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Abstract

Background: The mosquito Anopheles gambiae is a major vector of human malaria. Increasing
evidence indicates that blood cells (hemocytes) comprise an essential arm of the mosquito innate
immune response against both bacteria and malaria parasites. To further characterize the role of
hemocytes in mosquito immunity, we undertook the first genome-wide transcriptomic analyses of
adult female An. gambiae hemocytes following infection by two species of bacteria and a malaria
parasite.

Results: We identified 4047 genes expressed in hemocytes, using An. gambiage genome-wide
microarrays. While 279 transcripts were significantly enriched in hemocytes relative to whole adult
female mosquitoes, 959 transcripts exhibited immune challenge-related regulation. The global
transcriptomic responses of hemocytes to challenge with different species of bacteria and/or
different stages of malaria parasite infection revealed discrete, minimally overlapping, pathogen-
specific signatures of infection-responsive gene expression; 105 of these represented putative
immunity-related genes including anti-Plasmodium factors. Of particular interest was the specific co-
regulation of various members of the Imd and JNK immune signaling pathways during malaria
parasite invasion of the mosquito midgut epithelium.

Conclusion: Our genome-wide transcriptomic analysis of adult mosquito hemocytes reveals
pathogen-specific signatures of gene regulation and identifies several novel candidate genes for
future functional studies.

Background pate in defense against invading microorganisms either
Insect blood cells (hemocytes) play a central role in medi-  directly through cellular mechanisms like phagocytosis or
ating innate immune responses [1-4]. Hemocytes partici-  indirectly through secretion of soluble humoral factors

Page 1 of 13

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19500340
http://www.biomedcentral.com/1471-2164/10/257
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Genomics 2009, 10:257

such as antimicrobial peptides, complement-like proteins
and components of the proteolytic cascade that regulates
melanization [5-12].

Much of our knowledge of insect hemocytes derives from
studies with the model insect Drosophila melanogaster and
Lepidoptera [13-17], but increasing evidence also impli-
cates hemocytes as being essential to the immune
response of mosquitoes including Anopheles gambiae that
vectors human malaria [18,19]. In adult mosquitoes,
hemocytes mediate phagocytic and/or melanotic immune
responses [20-25], and express several immunity-related
molecules implicated in defense against bacteria and/or
malaria parasites [20-23,25-39]. As a first step in the func-
tional genomic analysis of mosquito hemocytes, we con-
ducted a genome-wide microarray-based transcriptomic
profiling of Anopheles gambiae hemocytes in response to
infection by bacteria and Plasmodium berghei. We placed
particular emphasis on genes with putative functions in
the mosquito's immune system.

Results and Discussion

The hemocyte transcriptome

We used our previously published "high injection/recov-
ery" method to isolate hemocyte samples with little or no
contamination by other cell types from adult female mos-
quitoes [31]. This approach results in recovery of the three
types of hemocytes- granulocytes, oenocytoids and prohe-
mocytes — produced by An. gambiae that are distinguished
from one another by a combination of morphological,
functional, and molecular characters [31].

We analyzed the transcriptional profiles of hemocytes
using custom-made 60-mer oligonucleotide microarrays
representing the approximately 13,100 genes of the pre-
dictedtranscriptome of An. gambiae [40].

In order to identify hemocyte-specific and immune-
responsive transcripts, we first compared transcripts
expressed in hemocytes from one day old sugar-fed mos-
quitoes to transcripts detected in whole mosquitoes of the
same age and feeding status. This resulted in identification
of the hemocyte-enriched transcriptome. We then com-
pared hemocytes from 1 day old mosquitoes, 1 hour after
immune challenge with heat-killed Escherichia coli or
Micrococcus luteus, to control female mosquitoes injected
with sterile PBS to determine the bacteria challenge
responsive transcriptomes. We used heat-killed bacteria in
these assays, because our primary interest was in identify-
ing the bacterial responsive transcriptome and to avoid
the potentially confounding effects of altered gene expres-
sion due to the lethal effects of a systemic infection asso-
ciated with injection of living bacteria. Lastly, we
compared hemocytes from mosquitoes at 24 hours and
19 days after ingestion of a blood meal infected with Plas-
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modium berghei to mosquitoes of the same age fed a non-
infected blood meal to determine the ookinete and sporo-
zoite infection responsive transcriptomes, respectively.
This design resulted in a total of five experimental treat-
ments.

Overall, we detected a total of 4047 genes expressed in
hemocytes expressed in at least one of the experimental
treatments (Figure 1la; Additional file 1). Only 562
(13.9%) transcripts were detected in all experimental
treatments, but 2205 (54.5%) transcripts were identified
in at least two of the treatments performed. We observed
some variability in detectable transcript levels between the
different experimental treatments that most likely
reflected differences in age, infection state or other physi-
ological factors (i.e. sugar- versus blood-fed) (see below).

Comparing gene expression between hemocytes and
whole adult female mosquitoes, we identified 279 gene
transcripts with at least a 2 - fold higher presence and 266
genes with a lower abundance in hemocytes compared to
whole adult female mosquitoes (Figure 1b, Additional file
1). Only 54.5% of the hemocyte enriched transcripts had
predicted functions and these are discussed in Additional
file 2, data section S1.

Hemocyte immune gene expression

We identified expression of 182 (54.3%) of the 335 pre-
dicted immunity-related genes in at least one of our five
experimental comparisons, reinforcing the major role of
hemocytes in immune defense [41,42]. Importantly and
consistent with previous studies, we detected transcrip-
tion of all 11 immunity-related genes previously reported
to be expressed in An. gambiae hemocytes. These genes are
presented in the Additional file 2, data section S2. Con-
trary to expectation, however, only 9 of the 279 transcripts
with higher abundance in hemocytes versus whole mos-
quitoes and 14 of the 266 transcripts with lower abun-
dance were immunity-related genes. These genes are
presented in detail in the Additional file 2, data section S3.

Among the pattern recognition receptors expressed in
hemocytes, FBNs, PGRPs, TEP and TOLL family members
were especially well represented. In contrast, relatively
fewer C-type lectins (CTLs), galectins, Gram-negative
binding proteins (GNBPs) and CD36-like scavenger
receptors (SCRs) were transcribed in hemocytes. Seven-
teen members of the leucine rich repeat (LRR) family were
transcribed in hemocytes, including two of the three pre-
viously reported to mediate anti-Plasmodium immune
responses (LRIM and LRRD7 [APL2]) [43-45]. We also
detected transcription of several members of the recently
characterized Nimrod superfamily, including putative
homologues of Eater and NimC-1 [46] that are expressed
in hemocytes from Drosophila melanogaser and that are
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The global transcriptomic profiles of adult female An. gambiae hemocytes. (a)Bar chart show the gene functional
group distribution of all genes for which any transcription was detected in An. gambiae hemocytes, in at least | of the 5 experi-
mental comparisons. (b) Bar chart showing the number and functional class of all the genes either enriched or under-repre-
sented in hemocytes relative to whole adult female mosquitoes (whole), or significantly differentially regulated in hemocytes
either following challenge with heat-killed bacteria (E. coli and M. luteus) or infected with different stages of the rodent malaria
parasite P. berghei (P. b. 24 hours and P. b. 19 days). Red and green arrows indicate, respectively, genes up- and down-regulated
in hemocytes relative to either whole adult females (whole) or hemocytes from naive control mosquitoes (E. coli, M. luteus, P.
b. 24 hours and P. b. 19 days). (c) and (d) Proportional-area Venn diagrams illustrating the distribution of genes significantly dif-
ferentially transcribed in hemocytes following either bacterial challenge (c) or different stages of infection with the malaria par-
asite P. berghei (d). Numbers in brackets outside circles indicate the total number of genes differentially regulated by each
species, or stage, of pathogen. Numbers in brackets inside circles indicate the pooled total number of genes differentially regu-
lated by either both stages of malaria parasite infection (c) or both species of bacteria (d). Numbers by red and green triangles
indicate the number of genes up- and down-regulated, respectively, within each segment of the three segments formed by the
two upper-most circles of each figure. IMM = immunity-and apoptosis-related; RED/STE = redox and oxidoreductive stress;
PROT = proteolysis; CYT/STR = cytoskeletal and structural; TRP = transport; MET = metabolism; R/T/T = replication, tran-
scription and translation; DIV = diverse; and UNK = unknown.
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involved in phagocytosis of bacteria and apoptotic cells
[46]. As many as 27 CLIP-domain serine proteases, 11 of
their associated serpin inhibitors [47,48], and 8 putative
target PPO zymogens were also expressed in hemocytes
[49,50]. All of these factors have been predicted or are
experimentally implicated in melanization reactions that
occur in response to infection by bacteria and Plasmodium
[28,51]. Thirty-four other genes predicted to encode ser-
ine proteases were also transcribed in hemocytes, of
which 13 were enriched in hemocytes and/or exhibited
differential expression following microbial exposure.

In addition to canonical immunity-related genes, we
detected several gene transcripts in hemocytes belonging
to the cytoskeletal/structural functional class that have
conserved roles in phagocytosis [52,53]. These genes were
dominated by factors involved in the biogenesis and
organization/rearrangement of the actin cytoskeleton,
and included 5 components of the Arp2/3 actin-nuclea-
tion complex; 3 vesicle trafficking ADP-ribosylation fac-
tors (ARFs); cofilin; various members of the Rho, Rac and
Rab families of small GTPases (including rho1/L, rac1/2,
cdc42, Rab5, and several SNAREs); and several WASP fam-
ily members (including SCAR) [54-56].

Comparison of our microarray expression data to EST
data from bacteria-challenged hemocytes of the mosqui-
toes Aedes aegypti and Armigeres subalbatus [38] revealed a
relatively high degree of conservation in gene transcripts
associated with pathogen recognition and humoral
immune responses. Conservation of hemocyte-specific
transcript expression between the three mosquito species
was particularly high for the following groups of immu-
nity-related genes: antimicrobial peptides (8 of 8
expressed in An. gambiae); PRRs (9 of 9); CLIP-domain
serine proteases and their serpin inhibitors (15 of 17);
melanization (6 of 7); antioxidant-related (12 of 14); and
apoptosis-related (14 of 17). In contrast, there was lower
concordance between the three mosquito species in gene
transcripts associated with functions related to the
cytoskeleton (12 of 32), signal transduction (22 of 36)
and stress responses (7 of 16). We also compared our
microarray expression data to transcriptional profiles for
hemocytes from larval stage D. melanogaster [15,16]. This
analysis suggested relatively weak conservation in hemo-
cyte gene expression (data not shown) which may reflect
differences in hemocytes from different developmental
stages (adults versus larvae) and the apparent absence in
mosquitoes of orthologs for many hemocyte-specific Dro-
sophila genes (data not shown).

Hemocyte abundance in response to immune challenge

As previously noted, An. gambiae produces three hemo-
cyte types with granulocytes accounting for greater than
90% of the total number of cells in circulation during the

http://www.biomedcentral.com/1471-2164/10/257

larval, pupal and adult stage [31]. In adults, however, the
total number of hemocytes in circulation declines with
mosquito age while blood feeding stimulates a transient
increase in circulating hemocytes [31]. We reasoned that
infection could also affect hemocyte abundance, which
together with age or blood feeding could create variation
in microarray expression ratios unrelated to differential
gene regulation per se between control and microbe-
exposed mosquitoes. To facilitate interpretation of our
transcriptome data, therefore, we assessed the effects of
microbial challenge on hemocyte abundance in An. gam-
biae relative to non-infected controls. Sample analysis 24
h post-infection revealed no significant differences in the
total number of hemocytes in circulation (F, ;9= 2.09; P =
0.14) or in the number of granulocytes (F, ,o = 2.95; P =
0.07) and prohemocytes (F,,9 = 1.30; P = 0.29) between
mosdquitoes injected with E. coli, M. luteus or PBS (control)
(Figure 2a). However, injection of M. luteus did induce a
significant increase in the number of oenocytoids (F, 5 =
18.78; P < 0.0001) (Fig. 2a); an alteration that resulted in
this hemocyte type comprising 12% of the total number
of cells in circulation in M. luteus-challenged mosquitoes
compared to 7% and 5% for E. coli-infected mosquitoes
and PBS controls.

We infected mosquitoes with P. berghei by blood feeding
4 day old mosquitoes and then collecting samples 24 h or
19 days later. At the 24 h time point, parasites were in the
ookinete stage in the midgut epithelium of the mosquito
while at day 19 parasites were in the sporozoite stage and
were detected in the salivary glands. Controls consisted of
hemocytes collected from 4 day old, non-blood fed mos-
quitoes, and hemocytes collected 24 h and 19 days after
mosquitoes fed on a non-infected bloodmeal. Consistent
with previous results [31], the total number of hemocytes
in circulation significantly differed among treatments
(F4 49 = 45.86; P < 0.0001) with 24 h post-blood fed mos-
quitoes having more hemocytes in circulation than day 4
non-blood fed mosquitoes or day 19 post-blood feeding
mosquitoes (Figure 2b). However, no significant differ-
ences were detected in the total number of hemocytes and
hemocyte types in circulation between infected and con-
trol mosquitoes at 24 h or 19 days. Taken together, these
results indicate that variation in hemocyte abundance
likely affects transcript levels among the five experimental
treatments we performed. Within a given treatment, how-
ever, the lack of differences in hemocyte abundance
between experimental and control samples indicates that
any differences in microarray expression ratios reflect dif-
ferential gene expression in response to the pathogen.

This finding is important because global transcriptomic
profiles revealed a remarkable degree of specificity with
regard to pathogen and stage of immune challenge. Of the
4047 hemocyte transcripts detected in hemocytes, 959
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biae. (a) Total number of hemocytes and abundance of hemocyte types (granulocytes, oenocytoids, or prohemocytes) per
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(23.7%) exhibited differential regulation in at least one of
the 4 experimental comparisons involving challenge by
bacteria or P. berghei (Figure 1b-d; Additional file 1).
Among these differentially expressed transcripts, immu-
nity-related genes were significantly over-represented
compared to the genes belonging to other functional
classes (y2=27.11, P < 0.0001). While immunity-related
genes comprised only 6.1% (247/4047) of all genes
expressed in hemocytes, 10.9% (105/959) of differen-
tially regulated transcripts belonged to this functional
class. In contrast, the replication/transcription/translation
functional class was significantly under-represented in the
group of differentially expressed genes (x2= 14.19, P =
0.0002), presumably indicative of the house-keeping
function of many of the genes in this category. The per-
centage of differentially regulated transcripts was not sig-
nificantly different from that expected under the
assumption of no association between functional class
and differential regulation upon challenge for the remain-
ing 7 functional classes of genes (y2=5.49, P = 0.356).

Further insight into the role of different functional classes
of genes was provided by calculating the percentage of dif-
ferentially expressed transcripts within each functional
class for different microbial exposures (Figure 3). This
analysis highlighted variation in the overall levels of dif-
ferential gene transcription among treatments and patho-
gen-specific functional class responses. For example, in
hemocytes from mosquitoes challenged with E. coli, the
cytoskeletal/structural class was significantly over-repre-
sented in the group of differentially regulated genes com-
pared to other functional classes (2= 8.32, P = 0.0039),
while immunity-related genes were not. This likely reflects
an important role for phagocytosis and hemocyte migra-
tion in defense against bacteria (x2= 0.63, P = 0.298). In
contrast, hemocytes from mosquitoes infected P. berghei
exhibited an under-representation of redox and oxidore-
ductive stress class genes at 24 h post-infection (i.e. day 5)
(x2 = 3.87, P = 0.049). A relatively high percentage of
genes belonging to the proteolysis class were also differen-
tially regulated although this difference was not statisti-
cally significant (x2 = 1.30, P = 0.255 for 24 hours post-
infection and 2= 0.78, P = 0.377 for 19 days p.i.).

Transcriptional profile of hemocytes from bacteria-
infected An. gambiae

Challenge with either heat-killed E. coli or M. luteus
resulted in the differential regulation of 641 transcripts
(Figure 1b, ¢; Additional file 1), while only 44 transcripts
(6.9%) exhibited similar regulation upon challenge with
both elicitors. Challenge with M. luteus regulated 3.8
times more genes compared to challenge with E. coli: 543
genes were differentially regulated by M. luteus, while only
143 were regulated by E. coli. The percentage of expressed
genes differentially regulated was also much greater for M.
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luteus than for challenge with E. coli (21.4% versus 7.2%
of transcribed genes, respectively). This difference in gene
regulation was primarily due to a lack of transcriptional
up-regulation following challenge with E. coli: only 17
genes were induced by this bacterial species compared to
334 by M. luteus.

In total, 52 immunity-related genes exhibited significantly
different transcription following bacterial challenge. Thir-
teen and 44 immunity-related genes, respectively, were
differentially transcribed following challenge with either
E. coli or M. luteus (5 and 17 up- and 8 and 27 down-reg-
ulated). Only 4 (7.7%) genes differentially transcribed
following bacterial challenge were comparably regulated
by E. coli and M. luteus, and these are discussed in a greater
detail in the Additional file 3, data section S4 (Figure 1b,
¢ Additional file 1). M. luteus challenge resulted in the up-
regulation of 5 genes previously identified during an in
vivo screen for factors in An. gambiage associated with
phagocytosis: cactus, CEDG6L, PGRPLA, PGRPLC and TEP3
[25]. For more details on this expression signature see
Additional file 2, data section S5. Four genes encoding
protein products with putative roles in melanization were
transcriptionally up-regulated in hemocytes following
bacterial challenge, and are discussed in Additional file 2,
data section S6. A number of other genes belonging to
diverse functional classes and previously implicated in
phagocytosis [54-59] were also differentially regulated
upon bacterial challenge and most of them showed dis-
tinct patterns of transcriptional regulation for the two bac-
terial species and are discussed in a greater detail in the
Additional file 2, data section S7.

An. gambiae hemocytes differentially respond to E. coli
and M. luteus

Previous studies with the mosquitoes Anopheles albimanus,
Aedes aegypti and Armigeres subalbatus suggest that E. coli is
primarily phagocytosed by hemocytes, while Micrococcus
spp. are melanized extracellularly within the hemolymph
[20-22]. Our own results (see above) noted a significant
increase in the abundance of oenocytoids, which constitu-
tively express phenoloxidase activity, following infection
by M. luteus. Prior studies with An. gambiae in contrast
indicate that granulocytes are the only hemocytes that
phagocytize foreign targets and also inducibly express
phenoloxidase activity following immune challenge by
bacteria [31]. We therefore characterized phagocytosis
and melanization toward E. coli or M. luteus in An. gambiae
to assess whether: 1) oenocytoids and granulocytes differ-
entially respond to these two bacterial species and 2)
whether this response is qualitatively consistent with tran-
scriptomic profiles. Phagocytosis assays revealed that sig-
nificantly more granulocytes phagocitized E. coli than M.
luteus (t-test; P < 0.01) (Figure 2c). However, we also
noted that a higher proportion of granulocytes with inter-
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nalized M. luteus contained bacteria that were melanized
compared to granulocytes with internalized E. coli (t-test;
P < 0.01) (Figure 2d). Although oenocytoids cannot
phagocytize bacteria, challenge with M. Iluteus also
induced a significantly greater proportion of these hemo-
cytes to melanize than E. coli (t-test; P < 0.01) (Figure 2e).
These results indicate that similar to other mosquitoes, M.
luteus induces a much stronger melanization response
than E. coli in An. gambiae, even though granulocytes
phagocytize both species of bacteria. Although broadly
consistent with the up-regulation of phagocytosis and
melanization-related genes following M. luteus challenge,
these results also do not explain why so few genes with
phagocytic or immune functions are up-regulated by E.
coli.

Transcriptional profile of hemocytes from Plasmodium-
infected An. gambiae

During the two major spatial transition stages of infection
by Plasmodium sp., ookinete invasion of the midgut and
sporozoite migration through the hemolymph, the para-
site experiences considerable loss of abundance in An.
gambiae [60,61] that is in part attributed to hemocyte-
mediated immune responses [28,32]. Overall, transcripts
of 431 genes were differentially expressed in hemocytes
during malaria parasite infection (either at 24 hours and/
or 19 days after P. berghei infection) (Figure 1b and 1d;
Additional file 1). When considered relative to the total
number of expressed genes, the magnitude of gene regula-
tion was similar for the two different stages of malaria par-
asite infection (12.1 versus 11.0% of transcribed genes
were differentially expressed, respectively, at 24 hours
and19 days after P. berghei infection). Strikingly, only 23
(5.3%) of the differentially regulated transcripts had sim-
ilar expression profiles during the two infection stages,
while 16 (3.7%) transcripts were expressed in opposite
directions. The remaining 392 (91.0%) transcripts were
differentially expressed exclusively during one of the two
stages of parasite infection. Only 5 (6.8%) of the 74 puta-
tive immune genes were regulated in the same direction
while 7 (9.5%) transcripts were regulated in opposite
directions at 24 hours and 19 days after P. berghei infec-
tion.

Hemocyte transcription during P. berghei ookinete
invasion of the midgut epithelium

At 24 hours after infection with P. berghei, 293 genes
exhibited differential transcription in hemocytes, with
137 being up-regulated and 156 down-regulated (Figure
1b and 1d; Additional file 1). This included 42 immunity-
related genes, and 3 other genes involved in lipid trans-
port which are of particular interest because of their previ-
ously reported effects on malaria parasite infection; the
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retinoid and fatty-acid binding glycoprotein (RFABG),
which encodes apolipophorins I and II of the insect lipid
transporter [62]; apolipophorin III [63]; and an apolipo-
protein D (ApoD; ENSANGT00000010586). RFABG tran-
scription has previously been reported to be induced in
the midgut epithelium during P. berghei ookinete inva-
sion, and RNAi-mediated silencing of this gene signifi-
cantly increases malaria parasite infection [62]. Another
immune-responsive ApoD (ENSANGT00000028106),
which was also expressed in hemocytes, is necessary for
antibacterial and defense against at least some species of
Plasmodium [64,65].

Although transcribed in hemocytes, we did not detect dif-
ferential transcription of the majority of PRRs previously
implicated in immune responses against Plasmodium sp.:
AgMDL1, CTL4, CTLMA2, LRIM1, LRRD7 (APL2),
LRRD19 (APL1), and TEP1 [28,51,64,66]. This was espe-
cially surprising for CLT4, LRIM1 and TEP1, which are
known to be induced 24 hours after P. berghei infection
[28,32,51]. However, transcripts encoding the PPRs FBN9
and DSCAM, which have are also implicated in defense
against P. berghei and the human malaria parasite P. falci-
parum [64,67], were significantly up-regulated (data not
shown).

Four members of the Imd/REL2 pathway were up-regu-
lated (IAP2, TAK1, IKK2 and REL2), and one member was
down-regulated (Imd). The Imd/REL2 pathway has previ-
ously been reported to limit P. berghei oocyst infection in
An. gambiae [68], although others have been unable to
replicate this finding [32]. In Drosophila, cross-regulation
between the Imd/Relish and JNK signaling pathways is
well-established [43-45,69-71] (This expression signature
is discussed in detail in Additional file 2, data section S8).
Nine genes encoding factors predicted to belong to the
proteolytic cascades regulating melanization were differ-
entially transcribed in hemocytes 24 hours after P. berghei
infection and included serine proteases and their serpin
inhibitors (Additional file 1). (This expression signature is
discussed in detail in Additional file 2, data section S9).
Four other factors with known or putative roles in melan-
ization defense reactions were differentially transcribed in
hemocytes during the period of ookinete invasion of the
midgut epithelium. LYSC1 was significantly down-regu-
lated in hemocytes at both 24 hours and 19 days after P.
berghei infection, as well as following challenge with M.
luteus. LYSC1 has previously been reported to be induced
by bacterial challenge [72], and to inhibit melanization of
Sephadex beads through interfering with PO activity [73].
Three enzymes implicated in melanogenesis were tran-
scriptionally up-regulated, including: phenylalanine
hydroxylase (PAH; also known as phenylalanine 4-
monooxygenase, EC 1.14.16.1), tryptophan 2,3-dioxyge-
nase (TO; EC 1.13.13.11) and dopamine N-acetyltrans-
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ferase (DAT; EC 2.3.1.87). [72,74-77]. The expression of
TO in hemocytes, and its significant differential expres-
sion during both ookinete invasion of the midgut epithe-
lium and following challenge with M. luteus suggest a role
for TO in melanotic defense reactions. DAT has not previ-
ously been implicated in insect melanization reactions,
but its substrate dopamine is an intermediate in melanin
production suggesting a potential role in the biochemical
pathways mediating melanization.

Hemocyte transcription during P. berghei sporozoite
migration through the hemolymph

At 19 days after P. berghei infection, 177 genes were differ-
entially transcribed in hemocytes, of which 81 were up-
regulated and 96 were down-regulated (Figure 1b, d;
Additional file 1). This included 43 immunity-related
genes of which 28 were repressed and 15 were induced.
Notably, 16 (37.2%) of the immunity-related genes differ-
entially regulated during sporozoite migration through
the hemolymph belonged to the FBN family of immu-
nolectins: 9 FBNs were down-regulated, while 7 uncharac-
terized FBNs were up-regulated. The role of FBNs in anti-
sporozoite defense has not been investigated, but the dis-
crete patterns of FBN expression observed at 24 hours and
19 days after P. berghei infection suggests that distinct FBN
subsets are involved in mosquito immune responses to
ookinetes and sporozoites. The remaining 8 immunity-
related genes transcriptionally up-regulated during the
period of sporozoite presence in the hemolymph were:
the putative MD-2-like lipid-receptor AgMDL13, TEP3, the
An. gambiae ortholog of the Drosophila scavenger receptor
croquemort (SCRBQ?2), the CLIP-domain serine proteases
CLIPB8 and CLIPB13, the serpins SRPN9 and SRPN17,
and a thioredoxin peroxidase (TPX4). The role of these
factors in infection by Plasmodium sp. has not been inves-
tigated, except for CLIPB8 which has been shown to pro-
mote melanization of ookinetes during invasion of the
midgut epithelium and foreign bodies such as Sephadex
beads inoculated into the thorax [78,79]. CLIPBS,
CLIPB13, SRPN9 and CLIPA12, are all specifically regu-
lated by sporozoite infection and it is tempting to specu-
late that are part of a common mechanism.

The 19 immunity-related genes exhibiting significant
down-regulation during sporozoite migration through
the hemolymph included 5 pattern recognition receptors:
9 antimicrobial effectors, and four prophenoloxidases
(Additional file 1). The down-regulation of PPOs associ-
ated with sporozoite migration through the hemolymph
may represent a host homeostatic mechanism to prevent
"toxic shock" following the massive release of these para-
site stages into the hemocoel. The remaining immunity-
related genes exhibiting significant down-regulation were
various and disparate components of the major immu-
nity-related signaling pathways (Additional file 1).
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Other notable genes significantly up-regulated during
sporozoite passage through the hemolymph included sev-
eral implicated in phagocytosis (the p41 subunit of the
Arp2/3 complex, gelsolin and troponin C) and redox
metabolism (a cytochrome P450 and a glutathione S
transferase). Additionally, the transcript of an uncharac-
terized gene (ENSANGT00000032065), encoding a
domain with homology to mammalian B-defensin, was
significantly up-regulated in hemocytes at day 19 after P.
berghei infection. The Drosophila homolog of this gene has
previously been reported to be up-regulated in oncogenic
larval hemocytes [80], and it possibly represents a novel
antimicrobial peptide induced by, and with activity
against, sporozoites.

Conclusion

We have identified 4047 genes expressed in adult female
An. gambiae hemocytes, including 959 genes that were dif-
ferentially expressed following bacterial challenge and/or
malaria parasite infection. A dominant proportion of
these regulated genes was represented by 105 recognized
immunity-related genes, of which many have known or
putative roles in defense against P. berghei and other spe-
cies of Plasmodium. This pattern is fully consistent with
hemocytes having an important role in regulating mos-
quito innate immune responses. Transcriptomic profiling
of An. gambiae hemocytes following exposures to various
microbes also revealed distinct transcriptomes in response
to different species of pathogen and at different stages of
infection with the same pathogen. A closer examination
of these differential transcriptome signatures provided
numerous insights to potentially important functional
attributes of hemocyte -mediated defenses. For example,
the profound transcriptional response upon challenge
with M. luteus and the much weaker and mainly down-
regulated gene response after E. coli challenge, taken
together with the reported higher virulence of E. coli to An.
gambiae, suggests that the potency of the immune
response activated by these two bacterial species is quite
different [27,81].

The distinct transcriptional profiles associated with the
two different stages of the malaria parasite infection likely
reflects differences in where parasites are located within
the mosquito, antigenic differences between ookinetes
and sporozoites, and/or temporal differences associated
with blood-feeding or age of the mosquito hosts
[20,21,60,82]. Of particular interest was the co-regulation
in hemocytes of different members of the Imd/REL2 and
JNK immune signaling pathways, together with various
components of HAT/HDAC multiprotein complexes that
regulate immune gene expression through modification
of chromatin structure. These gene expression signatures
are discussed in Additional file 2, data section S8. The lack
of a transcripional phagocytic response to sporozoite
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infection is in agreement with the recent finding that the
rapid disappearance of P. berghei sporozoites from the
hemolymph of An. gambiae apparently results from cur-
rently uncharacterized, non-phagocytic and humoral
immune mechanisms [20,21,35,61]. Finally, the tran-
scriptomic profiles of hemocytes described in our study
revealed that several factors known to influence Plasmo-
dium infection are not only induced in the midgut epithe-
lium during ookinete invasion but are also
simultaneously up-regulated in hemocytes (e.g. CLIPB4,
CLIPB17, SRPNG6, and RFABG) [29,62,79]. This observa-
tion raises questions about the site of action of these
immunity-related factors, and whether these molecules
have similar or different functions in different tissues.
Future challenges, therefore, will be to dissect the contri-
bution of differential gene expression in hemocytes in
defense against different species of Plasmodium, and to
investigate the functional significance of the many novel
candidate immunity-related and other genes, identified in
this study.

Methods

Insects

All experiments were conducted using the G3 strain of An.
gambiae reared as previously outlined [31].

Hemocyte counts and phagocytosis/melanization assays

Phagocytosis assays were performed as previously
described [31]. Briefly, 2 x 103 heat-killed. fluoresceing
isothiocyanate (FITC)-conugated E. coli or M. luteus were
injected intrathoracically into cold anethetized mosqui-
toes. After 1 h at room temperature, hemocytes were col-
lected, placed into primary culture, and identified as
outlined by Castillo et al (2006) [31]. Briefly, granulo-
cytes were identified by their spread morphology, oenocy-
toids were identified by morphology, differential labeling
with monochlorobimane (MCB) and an anti-phenoloxi-
dase antibody (PP06, generously donated by K. Michel
and F. Kafatos), and prohemocytes were identified by
morphology and an absence of labeling by MCB and the
anti-PO antibody. The proportion of granulocytes that
had ingested particles was determined by counting 100
cells in a randomly selected field of view using the fluores-
cent quenching method [31]. Melanization was quanti-
fied by counting hemocyte-internalized bacteria. The
proportion of oenocytoids and granulocytes that had mel-
anized without ingesting any bacteria was also deter-
mined by visual inspection. We infected mosquitoes with
malaria parasites by allowing 4 day-old adult females to
feed on a BALB C mouse infected with the PbGFPqy
strain of P. berghei, which constitutively expresses green
fluorescent protein (GFP) under control of the P. berghei
elongation factor 1o promoter [83]. A Plasmodium berghei
reference line that constitutively expresses GFP at a high
level throughout the complete life cycle. Molecular and
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Biochemical Parasitology [137, [23-33]]. Only mice
exhibiting 3-5% parasitemia were used for infection of
mosquitoes. Hemocytes were collected either 24 hours or
19 days after blood-feeding. All cohorts of infected mos-
quitoes were also monitored by dissection to determine
levels of midgut infection by oocysts at 24 h and infection
of salivary glands by sporozoites on day 19. Only cohorts
in which > 80% of individuals were infected were used for
analysis. Controls included day 4 mosquitoes with no
bleed feeding and mosquitoes blood-fed on uninfected
mice. All data were analyzed by ANOVA followed by Dun-
netts comparison procedure or t-test using the JMP 7.0 sta-
tistical platform (SAS, Gary, NC). Proportional data were
arcsin transformed before analysis.

RNA extraction

Hemocyte samples from bacteria-infected, P. berghei-
infected and control mosquitoes were prepared and col-
lected as described above. A minimum of 30 individuals
were bled and their hemocytes pooled to obtain at least
500 ng of total RNA per replicate. However, for the day 19
post-blood feeding samples, more than 100 mosquitoes
were bled per sample due to the reduced number of
hemocytes present per individual (see Results). Total
RNAs were then isolated from hemocytes using the RNAE-
asy kit (Qiagen) as outlined by the manufacturer. For each
treatment and time point, three independent samples
were prepared for use in subsequent microarray and QRT-
PCR analyses.

Microarray probe synthesis, hybridization, analysis and
validation

300-400 ng of total RNA was used to synthesize Cy-3 or
Cy-5 fluorochrome-labeled cRNA probes for each hemo-
cyte or whole adult female sample using Agilent's Low
RNA Input Linear Amplification Kit (Cat. No. 5184-3523;
Agilent Technologies, Inc., Wilmington, DE) according to
the manufacturer's instructions. Two-color microarray
hybridizations were performed using Agilent's In situ
Hybridization Kit Plus (Cat. No. 5184-3568) and custom-
made 60-mer oligonucleotide microarrays purchased
from Agilent as previously reported [64]. Arrays were
hybridized for 16 hours, washed, dried with pressurized
air and immediately scanned using an Axon 4200AL scan-
ner and GenePix Pro (version 6.0) software (Axon Instru-
ments, Union City, CA). Scanned microarray images were
aligned to annotation files and flagged for bad spots in
GenePix Pro, using a combination of automatic and man-
ual curation. For our analysis, good spots were defined as
expressed if the mean foreground intensity of the spot was
at least three standard deviations above the mean local
background signal for the same spot. ExpressConverter
(version 1.7), MIDAS (version 2.19) and MeV (version
4.0) packages of the TIGR TM4 microarray software suite
[84] were used for subsequent downstream analyses of the
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processed output from GenePix Pro. The array data were
normalized with LOWESS and graphically explored using
the MIDAS package [85], while significantly differentially
expressed transcripts were identified using the significance
analysis of microarrays (SAM) [86] feature of the MeV
software, with a false discovery rate (FDR) of 5% [87].
Hierarchical clustering was performed with Cluster 3.0
software, using uncentered Pearson correlation distance
metric and average linkage clustering method, and the
resulting expression clusters visualized using TreeView
(version 1.6) software [6,88].

This microarray gene expression platform has been previ-
ously validated [64] and we compared real-time quantita-
tive PCR - based expression data to the microarray
expression data for four control genes in the 24 hr P.
berghei challenged and 24 hr non-infected blood fed sam-
ples. Total RNA samples were reversed transcribed using
dT,, primers and Superscript III (Cat. No. 18080-93; Inv-
itrogen, Carlsbad, CA). Real-time quantitative PCR assays
were performed using QuantiTect SYBR Green PCR Kit
(Cat. No. 204143; Qiagen Inc., Valencia, CA) and ABI
Detection System ABI Prism 7000 (Applied Biosystems,
Foster City, CA). The ribosomal protein S7 gene was used
for normalization of cDNA templates, the specificity of
the PCR reactions was confirmed by melting curves anal-
ysis. Primer sequences used for microarray validation
have been previously published [64]. The expression ratio
(infected/non-infected) for the control genes in the
microarray (first number) and real-time quantitative PCR
(second number) - assays were: DEF1: 0.34, 0.63;
CLIPA9: 1.89, 1.71; SRPN9: 3.00, 2.05; AgMDL1: 1.38,
2.18. Minor differences in the magnitude of regulation
relate to differences in the sensitivity and dynamic range
between the two types of assays, while the direction of reg-
ulation was consistent. Microarray data sets have been
submitted to GEO: GSM402884/Uninf Bf Hemo vs Pla
Hemo 19d C, GSM402883/Uninf Bf Hemo vs Pla Hemo
19d B, GSM402882/Uninf Bf Hemo vs Pla Hemo 19d A,
GSM402881/Uninf Bf Hemo vs Pla Hemo 24 hr
GSM402880/Uninf Bf Hemo vs Pla Hemo 24 hr
GSM402879/Uninf Bf Hemo vs Pla Hemo 24 hr
GSM402874/Hemo m luteus vs hemo unchallenge
GSM402873/Hemo m luteus vs hemo unchallenge
GSM402872/Hemo m luteus vs hemo unchallenge
GSM402871/Hemo E coli vs hemo unchallenge
GSM402870/Hemo E coli vs hemo unchallenge
GSM402869/Hemo E coli vs hemo unchallenge
GSM402868/hemo vs whole 2, GSM402867/Hemo
whole 3, GSM402830/Hemo vs whole.

>PEWOPEOPEO
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%

List of abbreviations

AMP: antimicrobial peptide; AP-1: adaptor protein com-
plex 1; CEC: cecropin; cfu: colony forming unit; DEF:
defensin; FBN: fibrinogen-domain-containing immu-
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nolectin; GALE: galectin; GAM: gambicin; GNBP: Gram-
negative binding protein; HAT: histone acetyltransferase;
HDAC: histone deacetylase; LPS: lipopolysaccharide; LYS:
lysozyme; PGRP: peptidoglycan-recognition protein; PO:
phenoloxidase; PPO: prophenoloxidase; PPR: pattern rec-
ognition receptor; RTQ-PCR: real-time quantitative
polymerase chain reaction; TEP: thio-ester containing pro-
tein.
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