids
as a carbon source [35]. The inability of T. cruzi to synthe-
size leucine, isoleucine and valine [36] predicts that these
aliphatic amino acids are also scavenged from the host. To
investigate the impact of intracellular T. cruzi infection on
host cell gene expression, we compared the global tran-
scriptional response elicited by infection in three different
cell types. We find that approximately one-third of the
transcriptional changes observed in T. cruzi-infected cells
at 24 hours post infection, were initiated by cytokines and
other diffusible molecules released by infected tissue cul-
tures. The core cytokine-independent response elicited in
fibroblasts and endothelial cells underscore metabolic
and signaling pathways involved in cell proliferation,
amino acid catabolism and response to wounding. Fur-
thermore, the overall dampening of host cell genes related
to the mitotic cell cycle and cell division, suggested that T.
cruzi infection impedes cell cycle progression in the host
cell. This prediction was confirmed with the observation
of parasite-containing multinucleate cells arising in T.
cruzi-infected cultures, indicative of a failure to undergo
cytokinesis following nuclear replication. Overall, our
findings validate the use of transcriptional profiling in
conjunction with transwell plates to provide novel
insights into biological processes that are modulated in
infected host cells in a cytokine-independent manner.

Results

T. cruzi elicits a robust cytokine-dependent response in
diverse cell types

To reveal a signature response elicited by Trypanosoma
cruzi in phenotypically diverse non-phagocytic mamma-
lian cell types, RNA was prepared from mock- and para-
site-infected human vascular smooth muscle cells
(VSMC), human microvascular endothelial cells
(HMVEC) and human foreskin fibroblasts (HFF) at 24
hours post-infection and prepared for hybridization to
HG_U133 plus 2.0 Affymetrix arrays for analysis of over
47,000 transcripts. VSMC were found to be less responsive
to T. cruzi infection than HFF or HMVEC where the aver-
age number of gene expression changes observed in two
independent experiments was as follows: VSMC: 531
genes (408 up, 131 down); HFF: 2852 genes (1204 up,
1648 down) and HMVEC 2155 genes (790 up, 1365
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down) (Figure 1A; see Additional file 1: Table S1, Addi-
tional file 2: Table S2, and Additional file 3: Table S3)
where differences in the level of infection achieved in each
cell type (VSMC: ~75% infected; HFF: ~70% and HMVEC:
~55%) did not obviously correlate with the range or
intensity of the transcriptional response in each cell type.
No gross variation between the trypomastigote to amas-
tigote transition rate that could account for these differ-
ences among cell lines was evident either. The intersection
of gene sets representing induced genes in the three cell
types revealed 299 genes (Figure 1B; genes; see Additional
file 4: Table S4). Furthermore, intersecting the GO func-
tions induced in the three cell types, revealed 41 common
GO function categories (Figure 1B; GO functions; see Addi-
tional file 5: Table S5). Within this common set of genes,
interferon-stimulated genes (ISGs) including IFN-stimu-
lated exonuclease (ISG20), 2,5-oligoadenylate synthase
(OAS1) and myxovirus resistance protein (MX1), featured
as among the most highly expressed in parasite-infected
VSMC, HFF, and HMVEC (see Additional file 1: Table S1,
Additional file 2: Table S2 and Additional file 3: Table S3,
respectively). As a reflection of the robust induction of
ISGs, 'IFN-signaling' was identified as the top signaling
pathway induced by T. cruzi in infected cells (Figure 1C)
consistent with the marked increase in IFNf3 expression in
all cell types (Figure 1D).

Dissecting the global host cell transcriptional response to
T. cruzi

While the induction of cytokines and the cytokine-
dependent response in infected host cells provides impor-
tant information regarding the nature of the innate
immune response to T. cruzi, gene expression changes
occurring in a cytokine-independent manner are pre-
dicted to more directly report the impact of intracellular
parasitism. In addition to IEN, T. cruzi triggers the expres-
sion of cytokines such as IL-6, IL-8, IL-11 and IL-15 in host
cells (see Additional file 6: Table S6), which are predicted
to contribute to the global transcriptional response to this
pathogen. To discriminate between cytokine-dependent
and cytokine-independent responses to T. cruzi, a tran-
swell plating system was adopted to experimentally dis-
sect the global transcriptional response in HFF and
HMVEC. In this setup, cells in the top chamber serve as
reporters for the effect of cytokines and other diffusible
factors (herein referred to as 'cytokines' for simplicity)
secreted by parasite-infected cells in the bottom chamber
(Figure 2A). (VSMC were omitted from the transwell
experiments due to difficulties obtaining adequate RNA
from cells plated on the top chamber.) As predicted, cells
exposed only to secreted cytokines and diffusible products
(Figure 2A, B, Top) generated by the infected cell popula-
tion (Figure 2A, B, Bottom) responded with significant
changes in gene expression. The cytokine-responsive
genes represent a substantial fraction of the total number
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of genes modulated in infected cells: 28% in HFF (803 of
2852 genes) and 22% in HMVEC (488 of 2155 genes).

To arrive at a subset of cytokine-independent gene
changes, the cytokine-responsive genes (Figure 2B, Top)
were filtered from the set of genes changing > 2-fold in
parasite-infected cells (Figure 2B, Bottom) as displayed
(Figure 2B, Bottom-Top; (see Additional files 7: Tables S7
and Additional files 8: Table S8 for gene lists). The result-
ant heat map clearly shows that a large number of genes,
including those annotated as IFN-responsive, were
removed by this filtering step (see Additional files 7:
Tables S7 and Additional files 8: Table S8). In addition,
the biological pathways corresponding to 'IEN signaling',
'antigen presentation' and 'protein ubiquitination' that
featured prominently in the overall transcriptional
response to T. cruzi (Figure 1C), are no longer represented
as part of a significant cytokine-independent response in
HFF and HMVEC (Figure 3A). Quantitative RT-PCR
(qPCR) was used to confirm some of the cytokine-
dependent and -independent predictions from the micro-
array analysis with excellent concordance (Figure 2C). Of
note, many of the cytokine and chemokine genes induced
upon infection (eg. IFN, IL-8, IL-11, IL-15 and CCL5)
were found to be cytokine-independent (see Additional
file 6: Table S6), indicating that the expression of some
cytokines and chemokines likely occurs as part of the pri-
mary response to T. cruzi. Others, such as IL-6, appear to
be upregulated in response to diffusible molecules in par-
asite-infected cultures.

T. cruzi alters expression of host cell metabolic and
signaling pathways in a cytokine-independent manner

To uncover a cytokine-independent signature response to
T. cruzi that is shared by diverse host cell types, we identi-
fied metabolic and signaling pathways that are signifi-
cantly modulated in response to infection after filtering
out the cytokine-dependent genes (Figure 3A). In general,
little overlap was observed in host cell pathways found to
be significantly perturbed in T. cruzi-infected HFF and
HMVEC (Figure 3A). However, pathways involving
"valine, leucine and isoleucine degradation", "ephrin
receptor signaling" and "PI3/AKT signaling" were simi-
larly altered in both T. cruzi-infected HFF and HMVEC
(Figure 3A). Several enzymes in the valine, leucine and
isoleucine degradation pathway were downregulated in
both cell types including BCAT2, which catalyzes the first
step in the degradation of branched chain amino acids
[37]. In the PI-3 kinase signaling pathway, two negative
regulators of Akt, PP2A and CTMP were downregulated in
infected fibroblasts and endothelial cells, as was TSC2, a
negative regulator of the mTOR pathway. In the ephrin
receptor signaling pathway, upregulation of growth fac-
tors such as FGF, PDGF and VEGF that signal through
receptor tyrosine kinases and repression of heterotrimeric
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Figure |

Differential gene expression in T. cruzi-infected HFF, HMVEC and VSMC at 24 hours post-infection. A. Heat map
of genes modulated during T. cruzi infection in each cell line identified by hybridization to HG_U133 2.0 arrays and analyzed
with Rosetta Resolver. Genes modulated (> 2-fold, p < 0.01) in at least one of the three cell types are shown. B. Venn diagrams
comparing up or downregulated genes (> 2-fold, p < 0.01) and GO functions (p < 0.05) in each cell type. C. qPCR analysis of
the expression of interferon beta (IFN-) mRNA normalized to GAPDH. D. Canonical pathways identified by Inguenuity Path-
way Analysis™ software as significantly altered (p < 0.05) following T. cruzi infection of HFF, HMVEC and VSMC.
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Figure 2

Identification of cytokine-dependent and - independent transcriptional responses in T. cruzi-infected HFF and
HMVEC. A. Schematic showing experimental design where T. cruzi-infected cells on the bottom of the transwell plate are
separated from uninfected cells on the top layer and mock-infected controls. B. Heat maps showing combined information for
two replicate experiments for changes in transcript abundance (> 2-fold, p < 0.01) for cells plated in the bottom and top the
top Transwell insert and for the genes remaining after subtraction of the genes present in both top and bottom (Methods).
Black bars represent cytokine-dependent genes removed by filtering the top response from the bottom. C. qPCR confirmation
of microarray data for selected non-differentially expressed genes (C), IFN-stimulated genes (ISG) and presumptive cytokine-
independent genes (cytokine-independent) identified by microarray analysis of samples obtained from HFF cells in Transwell
experiments. Where more than one sequence corresponding to the same gene was modulated in the microarray data, the per-
fect match (_at) sequence was chosen. Tropomodulin 3 (TMOD 3), IFN (IFN-p), radical S-adenosyl methionine domain-con-
taining protein 2 (RSAD?2), signal transducer and activator of transcription | (STAT-1), cholesterol-25-hydroxylase (CH25H),
kruppel-like transcription factor-4 (KLF4), purine nucleoside phosphorylase (PNP), solute carrier family 39 member 8
(SLC39A8), sphingosine kinase-1 (SPHK), huntingtin-interacting protein |-related protein (HIPIR), phosphofructokinase
(PFK), myocardin (MYOCD). cDNA generated from three independent infections was analyzed and the mean fold-change +
s.d. are reported for the qPCR.
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Cellular processes predicted by microarray data to be modulated during T. cruzi infection. A. Canonical pathways
in T. cruzi-infected cells that are significantly modulated in a cytokine-independent manner. B. Venn diagrams comparing genes
and representative GO functions for all up or downregulated genes (p < 0.05) in VSMC or following subtraction of the
cytokine-dependent genes identified in the transwell experiments for HFF and HMVEC.

G proteins in HFF whereas in HMVEC, there is a trend
toward downregulation of growth factor signaling path-
ways and a similar repression of heterotrimeric G pro-
teins.

A set of 500 genes was found to be commonly altered in a
cytokine-independent manner in response to T. cruzi
infection of HFF and HMVEC (Figure 3B; genes) which
was represented by 59 GO function categories (Figure 3B;
GO functions) (see Additional file 9: Table S9). The top
functional categories associated with upregulated genes in
HFF and HMVEC included 'immune response' and
'response to wounding' (see Additional file 10: Table S10
for genes). To extend our analysis of shared host cell

responses to T. cruzi, we next considered transcriptional
response data for VSMC despite the lack of transwell data
for this cell type. Intersection of VSMC expression data
with cytokine-independent genesets from HFF and
HMVEC reveals only 37 genes (33 induced; 4 repressed)
that are commonly modulated in the three cell types fol-
lowing infection with T. cruzi (Table 1). In addition to
strong expression of IFNf and CCLS5 in all cell types, par-
asite infection induces the expression of genes involved in
cell-matrix interactions (osteopontin; SPP1) carbohydrate
modification (B4GT5 and B3GNT2), vesicular transport
SYTL3 and T-SNARE1 and Ca2+ homeostasis STIM1 and
CARKL (Table 1). In terms of common metabolic genes,
pantothenate kinase 2 (PANK2), the first enzyme in the
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Table I: Common cytokine-independent gene expression changes in T. cruzi-infected cells.

Name Sequence Description Accession HFF Fold HFF HMVEC Fold HMVEC VSMC Fold* VSMC
p-value p-value p-value*

IFNBI Interferon, beta |, fibroblast 100 0.00E+00 98.6 4.50E-27 1.4 3.11E-06

CCL5 Chemokine (C-C motif) ligand 5 AF04334| 71.0 9.13E-35 57.1 4.53E-19 36 5.38E-19

CCL5 Chemokine (C-C motif) ligand 5 M21121 35.9 4.30E-16 58.2 4.53E-08 36.7 2.23E-15

CCL5 Chemokine (C-C motif) ligand 5 335 1.96E-25 92.0 8.48E-16 27.4 1.00E-13

LOCI126520 Hypothetical protein AK054808 279 9.07E-18 1.4 8.23E-14 6.7 3.00E-05

215941_at  MRNA, Xq terminal portion Dl16471 10.6 8.07E-07 9.1 8.84E-14 9.9 4.30E-08

LOC400740 Hypothetical gene AW205774 10.4 6.68E-11 5.1 1.08E-03 6 8.50E-04

ZBTB7A Zinc finger and BTB domain Al568395 8.8 3.20E-15 17.3 8.61E-19 I 6.1 1E-06
containing 7A

SSH2 Slingshot homolog 2 (Drosophila) ~ AB072358 84 5.85E-10 8.5 8.02E-08 5.6 1.57E-03

CARKL Homo sapiens carbohydrate 84 4.72E-08 9.0 4.64E-08 4.5 6.80E-03
kinase-like (CARKL)

1565716_at  GNO0053 Homo sapiens cDNA, BE930017 7.9 3.38E-18 10.1 2.29E-14 4.2 3.00E-05
mRNA sequence.

SLC24A4 SLC family 24 (sodium/potassium/ ~ W90718 74 1.02E-08 4.7 2.95E-06 59 5.20E-04
calcium exchanger), member 4

LOC283761 Hypothetical protein BC039350 6.5 3.30E-04 15.3 2.20E-08 I 4.57E-06

SYTL3 Synaptotagmin-like 3 Al990716 6.5 1.47E-06 4.8 1.00E-05 43 4.67E-03

FLJ35390 Hypothetical protein BC024303 6.4 2.22E-10 6.2 3.83E-07 2.8 3.35E-03

ILI7RE Similar to contains element TARI ~ AW003256 6.1 |.45E-06 34 2.74E-03 4.7 8.01E-03
repetitive element

SIM2 Single-minded (Drosophila) 5.8 7.69E-03 7.1 8.47E-06 6.8 1.48E-03
homolog 2 short isoform

FLJ14213 Hypothetical protein AV732741 4.8 4.02E-03 6.6 2.50E-04 10.3 1.10E-04

231673_at  Transcribed locus AW273730 47 7.94E-06 5.6 3.00E-05 2.7 7.29E-03

TSNAREI T-SNARE domain containing | Al741779 4.6 7.19E-13 35 8.00E-05 3.8 3.00E-05

234510_at  c<DNA clone DKFZp566F133 AL049357 4.0 6.70E-04 42 9.00E-05 4.7 3.71E-03

PANK?2 Pantothenate kinase 2 AV703394 35 9.91E-08 3.7 2.78E-03 2.1 7.06E-03

B3GNT2 beta-1,3-N- 34 2.77E-09 29 3.56E-03 2.1 3.00E-05
acetylglucosaminyltransferase

241657 at Transcribed locus Al791835 33 1.21E-03 4.4 8.50E-04 3.7 8.99E-03
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Table I: Common cytokine-independent gene expression changes in T. cruzi-infected cells. (Continued)

STIMI Stromal interaction molecule | BCOI6014 3.1 2.30E-04 3.9 1.51E-08 2.6 4.81E-03

KLF4 Kruppel-like factor 4 BF514079 3.1 |.74E-08 8.2 1.04E-03 34 2.20E-07

HISTIH2A]  H2A histone family, member E 3.1 1.22E-09 4.7 1.85E-09 2.1 2.40E-04

HISTIH2AI  H2A histone family, member C 3.0 2.69E-07 4.9 5.39E-08 2.1 4.60E-04

FNDC3A Cytochrome c oxidase subunit Vllc ~ AL137000 28 5.61E-08 22 2.59E-03 23 4.03E-06
pseudogene |

B4GALTS beta |,4-galactosyltransferase AL035683 28 4.55E-24 2.0 1.60E-10 2.1 2.38E-08
polypeptide 5

SPPI Secreted phosphoprotein | M83248 2.6 6.17E-03 5.1 |.80E-04 3.1 4.40E-04
(osteopontin)

CD55 Decay accelerating factor for 25 2.00E-05 22 9.37E-06 22 2.05E-06
complement

LYSMD2 LysM, putative peptidoglycan- Al674731 2.1 3.00E-05 35 3.58E-25 2.9 1.00E-05
binding, domain containing 2

PTPNI1 Protein tyrosine phosphatase, non-  L07527 -2.3 7.47E-03 -5.2 7.40E-04 222 1.04E-03
receptor type ||

PKP4 Plakophilin 4 -2.5 4.14E-08 -2.4 4.80E-04 -2 |.60E-07

MGC52110  hypothetical protein MGC52110 BF195431 -4.0 1.01E-06 -4.9 7.67E-06 -2.3 4.33E-03

MYTI Myelin transcription factor | AB028973 -5.3 2.37E-16 -4.4 6.57E-06 -2.1 5.52E-03

Gene expression changes occurring in human vascular smooth muscle cells 24 hours after infection with T. cruzi. The data shown corresponds to
probes for transcripts showing an intensity increase of 2-fold or greater (p < 0.01) with respect to their matched controls according to the analysis
with Rosetta Resolver Biosoftware 7.0. *Transwell data not available for VSMC.

biosynthetic pathway for coenzyme A production, was
upregulated in these diverse cell types in response to T.
cruzi-infection. While these genes do not assemble into
common metabolic or signaling pathways, examination
of significant GO terms indicate that the most basic com-
mon features of the host cell response to T. cruzi infection
of fibroblasts, endothelial cells and smooth muscle cells
involve the induction of stress response genes and those
involved in cell growth and proliferation (Table 2).

T. cruzi infection impedes late mitotic events

GO function analysis of genes that are downregulated in
T. cruzi-infected HFF and HMVEC in a cytokine-independ-
ent manner, reveal a significant bias toward 'mitotic cell
cycle', 'M phase’, and 'cell division' (see Additional file 9:
Table S9), suggesting the possibility that T. cruzi infection
negatively impacts the host cell cycle. To further character-
ize this finding, markers of cell cycle progression were
evaluated in T. cruzi-infected cells. We first examined the
relative ability of infected cells to incorporate BrdU into
nuclear DNA (marking S-phase) by immunofluorescence

microscopy where parasite-containing and parasite-free
cells were scored separately. T. cruzi-containing cells
incorporate BrdU into nuclear DNA at levels similar to
mock-infected controls at 24 hours and by 48 hr post-
infection, twice as many infected cells were positive for
BrdU (~40%) as compared to controls (~20%) (Figure
4A) revealing that parasite infection does not impair cell
entry into S-phase. Given that this increase was observed
in both uninfected and parasite-containing cells in the
monolayer (Figure 4A, 48 hr) suggests the presence of a
soluble 'mitogen' in infected cell cultures that stimulates
DNA replication in neighboring uninfected cells. In con-
trast, by 72 hr post-infection nuclear BrdU incorporation
was shown to be minimal in parasite-infected cells where
increases in incorporation were found to be refractory to
EGF stimulation (Figure 4A, 72 hr). However, the unin-
fected cells in the population were still able to respond to
EGF with increased BrdU incorporation relative to para-
site-containing cells. These data suggest that following an
increase in cell cycle progression, a parasite-specific block
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Table 2: Cytokine-independent biological functions modulated during T. cruzi infection.

HFF HFF HMVEC HMVEC VSMC VSMC
p-value # genes p-value # genes p-value # genes*

UPREGULATED

GO CATEGORY
GO:961 |: response to wounding 9.88E-09 29 9.25E-05 17 2.18E-05 17
GO:6955: immune response 1.02E-06 40 8.60E-05 27 2.01E-32 64
GO:42127: regulation of cell proliferation 1.76E-06 24 4.50E-04 15 4.37E-04 14
GO:6950: response to stress |.45E-04 44 4.23E-05 35 6.12E-13 48
GO:6915: apoptosis 8.56E-03 24 1.38E-04 23 3.06E-03 18

DOWNREGULATED

GO CATEGORY
GO:7049: cell cycle | .08E-05 78 2.03E-05 77 -- --
GO:6412: protein biosynthesis 1.51E-02 48 2.57E-02 47 -- --

Shown are selected GO functions modulated (p < 0.05, overlap > 5 genes) in a cytokine-independent fashion 24 hours after T. cruzi

infection.*Transwell data was not available for VSMC.

on cell cycle progression occurs somewhere between 48
and 72 hr post-infection.

The ability to label host cell nuclei with anti-phospho-H3
at 48 hours post-infection (Figure 4B) indicates that T.
cruzi-infected cells are not blocked at the G2/M phase.
However, in 48 and 72 hour cultures T. cruzi-infected cells
containing 2, 3 or 4 nuclei were observed (Figure 4C)
where the multinucleate phenotype was strictly observed
in parasite-containing cells in the infected cultures. No
multinucleate cells were observed in mock-infected con-
trol populations at any time point (data not shown).
Because multinucleate cells can arise as a result of a block
in cytokinesis following nuclear division or via cell-to-cell
fusion, fluorescently labeled cells were used to distinguish
between these possibilities. Cells labeled with
Cytotracker-green or Cytotracker-orange were infected in
separate dishes for 2 hours then mixed in a 1:1 ratio and
infection was allowed to progress for 48 and 72 hours.
Parasite-containing multinucleate cells were either green
or orange as shown in the representative images (Figure
4C). No yellow cells, indicating that fusion had occurred,
were observed under any condition. These data indicate
that the multinucleate cells arose from rounds of nuclear
duplication without cytokinesis, demonstrating the inhib-
itory effect of T. cruzi infection on the late stages of host
cell division as predicted from the results of the microar-
ray analysis.

Discussion

Perturbation of host metabolic pathways and cellular
functions following pathogen infection is predicted to
result in compensatory changes in the expression of key
regulatory components in at least some of the affected
pathways. To facilitate elucidation of these critical func-
tions in T. cruzi-infected host cells, we identified a core
transcriptional response elicited in phenotypically diverse
cell types following intracellular infection with this path-
ogen. A subset of host cell genes for which expression was
similarly modulated in three different human cell types
was identified in dermal fibroblasts, microvascular
endothelial, and vascular smooth muscle, following infec-
tion with T. cruzi. Within this subset of genes we find that
interferon-stimulated genes (ISGs) are among the most
highly induced by T. cruzi in the three cell types. This find-
ing is consistent with previous observations that T. cruzi
triggers IFNf expression in fibroblasts [38], macrophages
and dendritic cells [39] and reveals the robust nature of
the cytokine-driven response in shaping the early tran-
scriptional profile to this pathogen. In the second phase of
the study, transwell plates were employed to experimen-
tally distinguish cytokine-dependent and -independent
responses elicited in T. cruzi-infected cells. This applica-
tion permitted the identification of metabolic pathways
and cellular processes that were significantly altered by
the infective process in a cytokine-independent manner,
enabling us to focus on host cell transcriptional changes
that relate more directly to the metabolic impact of intra-
cellular parasitism.
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Cell cycle progression of T. cruzi-infected cells. A. Quantitation of BrdU-stained HFF cells mock- or T. cruzi-infected in
the presence or absence of 5 ng/ml EGF for 24, 48 or 72 hours. Within infected cultures, parasite-containing and parasite-free
cells were scored separately. B. Phospho-H3 staining (green) in T. cruzi-infected cells at 48 hours post-infection where host
and parasite DNA are stained with DAPI (blue). C. Images of co-cultured T. cruzi-infected HFF cells preloaded with
Cytotracker ™-green (green) or Cytracker ™-orange (red). Host cell nuclei (N) and parasite DNA (smaller blue) are stained

with DAPI (blue).

Host transcriptional responses to T. cruzi become detecta-
ble at 24 hours post infection [38] which reflect the cumu-
lative pre- and postinvasion events including
differentiation of the invasive T. cruzi trypomastigotes to
replicative amastigotes located in the host cell cytoplasm.
It is predicted that these activities are responsible for a
subset of the cytokine-independent changes in expression
of host biosynthetic pathways such as those that would
favor utilization of metabolites by the parasite. For exam-
ple, in parasite-infected fibroblasts, endothelial cells and
smooth muscle cells we observe upregulation of host 5'-
nucleotidase and/or purine nucleoside phosphorylase
(PNP), which generate the purine nucleosides and purine
bases [40]. Given that T. cruzi is reliant on purine salvage
for growth [41], induction of purine catabolic enzymes in

infected host cells may directly benefit replicating para-
sites. Along these lines, where T. cruzi is incapable of syn-
thesizing the aliphatic amino acids, leucine, isoleucine
and valine [36], we have observed a general repression of
the valine, leucine and isoleucine degradation pathway,
including expression of the first enzyme in the catabolic
pathway, BCAT2. Inhibiting the breakdown of these
amino acids would presumably increase their cellular
concentration and opportunities for scavenging by the
parasite. Another gene of interest, upregulated in diverse
cell types in response to T. cruzi, is PANK2, that encodes
pantothenate kinase 2, the first enzyme in the biosyn-
thetic pathway for Coenzyme A production [42]. Given
that CoA is required for GPI anchor synthesis, which is the
modification of choice for T. cruzi surface glycoproteins, it
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is tempting to speculate that by co-opting host CoA or one
of its precursors, the parasite creates an increased demand
for CoA which is met by upregulating this key enzyme in
the host cell CoA biosynthetic pathway.

In addition to potential changes in host cell biosynthetic
activities, the expression of apoptotic regulators and stim-
ulators of cell proliferation were also significantly induced
in T. cruzi-infected cells. This observation is interesting in
light of data showing that T. cruzi infection protects cardi-
omyocytes and neuronal cells from apoptotic stimuli
[43,44]. Moreover, parasite-mediated protection from cell
death appears independent of diffusible molecules
released from infected host cells [44], consistent with the
observed modulation of the expression of apoptosis regu-
lators in a 'cytokine-independent' manner in this study.
While the mechanistic basis for the apoptotic block is cur-
rently not known, alteration of expression of host cell
genes related to apoptosis is likely to benefit the parasite
by preventing host cell death before the intracellular rep-
licative cycle is complete.

Despite commonalities observed in the early response of
diverse host cell types to T. cruzi, a minor fraction of host
metabolic and signaling pathways were found to be
shared by T. cruzi-infected fibroblasts, endothelial and
smooth muscle cells. Intrinsic differences in the levels of
available host cell metabolic intermediates might be a
determining factor in the activation of homeostatic mech-
anisms and associated transcriptional changes. In addi-
tion to absolute differences between cell types, kinetic
differences in the cellular response to metabolic pressures
exerted by intracellular parasites may also produce non-
overlapping responses at a given time-point. In our study,
which examined only 24 hours post-infection, VSMC
were found to respond with relatively few changes in tran-
script abundance as compared to HFF or HMVEC, despite
similar burden of intracellular parasites. A comparison of
canonical pathways altered in VSMC at 48 hr post-infec-
tion (for which there were >2000 genes as compared to
~500 observed at 24 hours, see Additional file 11: Table
S11) with the cytokine-independent response triggered in
HFF and HMVEC revealed an increase in the number of
overlapping pathways (not shown). This observation sug-
gests that cell type specific responses to T. cruzi include a
kinetic component that influences the timing for which
significant changes are observed in an infected cell type. In
general, presumptive compensatory changes in host cell
genes involved in certain metabolic processes: eg. purine
metabolism, aliphatic amino acid catabolism, cell growth
and anti-apoptosis might have been predicted based on
our knowledge of T. cruzi physiology and interactions of
the parasite with the host cell. However, our array analysis
also predicted the unexpected finding that T. cruzi infec-
tion might impede cell cycle progression, on the basis that
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the top GO terms associated with downregulated
cytokine-independent genes in HFF and HMVEC were
associated with mitosis and cell division. While the
impact of T. cruzi on cellular proliferation genes has been
noted in a previous microarray study of T. cruzi-infected
Hela cells at 72 hours post-infection [45], no conclusions
were drawn as to the impact of these changes on cellular
proliferation. Here, we have demonstrated that T. cruzi-
infected fibroblasts are capable of DNA synthesis and
nuclear replication, but exhibit abortive cytokinesis as
judged by an accumulation of multinucleate cells at 48
and 72 hours post-infection. The increased level of BrdU
incorporation observed in both parasite-containing and
parasite-free cells in infected monolayers at 48 hours post-
infection suggest that infection with T. cruzi potentiates
host cell DNA synthesis early in the infective process and,
secondly, that this may be mediated by a soluble factor in
the medium. These findings are consistent with the obser-
vation that a number of growth factor genes (FGF, PDGF,
VEGEF) are upregulated in infected fibroblasts at 24 hours
post-infection and that 'cellular proliferation' features as
one of the overrepresented GO terms for upregulated
genes in T. cruzi-infected HFF, HMVEC and VSMC.

The mechanistic basis for the block in cell division is cur-
rently unknown, but it may be linked to a general damp-
ening of key cytoskeletal genes that would be required for
cytokinesis, including septins and several actin regulatory
genes (ARPC1A, DLG1, FARP1, MYH10, WIRE) as well as
induction of the protein phosphatase slingshot-2 (SSH2)
in infected cells which promotes actin disassembly via the
activation of cofilin [46]. Related to these findings, we
have recently demonstrated that the mechanical proper-
ties of T. cruzi infected cells change significantly with
infected cells becoming less stiff over the course of a 72
hour infection in a manner that appears to be related to
decreased Rho kinase activity in infected cells [47]. While
the significance of these findings is presently unclear, it is
possible that inhibition of host cell division provides a
more favorable environment for nutrient acquisition by
the intracellular parasites. It should be noted that some of
the important in vivo targets of T. cruzi infection, cardio-
myocytes for example, are terminally differentiated cells
that are no longer undergo mitosis. It has also been dem-
onstrated that mitotic cells are relatively refractory to
infection in vitro [48]. While there are many potential rea-
sons for this observation, including the dramatic reorgan-
ization of microtubules and reduced vesicular trafficking
that occurs during this stage of the cell cycle [49], the col-
lective set of observations are reflective of the important
interplay between host cell cycle and T. cruzi infection.
Several intracellular parasites are known to impinge on
host cellular proliferation pathways where Leishmania
amazonensis and Toxoplasma gondii block host cell cycle
progression at the G1/S transition [50] and G2/M stages
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Summary of common and cell specific responses elic-
ited in human cells infected with T. cruzi. Common
transcriptional responses are shown inside the circle, while
individual responses are shown in the outside, next to each
cell type. Transwell data was not available for VSMC. Arrows
indicate up or downregulation.

[51,52], respectively. In contrast, Theileria parva promotes
uncontrolled proliferation of infected host lymphocytes
[53]. The ability of Toxoplasma to block cell cycle progres-
sion was associated with the induction of host UHRF1
protein (ubiquitin-like, containing PHD and RING finger
domains 1), the suppression of which by siRNA blocks
both G2 arrest and reduces parasite proliferation in the
host cell [52]. A similar induction of UHFR1 mRNA is not
observed at 24 hours post-infection at any of the cell types
infected with T. cruzi, consistent with the observation that
this parasite does not impede cycles of DNA replication
and nuclear division, but instead, appears to dysregulate
aspects of cytokinesis. Additional studies will be instru-
mental for elucidation of the mechanism of T. cruzi-medi-
ated interruption of the host cell cycle and to determine
the benefits, if any, to host and pathogen. Such studies
could include transcriptional profiling of other cell types,
including cardiomyocytes and other non-dividing cells,
which constitute important targets for T. cruzi infection,
and would provide a contrasting view with respect to the
cells that were examined here. Furthermore, although the
cell cycle progression analysis was performed in cell cul-
tures that had reached confluence 48 hours prior the
experiments and demonstrated to be were arrested in GO
(data not shown), future global transcriptional profiling
of synchronized cells could more clearly define the mod-
ulation of cell cycle-related genes. Prior to this study, there
was no indication in the literature that T. cruzi can block
host cell division. The novel findings, reported here, dem-
onstrate the utility of transcriptional profiling in directing
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the rational search for host biological functions affected
during pathogen intracellular infection.

In summary, we have uncovered novel host cell physiol-
ogy secondary to parasite infection that is cytokine-inde-
pendent, including evidence for parasite induced host cell
cycle arrest. Given that we have limited knowledge of the
intracellular requirements for T. cruzi amastigote replica-
tion and survival, the parasite-modulated pathways iden-
tified here represent potential targets for further
functional analysis and intervention.

Conclusion

With the goal of expanding the current understanding of
intracellular requirements of T. cruzi and the host path-
ways and processes that support its intracellular growth,
an experimental approach that combined transcriptional
profiling and transwell culture systems was employed in
this study. A core set of host transcriptional changes elic-
ited directly (independently from soluble factors, i.e.
'cytokines') by intracellular infection with T. cruzi in three
different human cell types was unveiled (summarized in
Figure 5). Common responses include metabolic and sig-
naling pathways involved in cell proliferation, amino acid
catabolism and response to wounding. The transcrip-
tional profiles also suggested the blockage of the cell cycle
progression due to parasite infection in two out of the
three studied cell types, a novel finding that was experi-
mentally confirmed as infected cells demonstrated a fail-
ure to undergo cytokinesis. The experimental approach
employed in this study is a valid tool to unveil biological
events triggered directly by the presence of intracellular
microorganisms, without the mediation of soluble fac-
tors.

Methods

Cell line and parasite maintenance

LLcMK, cells and human foreskin fibroblasts (HFF) were
maintained in DMEM supplemented with 10% fetal
bovine serum (FBS), 2 mM glutamine, 100 U/ml penicil-
lin and 100 pg/ml streptomycin. Human vascular smooth
muscle cells (VSMC) were grown in Ham's F12K medium
with 2 mM L-glutamine, 1.5 g/L sodium bicarbonate, 10
mM HEPES, 10 mM TES, 0.05 mg/ml ascorbic acid, 0.001
mg/ml insulin, 0.01 mg/ml transferrin, 10 ng/ml sodium
selenite, 0.03 mg/ml endothelial cell growth supplement
(ECGS) and 10% FBS. Human cardiac microvascular
endothelial cells (HMVEC) were maintained in endothe-
lial cell basal medium-2 and endothelial cell growth sup-
plements (Cambrex Bio Science) including 5% FBS. Y-
strain T. cruzi trypomastigotes were maintained by serial
passage in LLcMK2 cells as previously described [54].
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Experimental T. cruzi infection

To achieve 80% confluence 48 hrs post-plating VSMC
were seeded at a density of 2 x 105 cells/10 cm dish. For
Transwell experiments, the lower wells of 10 cm Transwell
plates (Corning Inc; 3 pm pore size) were seeded at a den-
sity of 2 x 105 cells/dish (HFF) or 4 x 105 cells/dish
(HMVEC) with half the amount, respectively, plated in
the upper chamber. VSMC or HFF/HMVEC in the lower
chamber of Transwell were infected for 2 hours with 1 x
108/ml trypomastigotes at 37°C in a CO, incubator in the
appropriate growth medium for each cell type supple-
mented with 2% FBS. Extracellular parasites were aspi-
rated, and infected monolayers rinsed 5 times with PBS
before incubation in complete growth medium (10% FBS
for VSMC and HFF and 5% FBS for HMVECs) for the indi-
cated times. To monitor infection levels, sterile 12 mm?2
coverslips, placed in dishes prior to cell seeding, were
removed, fixed in 2% w/v paraformaldehyde/PBS and
immunostained as described [30]. Control monolayers
were mock-infected in 2% FBS medium and submitted to
the same washing steps as the experimental infections.

RNA extraction

Cell monolayers were rinsed 3 times with sterile PBS and
total RNA was isolated with Trizol reagent (Invitrogen) in
accordance with the manufacturer's instructions and con-
centrated using the RNeasy kit (Quiagen). RNA was quan-
titated spectrophotometrically in a Beckman DU 530
spectrophotometer and stored at -80°C.

Microarray hybridization and analysis

RNA quality control and microarray hybridization was
performed at the at the Harvard Medical School's Biopol-
ymers facility. RNA integrity was evaluated employing an
Agilent 2100 Bioanalyzer (Agilent Technologies), and 5
pg of each sample were processed and hybridized onto
HG_U133 plus 2.0 Affymetrix chips, according to manu-
facturer's specifications for One-Cycle Target labeling
Assay. Data acquisition performed in a GeneChip® Scan-
ner 3000 (Affymetrix). The Affymetrix data files contain-
ing the unprocessed intensity values (i.e. Affymetrix .cel
files) were imported into Rosetta Resolver Biosoftware 7.0
where the data was pre-processed to reduce systematic
errors (i.e. background subtraction and intra-array nor-
malization). Through the application of the Affymetrix-
specific error model within Rosetta Resolver [55], the data
were transformed into profiles (i.e. scanned, imaged and
normalized expression data). Intensity ratios were calcu-
lated from the statistical combination of replicate profiles
in order to increase the confidence in measurements, and
to obtain fold-change values and associated p-values.
Transcripts showing at least a 2-fold change (p < 0.01)
with respect to their matched controls were used to create
gene lists that were subsequently uploaded into Gene-
spring GX gene expression analysis software (Agilent
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Technologies) to generate heat maps and perform GO
function analysis or into Ingenuity Pathway Analysis™
(IPA) (Ingenuity Systems Inc.) software to identify meta-
bolic and signaling pathways. Redundant probes (more
than one probe corresponding to the same gene) within
the gene sets employed in the GO function analysis were
manually removed to avoid inflating the overlap with GO
categories. In accordance to the minimum information
about microarray experiment (MIAME) guidelines, the
complete raw and processed data files for each array are
publicly available at the Gene Expression Omnibus

(GEO) database repository http://www.ncbi.nlm.nih.gov/
geo/ [GEO: GSE13791].

Quantitative RT-PCR

Total RNA was treated with DNAse (Invitrogen) and
reverse transcribed using the Iscript kit (Bio Rad). Quanti-
tative PCR was performed in a 7300 real-time PCR system
(Applied Biosystems) using real time PCR mastermix
(ABI). Specific primers and FAM-labeled probes for each
gene of interest were purchased as inventoried assays from
Applied Biosystems. AACT values were calculated with
respect to VIC-labeled human GAPDH controls (ABI) and
data is represented as fold-change for individual genes
under experimental (infection, exposure to soluble fac-
tors) relative to mock-infected control cells. The samples
employed for the qPCR analysis included the same sam-
ples used in experiments analyzed by DNA microarray
hybridization as well as additional independent experi-
ments.

Quantification of cytokine production by infected cells
HFFs, HMVECs and VSMC were seeded in six-well plates
and mock/infected as described above. Aliquots of 120 pl
of medium were taken every 6 hours, filter sterilized and
analyzed using SearchLight custom Multiplex arrays
(Pierce Biotechnology Inc.).

Cell cycle progression analysis

Cells were seeded into two 6-well plates, allowed to grow
and reach confluence for 48 hours prior to being mock/
infected as described above. FACS analysis of propidium
iodide stained cells showed that this strategy induced the
arrest of most of the cell population into Go phase of the
cell cycle. Six hours post infection the cells were re-split
into 6-wells containing sterile cover slips at a 1:4 ratio and
allowed to re-attach for 12 hours. To monitor entry into S-
phase, cover slips were stained with BrdU using the in situ
cell proliferation kit FLUOS (Roche) according to manu-
facturer's instructions. Parasite and host cell DNA was
counterstained with propidium iodide prior to mounting
the slides with Mowiol. To evaluate progression into M-
phase, fixed cells were, stained with anti-human phospho-
histone H3 (Ser 10) antibody (Cell Signaling Technology)
and host cell and parasite DNA were counterstained with
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DAPI. Images were obtained with a CCD camera mounted
on a Nikon TE-300 epifluorescescence microscope and
analyzed employing MetaMorph software (Universal
Imaging Corporation).

Cell fusion experiment

HFFs were seeded into two 6-well plates, allowed to grow
for 48 hours and mock/infected as described above. Six
hours post-infection, each plate was loaded with 5 uM of
either Cytotracker™ green or Cytotracker™orange dye (Inv-
itrogen) for 45 minutes in accordance with manufac-
turer's instructions. The cells were then trypsinized, green
and orange dyed cells were mixed, and plated into 6-well
plates containing sterile cover slips at one fourth the den-
sity of the original cultures. At 24, 48 and 72 hours, post
infection, cover slips were removed, fixed with 3.7% for-
maldehyde in PBS for 15 minutes, counterstained with
DAPI, mounted with MOWIOL and visualized as
described above.
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41 kDa; B3GNT2: UDP-GlcNAcbetaGal beta-1,3-N-
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lase; CoA: coenzyme A; CTMP: thioesterase superfamily
member 4; DAPI: 4',6-diamidino-2-phenylindole; DLG1:
discs, large homolog 1; DMEM: Dulbecco's modified
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human foreskin fibroblast; HIP1R: huntingtin-interacting
protein 1-related protein; HMVEC: human microvascular
endothelial cells; IFNB: interferon beta; IL-11: interleukin
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growth factor; PFK: phosphofructokinase; PI3K: phos-
phatidylinositol-3-Kinase; PNP: purine nucleoside phos-
phorylase; PP2A: protein phosphatase 2A; qPCR:
quantitative polymerase chain reaction; RNA: ribonucleic
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Additional file 1

Table S1 - Gene expression changes in T. cruzi-infected VSMC 24 hr.
Gene expression changes occurring in human vascular smooth muscle cells
24 hours after infection with T. cruzi. The data shown corresponds to
probes for transcripts showing an intensity increase or reduction of 2-fold
or greater (p < 0.01) with respect to their matched controls according to
the analysis with Rosetta Resolver Biosoftware 7.0.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-252-S1.xls]

Additional file 2

Table S2 — Gene expression changes in T. cruzi-infected HFF 24 hr.
Gene expression changes occurring in human foreskin fibroblasts 24 hours
after infection with T. cruzi. The data shown corresponds to probes for
transcripts showing an intensity increase or reduction of 2-fold or greater
(p < 0.01) with respect to their matched controls according to the analysis
with Rosetta Resolver Biosoftware 7.0.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-252-S2 xls]

Additional file 3

Table S3 — Gene expression changes in T. cruzi-infected HMVEC 24
hr. Gene expression changes occurring in human microvascular endothe-
lia cells 24 hours after infection with T. cruzi. The data shown corre-
sponds to probes for transcripts showing an intensity increase or reduction
of 2-fold or greater (p < 0.01) with respect to their matched controls
according to the analysis with Rosetta Resolver Biosoftware 7.0.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-252-S3 xls]

Additional file 4

Table S4 - T. cruzi-induced genes common to VSMC, HFF and
HMVEC 24 hr. Gene expression changes at 24 hours after infection with
T. cruzi that are common to human foreskin fibroblasts, human microv-
ascular endothelial cells and human vascular smooth muscle cells. The
data shown corresponds to probes for transcripts that show an intensity
increase of 2-fold or greater (p < 0.01) with respect to their matched con-
trols according to the analysis with Rosetta Resolver Biosoftware 7.0.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-252-S4 xls]

Additional file 5

Table S5 — GO function categories associated with T. cruzi-induced
genes. Gene ontology analysis was performed using Genespring GX to
identify functions with significant overlap (p < 0.05, overlap = 5 genes)
with the genes upregulated in human foreskin fibroblasts, human micro-
vascular endothelial cells and human vascular smooth muscle cells 24
hours after infection with T. cruzi. The functions induced in each cell type
were intersected, and common functions are shown.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-252-85.xls]

Additional file 6

Table S6 - Cytokine/chemokine genes upregulated in T. cruzi infected
cells. Gene expression changes (2-fold or greater p < 0.01) occurring in
each of the studied cell types for cytokine and chemokine genes with
respect to their matched controls according to the analysis with Rosetta
Resolver Biosoftware 7.0.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-252-S6.xls]

Additional file 7

Table S7 - 'Cytokine'-independent genes modulated by T. cruzi infec-
tion of HFF. Gene expression changes occurring in human foreskin
fibroblasts 24 hours after infection with T. cruzi, after removal of genes
induced by soluble factors through the use of transwells, as described in
methods. The data shown corresponds to probes for transcripts showing an
intensity increase or reduction of 2-fold or greater (p < 0.01) with respect
to their matched controls according to the analysis with Rosetta Resolver
Biosoftware 7.0.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-252-S7 xls]

Additional file 8

Table S8 - 'Cytokine'-independent genes modulated by T. cruzi infec-
tion of HMVEC. Gene expression changes occurring in human microvas-
cular endothelial cells 24 hours after infection with T. cruzi, after removal
of genes induced by soluble factors through the use of transwells, as
described in methods. The data shown corresponds to probes for transcripts
showing an intensity increase or reduction of 2-fold or greater (p < 0.01)
with respect to their matched controls according to the analysis with
Rosetta Resolver Biosoftware 7.0.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-252-S8.xls]

Additional file 9

Table S9 — Common GO function categories for cytokine-independent
responses in T. cruzi-infected HFF and HMVEC. Gene ontology analy-
sis was performed using Genespring GX to identify functions with signifi-
cant overlap (p < 0.05, overlap = 5 genes) with the genes up or
downregulated in human foreskin fibroblasts or human microvascular
endothelial cells 24 hours after infection with T. cruzi. The functions
modulated in each cell type were intersected, and common functions are
shown.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-252-S9.xls]
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Additional file 10

Table S10-Genes in the top GO function categories representing
upregulated genes in T. cruzi-infected HFF and HMVEC. Gene ontol-
ogy analysis was performed using Genespring GX to identify functions
with significant overlap (p < 0.05, overlap = 5 genes) with the genes up
or downregulated in human foreskin fibroblasts or human microvascular
endothelial cells 24 hours after infection with T. cruzi. The genes in the
two top functional categories upregulated genes in HFF and HMVEC are
shown.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-252-S10.xls]

Additional file 11

Table S11 — Gene expression changes in T. cruzi-infected VSMC 48
hr. Gene expression changes occurring in human vascular smooth muscle
cells 48 hours after infection with T. cruzi. Shown are genes with an
intensity reduction of 2-fold or greater (p < 0.01) with respect to their
matched controls according to the analysis with Rosetta Resolver Biosoft-
ware 7.0.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-252-S11.xls]

Acknowledgements

The authors thank Colby Wells for excellent support in maintaining para-
site cultures, Dr. Reddy Gali for introduction to and help with Rosetta
Resolver, and Daniel Bustillos for help with illustrating Figure 5. BAB was
supported in part by a Burroughs Wellcome Fund Award fro Investigators
in the Pathogenesis of Infectious Diseases. The research was supported by
the National Institutes of Health grant ROl Al047960 awarded to B.A.B.

References

I. Woods JP: Knocking on the right door and making a comfort-
able home: Histoplasma capsulatum intracellular pathogen-
esis. Curr Opin Microbiol 2003, 6(4):327-331.

2. Patel JC, Galan JE: Manipulation of the host actin cytoskeleton
by Salmonella - all in the name of entry. Curr Opin Microbiol
2005, 8(1):10-15.

3.  Roy CR, Salcedo SP, Gorvel JP: Pathogen-endoplasmic-reticu-
lum interactions: in through the out door. Nat Rev Immunol
2006, 6(2):136-147.

4.  Pizarro-Cerda J, Cossart P: Subversion of cellular functions by
Listeria monocytogenes. | Pathol 2006, 208(2):215-223.

5.  Laliberte J, Carruthers VB: Host cell manipulation by the human
pathogen Toxoplasma gondii. Cell Mol Life Sci 2008,
65(12):1900-1915.

6.  Jenner RG, Young RA: Insights into host responses against path-
ogens from transcriptional profiling. Nat Rev Microbiol 2005,
3(4):281-294.

7.  Eskra L, Mathison A, Splitter G: Microarray analysis of mRNA
levels from RAW264.7 macrophages infected with Brucella
abortus. Infect Immun 2003, 71(3):1125-1133.

8. Moore-Lai D, Rowland E: Microarray data demonstrate that
Trypanosoma cruzi downregulates the expression of apop-
totic genes in BALB/c fibroblasts. | Parasitol 2004,
90(4):893-895.

9.  McCaffrey RL, Fawcett P, O'Riordan M, Lee KD, Havell EA, Brown
PO, Portnoy DA: A specific gene expression program trig-
gered by Gram-positive bacteria in the cytosol. Proc Natl Acad
Sci USA 2004, 101(31):11386-11391.

10. Kim SK, Fouts AE, Boothroyd JC: Toxoplasma gondii dysregu-
lates IFN-gamma-inducible gene expression in human
fibroblasts: insights from a genome-wide transcriptional pro-
filing. | Immunol 2007, 178(8):5154-5165.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

http://www.biomedcentral.com/1471-2164/10/252

Paranavitana C, Pittman PR, Velauthapillai M, Zelazowska E, Dasilva L:
Transcriptional profiling of Francisella tularensis infected
peripheral blood mononuclear cells: a predictive tool for
tularemia. FEMS Immunol Med Microbiol 2008, 54(1):92-103.
Boothroyd |C, Blader |, Cleary M, Singh U: DNA microarrays in
parasitology: strengths and limitations. Trends Parasitol 2003,
19(10):470-476.

WHO: Control of Chagas Disease, Second report of the
WHO expert committee. In WHO Technical report series Volume
905. Geneva: World Health Organization; 2002.

Prata A: Clinical and epidemiological aspects of Chagas dis-
ease. Lancet Infect Dis 2001, 1(2):92-100.

Stafford JL, Neumann NF, Belosevic M: Macrophage-mediated
innate host defense against protozoan parasites. Crit Rev
Microbiol 2002, 28(3):187-248.

Petkova SB, Huang H, Factor SM, Pestell RG, Bouzahzah B, Jelicks LA,
Weiss LM, Douglas SA, Wittner M, Tanowitz HB: The role of
endothelin in the pathogenesis of Chagas' disease. Int | Parasi-
tol 2001, 31(5-6):499-511.

Vera-Cruz JM, Magallon-Gastelum E, Grijalva G, Rincon AR, Ramos-
Garcia C, Armendariz-Borunda J: Molecular diagnosis of Chagas'
disease and use of an animal model to study parasite tro-
pism. Parasitol Res 2003, 89(6):480-486.

Mukherjee S, Huang H, Petkova SB, Albanese C, Pestell RG, Braun-
stein VL, Christ GJ, Wittner M, Lisanti MP, Berman W, et al.:
Trypanosoma cruzi infection activates extracellular signal-
regulated kinase in cultured endothelial and smooth muscle
cells. Infect Immun 2004, 72(9):5274-5282.

Camandaroba E, The TS, Pessina DH, Andrade SG: Trypanosoma
cruzi: clones isolated from the Colombian strain, reproduce
the parental strain characteristics, with ubiquitous histotro-
pism. Int | Exp Pathol 2006, 87(3):209-217.

Moreno SN, Silva J, Vercesi AE, Docampo R: Cytosolic-free cal-
cium elevation in Trypanosoma cruzi is required for cell
invasion. | Exp Med 1994, 180(4):1535-1540.

Tardieux I, Nathanson MH, Andrews NW: Role in host cell inva-
sion of Trypanosoma cruzi-induced cytosolic-free Ca2+ tran-
sients. | Exp Med 1994, 179(3):1017-1022.

Scharfstein ], Schmitz V, Morandi V, Capella MM, Lima AP, Morrot A,
Juliano L, Muller-Esterl W: Host cell invasion by Trypanosoma
cruzi is potentiated by activation of bradykinin B(2) recep-
tors. | Exp Med 2000, 192(9):1289-1300.

Rodriguez A, Martinez |, Chung A, Berlot CH, Andrews NW: cAMP
regulates Ca2+-dependent exocytosis of lysosomes and lyso-
some-mediated cell invasion by trypanosomes. | Biol Chem
1999, 274(24):16754-16759.

Wilkowsky SE, Barbieri MA, Stahl P, Isola EL: Trypanosoma cruzi:
phosphatidylinositol 3-kinase and protein kinase B activation
is associated with parasite invasion. Exp Cell Res 2001,
264(2):211-218.

Todorov AG, Einicker-Lamas M, de Castro SL, Oliveira MM, Guil-
herme A: Activation of host cell phosphatidylinositol 3-
kinases by Trypanosoma cruzi infection. | Biol Chem 2000,
275(41):32182-32186.

Vieira MC, de Carvalho TU, de Souza W: Effect of protein kinase
inhibitors on the invasion process of macrophages by
Trypanosoma cruzi. Biochem Biophys Res Commun 1994,
203(2):967-971.

Ruta S, Plasman N, Zaffran Y, Capo C, Mege JL, Vray B: Trypano-
soma cruzi-induced tyrosine phosphorylation in murine peri-
toneal macrophages. Parasitol Res 1996, 82(6):481-484.
Rodriguez A, Rioult MG, Ora A, Andrews NW: A trypanosome-
soluble factor induces IP3 formation, intracellular Ca2+
mobilization and microfilament rearrangement in host cells.
J Cell Biol 1995, 129(5):1263-1273.

Woolsey AM, Sunwoo L, Petersen CA, Brachmann SM, Cantley LC,
Burleigh BA: Novel Pl 3-kinase-dependent mechanisms of
trypanosome invasion and vacuole maturation. | Cell Sci 2003,
116(Pt 17):3611-3622.

Tardieux |, Webster P, Ravesloot ], Boron W, Lunn JA, Heuser JE,
Andrews NW: Lysosome recruitment and fusion are early
events required for trypanosome invasion of mammalian
cells. Cell 1992, 71(7):1117-1130.

Rodriguez A, Samoff E, Rioult MG, Chung A, Andrews NW: Host
cell invasion by trypanosomes requires lysosomes and

Page 16 of 17

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1471-2164-10-252-S10.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-10-252-S11.xls
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12941399
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12941399
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12941399
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15694851
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15694851
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16491138
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16491138
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16362984
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16362984
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18327664
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18327664
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15806094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15806094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12595423
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12595423
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12595423
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15357096
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15357096
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15357096
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15269347
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15269347
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17404298
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17404298
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17404298
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18680519
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18680519
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18680519
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14519585
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14519585
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12092045
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12092045
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11871482
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11871482
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12385499
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12385499
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11334935
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11334935
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12658460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12658460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12658460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15322023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15322023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15322023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16709229
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16709229
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16709229
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7931085
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7931085
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7931085
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8113670
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8113670
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8113670
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11067878
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11067878
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11067878
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10358016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10358016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10358016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11262178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11262178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11262178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10913160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10913160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8093081
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8093081
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8093081
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8832726
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8832726
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8832726
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7775573
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7775573
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12876217
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12876217
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1473148
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1473148
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1473148
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8707821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8707821

BMC Genomics 2009, 10:252

32

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.
43.

44,

45.

46.

47.

48.

49.
50.

51.

52.

microtubule/kinesin-mediated transport.
134(2):349-362.

Nogueira N, Cohn Z: Trypanosoma cruzi: mechanism of entry
and intracellular fate in mammalian cells. | Exp Med 1976,
143(6):1402-1420.

Andrews NW: From lysosomes into the cytosol: the intracel-
lular pathway of Trypanosoma cruzi. Braz | Med Biol Res 1994,
27(2):471-475.

Hammond D), Gutteridge WE: Purine and pyrimidine metabo-
lism in the Trypanosomatidae. Mol Biochem Parasitol 1984,
13(3):243-261.

Ginger ML, Prescott MC, Reynolds DG, Chance ML, Goad LJ: Utili-
zation of leucine and acetate as carbon sources for sterol and
fatty acid biosynthesis by Old and New World Leishmania
species, Endotrypanum monterogeii and Trypanosoma
cruzi. Eur | Biochem 2000, 267(9):2555-2566.

Alfieri SC, Camargo EP: Trypanosomatidae: isoleucine require-
ment and threonine deaminase in species with and without
endosymbionts. Exp Parasitol 1982, 53(3):371-380.

Brosnan JT, Brosnan ME: Branched-chain amino acids: enzyme
and substrate regulation. | Nutr 2006, 136(1 Suppl):207S-211S.
Vaena de Avalos S, Blader I), Fisher M, Boothroyd ]JC, Burleigh BA:
Immediate/early response to Trypanosoma cruzi infection
involves minimal modulation of host cell transcription. | Biol
Chem 2002, 277(1):639-644.

Koga R, Hamano S, Kuwata H, Atarashi K, Ogawa M, Hisaeda H,
Yamamoto M, Akira S, Himeno K, Matsumoto M, et al: TLR-
dependent induction of IFN-beta mediates host defense
against Trypanosoma cruzi. J  Immunol 2006,
177(10):7059-7066.

Bzowska A, Kulikowska E, Shugar D: Purine nucleoside phospho-
rylases: properties, functions, and clinical aspects. Pharmacol
Ther 2000, 88(3):349-425.

Landfear SM, Uliman B, Carter NS, Sanchez MA: Nucleoside and
nucleobase transporters in parasitic protozoa. Eukaryot Cell
2004, 3(2):245-254.

Robishaw D, Neely JR: Coenzyme A metabolism. Am | Physiol
1985, 248(1 Pt I1):EI-9.

Chuenkova MV, Furnari FB, Cavenee WK, Pereira MA: Trypano-
soma cruzi trans-sialidase: a potent and specific survival fac-
tor for human Schwann <cells by means of
phosphatidylinositol 3-kinase/Akt signaling. Proc Natl Acad Sci
USA 2001, 98(17):9936-9941.

Petersen CA, Krumholz KA, Carmen ], Sinai AP, Burleigh BA:
Trypanosoma cruzi infection and nuclear factor kappa B
activation prevent apoptosis in cardiac cells. Infect Immun
2006, 74(3):1580-1587.

Shigihara T, Hashimoto M, Shindo N, Aoki T: Transcriptome pro-
file of Trypanosoma cruzi-infected cells: simultaneous up-
and down-regulation of proliferation inhibitors and promot-
ers. Parasitol Res 2008, 102(4):715-722.

Ohta Y, Kousaka K, Nagata-Ohashi K, Ohashi K, Muramoto A, Shima
Y, Niwa R, Uemura T, Mizuno K: Differential activities, subcellu-
lar distribution and tissue expression patterns of three mem-
bers of Slingshot family phosphatases that dephosphorylate
cofilin. Genes Cells 2003, 8(10):811-824.

Mott A, Lenormand G, Costales |, Fredberg JJ, Burleigh BA: Modula-
tion of host cell mechanics by Trypanosoma cruzi. | Cell Phys-
iol 2009, 218(2):315-22.

Dvorak JA, Crane MS: Vertebrate cell cycle modulates infec-
tion by protozoan parasites. Science 1981,
214(4524):1034-1036.

Barr FA, Gruneberg U: Cytokinesis: placing and making the
final cut. Cell 2007, 131(5):847-860.

Kuzmenok OI, Chiang SC, Lin YC, Lee ST: Retardation of cell
cycle progression of macrophages from Gl to S phase by
ICAM-L from Leishmania. IntJ Parasitol 2005, 35(14):1547-1555.
Molestina RE, EI-Guendy N, Sinai AP: Infection with Toxoplasma
gondii results in dysregulation of the host cell cycle. Cell Micro-
biol 2008, 10(5):1153-1165.

Brunet ], Pfaff AW, Abidi A, Unoki M, Nakamura Y, Guinard M, Klein
JP, Candolfi E, Mousli M: Toxoplasma gondii exploits UHRFI
and induces host cell cycle arrest at G2 to enable its prolifer-
ation. Cell Microbiol 2008, 10(4):908-920.

J Cell Biol 1996,

53.

54.

55.

http://www.biomedcentral.com/1471-2164/10/252

Dobbelaere D, Heussler V: Transformation of leukocytes by
Theileria parva and T. annulata. Annu Rev Microbiol 1999,
53:1-42.

Caler EV, Vaena de Avalos S, Haynes PA, Andrews NW, Burleigh BA:
Oligopeptidase B-dependent signaling mediates host cell
invasion by Trypanosoma cruzi. EMBO | 1998,
17(17):4975-4986.

Weng L, Dai H, Zhan Y, He Y, Stepaniants SB, Bassett DE: Rosetta
error model for gene expression analysis. Bioinformatics 2006,
22(9):1111-1121.

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance
« cited in PubMed and archived on PubMed Central

O BioMedcentral

« yours — you keep the copyright

Page 17 of 17

(page number not for citation purposes)



http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8707821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=775012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=775012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8081267
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8081267
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6396514
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6396514
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10785375
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10785375
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10785375
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6806116
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6806116
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6806116
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16365084
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16365084
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11668183
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11668183
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11668183
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17082622
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17082622
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17082622
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11337031
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11337031
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15075255
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15075255
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2981478
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11481434
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11481434
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11481434
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16495529
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16495529
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16495529
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18058129
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18058129
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18058129
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14531860
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14531860
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14531860
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18853412
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18853412
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7029713
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7029713
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18045532
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18045532
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16188262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16188262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16188262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18182087
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18182087
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18005238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18005238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18005238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10547684
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10547684
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9724634
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9724634
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9724634
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16522673
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16522673
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	T. cruzi elicits a robust cytokine-dependent response in diverse cell types
	Dissecting the global host cell transcriptional response to T. cruzi
	T. cruzi alters expression of host cell metabolic and signaling pathways in a cytokine-independent manner
	T. cruzi infection impedes late mitotic events

	Discussion
	Conclusion
	Methods
	Cell line and parasite maintenance
	Experimental T. cruzi infection
	RNA extraction
	Microarray hybridization and analysis
	Quantitative RT-PCR
	Quantification of cytokine production by infected cells
	Cell cycle progression analysis
	Cell fusion experiment

	Abbreviations
	Authors' contributions
	Authors' information
	Additional material
	Acknowledgements
	References

