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Abstract

Background: Metagenomic sequence data are proving to be a vast resource for the discovery of
biological components. Yet analysis of this data to identify functional RNAs lags behind efforts to
characterize protein diversity. The genome of 'Candidatus Pelagibacter ubique' HTCC 1062 is the
closest match for approximately 20% of marine metagenomic sequence reads. It is also small,
contains little non-coding DNA, and has strikingly low GC content.

Results: To aid the discovery of RNA motifs within the marine metagenome we exploited the
genomic properties of 'Cand. P. ubique' by targeting our search to long intergenic regions (IGRs)
with relatively high GC content. Analysis of known RNAs (rRNA, tRNA, riboswitches etc.) shows
that structured RNAs are significantly enriched in such IGRs. To identify additional candidate
structured RNAs, we examined other IGRs with similar characteristics from 'Cand. P. ubique' using
comparative genomics approaches in conjunction with marine metagenomic data. Employing this
strategy, we discovered four candidate structured RNAs including a new riboswitch class as well
as three additional likely cis-regulatory elements that precede genes encoding ribosomal proteins
S2 and SI2, and the cytoplasmic protein component of the signal recognition particle. We also
describe four additional potential RNA motifs with few or no examples occurring outside the
metagenomic data.

Conclusion: This work begins the process of identifying functional RNA motifs present in the
metagenomic data and illustrates how existing completed genomes may be used to aid in this task.

Background cellular processes. Consequently, there is a growing effort
The discovery of many RNA sequences that do not encode  to systematically identify ncRNAs utilizing both experi-
proteins (non-coding RNAs or ncRNA) and have biologi- mental and computational techniques. Experimental

cal functions beyond those of tRNA and rRNA, has signif-  approaches are typically used to identify non-coding por-
icantly expanded the known role of RNA in diverse  tionsofan organism's genome that are actively being tran-
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scribed. These approaches are not dependent on the
identification of conserved RNA sequences or secondary
structures, and therefore are well-suited for the discovery
of unstructured or poorly-conserved ncRNAs. However,
experimental limitations can cause some RNAs to be
missed, and the false-positive rate may be high due to
"transcriptional noise" [1,2]. Alternatively, computa-
tional methods seek to identify evidence of conserved
RNA sequences and secondary structures through compar-
ative genomics [3,4]. However, such methods usually can-
not be used to identify RNA motifs that may not have
conserved secondary structure, are small with few base-
pairing elements, or are not well-represented in genomic
sequence databases.

Marine metagenomic sequence data are a proven resource
for the discovery of novel protein diversity and have pro-
vided additional examples for thousands of previously
identified open reading frames (ORFs) with no known
homologs [5]. While there have been surveys conducted
with the marine metagenome to discover additional
examples of known ncRNAs [6,7], there have been no
studies explicitly examining these data for novel RNA
motifs, in part due to unique computational challenges
inherent to metagenomic datasets. Specifically, the
exceedingly large amount of sequence data available (~7
billion base pairs), relatively poor annotation of protein
coding regions due to a high frequency of fragmentary
genes that result from short sequence reads, and compar-
atively high sequencing error rates make metagenomic
data analysis difficult [8-10].

To circumvent many of the challenges associated with
analyzing metagenomic sequence data, we have used the
genome of 'Cand. P. ubique’ HTCC 1062 as a starting
point to discover new RNA motifs within the marine
metagenome. Bacteria of the SAR11 clade, of which 'Cand.
P. ubique' is a representative, are found throughout the
world's oceans and are the dominant aerobic hetero-
trophs in marine surface waters [11]. Given its numeric
advantage, genes from members of the SAR11 clade are
well-represented in marine metagenomic libraries with
nearly 20% of sequence reads from the Global Oceano-
graphic Survey (GOS) matching most closely to genes
present in the 'Cand. P. ubique' genome [12,13]. Only
~30% of the GOS reads could be aligned well to the 584
available reference genomes. The other predominant gen-
era represented in the GOS data are Prochlorococcus, Syne-
chococcus, Burkholderia, and Shewanella, none of which are
closely related to 'Cand. P. ubique'. While, alignments to
every reference genome were identified, typically they
showed identity to regions corresponding to large, highly
conserved genes [13].

http://www.biomedcentral.com/1471-2164/10/268

At 1.3 million base pairs, the genome of 'Cand. P. ubique'
is the smallest known for a free-living organism, but it
appears to encode for nearly all the basic functions of Alp-
haproteobacteria cells [14]. The genome contains very lit-
tle non-coding DNA, with a median intergenic region
(IGR) length of 3 nucleotides. In addition, the organism
has remarkably low GC content (29%). While evaluating
nucleotide composition is usually not a viable method for
identifying ncRNAs [15], in genomes with a strong AT bias
or hyperthermophilic environment, the higher GC con-
tent necessary to maintain a stable RNA structure may be
used to identify candidate ncRNAs [16-19]. 'Cand. P.
ubique' offers an ideal opportunity to utilize nucleotide
composition as its genome has very few long IGRs, which
are generally low GC (23% on average).

In the current study we combine nucleotide composition
with comparative genomics approaches to identify novel
structured RNA motifs in 'Cand. P. ubique' and the marine
metagenomic data. First, we demonstrate that longer,
higher GC 'Cand. P. ubique' IGRs are much more likely to
contain structured RNAs (rRNAs, tRNAs, etc.). Subse-
quently, we utilized the IGRs in 'Cand. P. ubique' with
similar properties that lack assigned ncRNAs as the start-
ing point for a comparative sequence analysis strategy that
takes advantage of marine metagenomic sequences. We
discovered four likely structured ncRNAs including a new
riboswitch class, and three other candidate cis-regulatory
motifs. In addition we describe several other conserved
IGRs that encode potential structured RNA elements.

Results

Analysis strategy

To identify potential ncRNAs in the genome of 'Cand. P.
ubique', all IGRs were extracted from the 'Cand. P. ubique'
genome and ranked by GC content. When 'Cand. P.
ubique' IGRs are plotted by their length and percent GC,
those containing annotated RNAs (rRNAs, tRNAs, ribos-
witches, etc.) cluster toward the top right of the graph
(Figure 1). This finding indicates that the vast majority of
GC-enriched IGRs longer than 100 bp carry annotated
ncRNAs (Additional file 1).

To identify additional structured RNAs that may not be
annotated, we performed BLAST searches of the remain-
ing IGRs against the Community Cyberinfrastructure for
Advanced Marine Microbial Ecology Research and Analy-
sis (CAMERA) database [20]. Table 1 lists GC enriched
'Cand. P. ubique' IGRs longer than 100 bp and the
number of BLAST hits identified with an E-value less than
10-5 as a measure of conservation. The average number of
blast hits for IGRs containing tRNAs is 2158, with a stand-
ard deviation of 1282. However, the average number of
blast hits for the 'Cand. P. ubique' IGRs containing SAM-
IT riboswitches, which are significantly smaller than a
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Percent GC-content versus length of intergenic regions (IGRs) in 'Cand. P. ubique'. Transfer and ribosomal RNAs
are as annotated by Rfam [24] and RefSeq (RefSeq accession NC_007205.1). Other structured RNAs include known ribos-

witches, 4.5S RNA (SRP RNA), RNase P RNA and tmRNA.

tRNA and most commonly present in Alpha-, Beta- and
Gammaproteobacteria, is approximately 500. Based on
this analysis and the need for a relatively large number of
BLAST hits for subsequent comparative sequence analysis
algorithms, IGRs with greater than 200 BLAST hits were
further screened for unannotated ncRNAs and misanno-
tated protein coding sequence. This screening process
revealed several misannotated protein coding sequences
in addition to several known structured RNAs not previ-
ously annotated (Additional file 2 — Table 1). The RNA
motifs identified are typically very highly ranked on our
list, and include tmRNA, the RNA component of the sig-
nal recognition particle (SRP), the RNase P RNA (class A),
and a number of riboswitches (Table 1).

Identification of SRP RNA (4.5S RNA) [21] and RNase P
RNA [22,23] was very straightforward. Both are com-
pletely contained within their respective IGRs and con-
form to well-established consensus sequences [24]. We
also easily identified a variety of RNA cis-regulatory ele-

ments known as riboswitches [25] including two repre-
sentatives of the glycine riboswitch class [26] previously
described in 'Cand. P. ubique' [27], two class II SAM ribos-
witches (SAM-II) [28] and a TPP riboswitch [29,30].

In contrast, identification of the tmRNA [31] representa-
tive was somewhat more challenging. The tmRNA eluded
identification during initial screens for several reasons.
First, in the genome of 'Cand. P. ubique' the flanking gene
(thyX, SAR11_0010) is likely misannotated resulting in a
partial overlap of the annotated coding region with the
tmRNA. While coding sequences in 'Cand. P. ubique'
often overlap by several nucleotides, an in-frame methio-
nine at position 30 of the existing annotation for thymi-
dylate synthase sequence is most likely the correct start
site based on BLAST analysis of ThyX protein sequences.
Second, the genomic sequence of the tmRNA is split and
permuted relative to the mature form of the RNA in 'Cand.
P. ubique'. While this feature is shared by most other Alp-
haproteobacteria and by some Cyanobacteria [32], it
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Table I: 'Cand. P. ubique' IGRs longer than 100 bp ranked by GC content. IGRs containing tRNA and rRNA removed
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Coordinates Length %GC BLAST Hits RNA (strand) Locus Tag Flanking Gene Locus Tag Flanking Gene
Name (Strand) Name (strand)
1030210518 217 4885 1761 tmRNA (+) SARI1_0010 thyX (-) SARI1_0011 COG4696 (-)
649763-649953 191  41.88 1990 glycine SARI1_0664 membrane prot.(+) SARII_0666 govT (+)
riboswitch (+)
493521493664 144 368l 888 4.5 SRNA SARI1_506 pheA (+) SARI11_0507 dnaX (+)
(SRP RNA) (+)
1127293-1127553 261  36.78 127 SAM-II/SAM-V SARII_1129 bhmt (-) SARI1_1730 hyp. protein (-)
riboswitch (-)
564786-564910 125 35.2 611 pntA element (+)  SARI_0573 rbm] (+) SARI1_0574 pntA (+)
38796-39447 652 345l 2475 RNase P SARI11_0033 mraZ (-) SARI1_0034 ybjR (-)
RNA (-)
260190260348 159 33.96 1615 ffh motif (-) SARI1_2356 ffh () SARI1_0257 dapF (+)
626974-627168 195 3333 1168 SARI1_0641 recA (+) SARI1_0642 protease (-)
786467-786574 108 3333 927 TPP SARI1_0810 hyp. protein (+) SARI1_0811 transporter (+)
riboswitch (+)
585015-585135 121 33.06 41 SARI1_0599 COGI729 (+) SARI11_0600 mes;j (+)
498458498706 249 3293 2398 glycine SARI1_0510 gleB (-) SARI1_0511 accA (+)
riboswitch (-)
622388-622552 165  32.73 1301 SARI1_0636 SARI11_0635 hyp. protein (-) SARI1_0636 hyp protein (+)
element (+)
1142870-1143031 162 32.1 29 SARI1_1190 COG0659 (-) SARII_1191 HIT protein (-)
159067-159166 100 32 25 SARI1_0156 hyp. protein (-) SARII_0157 ispA (-)
1292813-1292925 113 31.86 57 SARI1_1357 livF2 (-) SARII_I358 livG2 (-)
1120412-1120856 445  31.46 66 SARII_1164 lipoprotein (-) SARII_I165  exonuclease (+)
873155-873283 129  31.01 832 rpsB motif (+) SARI1_0%906 dnaE (+) SARI1_0907 rpsB (+)
628285-628539 255 302 571 SARI1_0642 protease (-) SARI1_0643 ala$ (+)
1005679-1005890 212  30.19 483 SAM-V (+) SARI1_1029 rpIM (-) SARI1_1030 metY (+)
361353-361571 219  30.14 76 SARI1_0369 grpE (-) SARI11_0370 HAM | -like
prot. (+)
1125490-1125606 117 2991 I SARII_1171 ordL (-) SARII_1172 osmC (-)
1189853-1189956 104  29.81 25 SARI1_1248 hyp. protein (+) SARI1_1249 hyp. protein (+)
676100-676308 208 28.7 193 SARI1_0691 hyp. protein (-) SARI1_0692 yaiQ ()
1212757-1212865 109 29.36 22 SARI1_1279 membrane prot. (-) SARI1_1280 hyp. protein (+)
732778-732938 161 29.19 446 SAM-V (-) SARI1_0750 mmuM (-) SARI1_0751 hyp. protein. (-)
57720-58035 316 29.11 25 SARI1_0046 autotransporter (-) SARI[_0047 transcription
regulator (+)
120095-120215 121 2893 211 babiM SARI1_0108 rnhB (+) SARI1_0109 babIM (+)
element (+)
762114-762332 219 283l 55 SARI1_0784 hyp. protein (+) SARI1_0785 hyp. protein (+)
834435-834636 202 2822 42 SARI11_0864 hyp. protein (+) SAR11_0865 transporter (+)
1164239-1164384 146  28.08 0 SARII_I216 ecpD (+) SARI1_1218 sigB (+)
52729-52884 157 28.02 22 SARI1_0042 autotransporter (-) SARI_0043 hyp. protein (-)
1297623-1297755 133 27.82 480 rhtB element (-) SARI1_1362 rhtB (-) SARII_1363 hyp. protein (+)
675041-675166 126 27.78 205 SARI1_0690 hyp. protein (-) SARI1_0691 hyp. protein (-)
762678-763012 335 2776 76 SARI11_0785 hyp. protein (+) SARI1_0786 qacH (-)
4368843789 102 27.4 570 SARI1_0037 rpoD (-) SARI11_0038 dnaG (-)
791867-792012 146 274 125 SARI1_0817 hupA (+) SARI1_0818 amtB (+)
1132812-1132928 117 2735 10 SARII_1178 pstC (-) SARII_1179 pstS (-)
1123617-1123934 318 27.04 192 SARII_I169 hyp. protein (-) SARII_I'170 hyp. protein (-)
1181972-1182071 100 27 77 SARI1_1238 sfuC (-) SARI1_1239 hyp. protein (-)
670506-670772 267 2697 194 SARI11_0685 moeA (-) SARI11_0686 hyp. protein (-)
1074189-1074359 171 26.9 650 rpsL motif (-) SARII_I121 rpsL (-) SARII_I122 rpoC (-)
164139-164261 123 26.82 90 SARI1_0160 COGO0647G (-) SARII_0161 groES (+)
1245732—-1245856 125 26.4 37 SARI1_1309 hyp. protein (+) SARII_1310 amt (+)
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makes identification of the RNA more difficult because
the region between the two sections varies in length
between 75 and 125 bp [33], and the permuted model is
not currently represented in the Rfam database [24].

By applying length, %GC and conservation thresholds we
have significantly enriched our list of IGRs for known
structured RNAs. Only, 4% of all IGRs in 'Cand. P. ubique'
contain known structured RNAs. Approximately 17% of
IGRs greater than 100 bp contain structured RNA; and
eliminating IGRs with <26% GC increases this percentage
to ~40%. Applying the BLAST hit threshold further
increases percentage of considered IGRs containing
known structured RNAs to ~75%. However, our parame-
ter choices do exclude 2 of the 34 IGRs (6%) containing
previously known RNAs. The first is a tRNA that is found
within an IGR of 98 bp. We explored lowering the 100 bp
threshold. However, we identified few additional candi-
dates, and these candidates typically were very close to
previously established thresholds for other parameters
further decreasing their attractiveness for comprehensive
study. The second example of a known RNA we excluded
using our parameters is the IGR containing a SAM-II ribos-
witch preceding metX (SAR11_0217), which failed to rank
highly based on GC-enrichment. The IGR containing this
riboswitch is 191 nucleotides long and 22.5% GC (ranked
121stin the genome based on Additional file 1). However,
the SAM-II aptamer alone is 70 nucleotides long and 30%
GC. An early investigation of the 'Cand. P. ubique'
genome did explore ranking the IGRs by the highest per-
cent GC within a "sliding window" of 50 nucleotides [19].
However, this did not change the rankings of 'Cand. P.
ubique' IGRs significantly (R? = 0.84, Additional file 3).
Thus, this additional level of complexity was not imple-
mented for the final analysis.

For those IGRs that are longer than 100 bp, greater than
26% GC, and well-conserved in the marine metagenome
(Table 1) but do not contain known structured RNAs,
similar sequences identified by the BLAST analysis were
used as input for comparative sequence analysis algo-
rithms employed for ncRNA discovery. For each IGR sev-
eral hypothetical alignments and secondary structures
were generated using a covariance model search [34].
These alignments and predicted secondary structures were
then used as the starting point for homology searches of
the NCBI and metagenomic sequence databases to iden-
tify additional examples [35,36]. To confirm and refine
secondary-structure models and sequence alignments, all
examples for a particular IGR were subsequently com-
bined and the process repeated beginning with the covar-
iance model search to generate an RNA secondary
structure that is well-supported by a large number of rep-
resentatives (100-300 unique sequences).

http://www.biomedcentral.com/1471-2164/10/268

Using this strategy, we discovered candidate structured
RNA elements located 5' relative to genes encoding ribos-
omal proteins S2 (rpsB) and S12 (rpsL), and the signal rec-
ognition particle protein (ffh). We also found a structured
RNA element associated with genes for the methionine
biosynthesis proteins O-acetylhomoserine (thiol)-lyase
(metY), homoserine S-methyltransferase (mmum) and
betaine-homocysteine methyltransferase (bhmt) (Figure
2). Moreover, we identified a series of IGRs that contain
potential RNA structures that are less well-supported by
the alignments and often include highly conserved
regions with few mutations and thus few opportunities to
observe covariation and compatible mutations that are
the hallmark of a correctly predicted RNA secondary struc-
ture (Figure 3). Features of these new-found candidate
structured RNAs are described below.

rpsB motif

We identified a likely RNA motif preceding the gene rpsB,
which encodes ribosomal protein S2. The motif is present
in both marine metagenomic sequences and most Alp-
haproteobacteria with the exception of most members of
the Rickettsiaceae family (Additional file 4). In addition,
we identified representatives in most Gammaproteobacte-
ria, a few Epsilon-, Delta-, and Betaproteobacteria, Cyano-
bacteria, and some Firmicutes. In nearly all examples
where the downstream genes can be determined, the
motif precedes rpsB. However, a few precede fts, which
encodes elongation factor Ts (Ef-Ts) and is often found in
the same operon as rpsB [37].

The structure of rpsB motif (Figure 2A) consists of a long
base-paired structure (P1) capped by a three-stem junc-
tion carrying two variable length stems (P2 and P3), both
of which may be very short, or absent in some representa-
tives. The nucleotide junction between P2 and P3 (J2-3)
forms a pseudoknot with the 3' extension following P1.
P2 is quite short in 'Cand. P. ubique' and consists of only
three base pairs. In Cyanobacteria, Firmicutes, and most
Gammaproteobacteria this pairing element is entirely
absent or very short (three or fewer base pairs). In con-
trast, P2 is up to eleven base-pairs in some species of Alp-
haproteobacteria. P3 is also quite short in 'Cand. P.
ubique' with only two base pairs, however, it is typically
at least four base pairs and has greater than twelve base
pairs in several species of Alpha- and Gammaproteobacte-
ria. The pseudoknot interaction is present across all of the
taxa. However, in Firmicutes it appears to only consist of
three base pairs rather than the five predicted in other
phylogenetic groups.

Cis-regulatory elements in the 5' untranslated regions
(UTRs) of ribosomal protein encoding mRNAs have long
been known [38]. Ribosomal proteins L1 [39], L4 [40,41],
L10/L12 [42], 120 [43], S4 [44,45], S7 [46], S8 [47,48],
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Figure 2

Consensus sequences and structures for the four RNA motifs identified. (A) rpsB motif, (B) rpsL motif, (C) ffh motif,
(D) SAM-V riboswitch. See Additional files 4, 5, 6, 7 for alignments of all representatives. Calculations for conservation of
nucleotide identity are described in the Methods section. Proposed base pairs with more than 5% non-canonical Watson-Crick
pairings or missing nucleotides are not classified as covarying.
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The conserved sequence and secondary structure of the four candidate RNA motifs identified. (A) rhtB associ-
ated element, (B) pntA associated element, (C) babIM associated element, (D) SARI1_0636 element. See Additional files 8, 9,
10, 11 for alignments of all representatives. Structural notations are as in Fig. 2, and consensus nucleotides and covariation

computed identically to Fig. 2.

S15 [49], and S1 [50] are known to bind mRNA sequences
to control gene expression. All such sequences character-
ized to date are autoregulatory, where the mRNA is bound
by a ribosomal protein encoded within the transcript [38].
Typically such sequences inhibit translation, although
some regulate transcription [41,51].

The role of the S2 ribosomal protein in translation is not
well understood. S2 binds the 30S subunit late in ribos-
ome biogenesis and acts as a bridge between the 16S RNA
and ribosomal protein S1, which is the only ribosomal
protein contacting the 30S subunit through protein-pro-
tein interactions [52]. The function of S1 is similarly

unclear; however it has been implicated in translating
highly structured mRNAs [53], as well as in the formation
of the translation initiation complex at internal ribosome
binding sites [54]. Analysis of the crystal structure of the
30S subunit from T. Thermophilus ribosome shows that S2
contacts distal regions of the 16S RNA (H26 in the body
and H35-37 in the body) [55]. These regions bear no
obvious resemblance to the motif we have identified.
However, structural mimicry cannot be excluded. In sev-
eral instances the 5' UTR of an mRNA and the ribosomal
RNA bound by the same protein share similar tertiary
structures despite having little or no primary or secondary
structure similarity [56-59].
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The region upstream of the ribosomal protein S2 was
identified as a potential 5' UTR in a transcriptome analysis
of Escherichia coli [60,61]. In addition, recent in vivo work
in E. coli shows that the region 162 nucleotides upstream
of rpsB controls an rpsB-lacZ fusion construct in response
to exogenous S2 added in trans [62]. This work identified
the conserved RNA structure upstream of rpsB in other
Gammaproteobacteria. However, we identified a more
broadly conserved motif in Alpha- Beta- and Deltaproteo-
bacteria as well as Cyanobacteria and Firmicutes. In addi-
tion, the pseudoknot interaction had not previously been
identified.

rpsL motif

A second putative motif in the 5' UTR of a ribosomal
mRNA was identified for rpsL (encoding ribosomal pro-
tein §12), the first gene in a series of 22 genes encoding
ribosomal proteins in 'Cand. P. ubique' that are homolo-
gous to those in the E. coli str, spc, and S10 ribosomal oper-
ons. We identified over 900 representatives (659 unique
sequences) of the motif in the marine metagenome in
addition to the instance in 'Cand. P. ubique' (Additional
file 5). The motif is consistently identified 3' of rpoC,
which encodes RNA polymerase, and 5' of rpsL. The genes
further downstream of rpsL are typically those identified
in the 'Cand. P. ubique' operon. However, due to the
length of the metagenomic sequences analyzed it is
impossible to determine whether the entire series of ORFs
is conserved. The motif occasionally precedes rpsG or fusA
genes that directly follow rpsL in the 'Cand. P. ubique'
genome. Despite extensive searching, we only identified
the motif in 'Cand. P. ubique' and marine metagenomic
sequence samples.

The motif consists of a bulged P1 stem connecting to a
three-stem junction (Figure 2B). The P2 stem shows cov-
ariation throughout its length, however, the loop region is
diverse both in length (3-10 nt) and sequence. Both the
P1 and P3 stems show some covariation, but more posi-
tions exhibit breaks in the Watson-Crick base pairing
compared with the P2 stem. The nucleotides in J2-3 are
identical in nearly all examples, and the P3 loop and P1
bulge also show extensive conservation.

Several proteins encoded by this series of ribosomal pro-
tein genes in 'Cand. P. ubique' have been shown to regu-
late ribosomal protein expression in E. coli [40,41,46-
48,62]. The str ribosomal operon (encoding ribosomal
proteins S12, S7, and elongation factors G and Tu) is reg-
ulated by the binding of S7 to the transcript region
between the genes for S12 and S7 [46]. Similarly, the spc
operon (encoding ribosomal proteins L14, 124, L5, S14,
S8, L6, L18, S5, L30 L15 and secY) is regulated by S8 bind-
ing to an mRNA structure between L24 and L5 [47,48].
The eleven-gene S10 operon (encoding ribosomal pro-
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teins S10, L3, L4, L23, L2, S19, L22, S3, L16, L29, S§17) is
regulated by ribosomal protein L4 binding to a 5' UTR
preceding the S10 gene [40,41].

The secondary structure of the motif described here does
not bear any resemblance to the regulatory motifs associ-
ated with S7, S8 and L4. Additionally, the rpsL motif is not
located at the same genomic position as any of the E. coli
regulatory motifs. While this series of ribosomal proteins
in 'Cand. P. ubique' essentially consists of the three sepa-
rate E. coli operons, separate regulation in this organism is
unlikely as the coding regions typically overlap by a few
base pairs and the largest IGR is nine nucleotides. This
motif is not identified outside of 'Cand. P. ubique' and the
metagenomic data. However, given its genomic context
and conserved secondary structure, the rpsL motif is likely
a structured RNA involved with regulation of ribosomal
protein expression. Considering the large number of
potential candidates, we cannot predict with confidence
which protein may be its binding partner.

ffh motif

We identified an RNA motif in the IGR preceding the gene
ffh which encodes the cytoplasmic protein component of
the bacterial signal recognition particle (SRP). The motif
is well-conserved in metagenomic sequence samples with
over 600 representatives (345 unique sequences) (Addi-
tional file 6). In addition, this motif is widespread among
Alphaproteobacteria occurring in all fully-sequenced rep-
resentatives of the Rhodobacterales, Sphingomonadales
and Rhizobiales classes. However, the ffh motif does not
occur in any sequenced representatives of the Rhodos-
pirillales or Caulobacterales classes and it is also not
found in representatives of Rickettsiales other than 'Cand.
P. ubique'. In nearly all examples where the downstream
genes can be identified, the motif precedes ffh. This tran-
script has been detected by several metatranscriptomics
analyses of microbial small RNAs [63,64].

The RNA motif consists of a single bulged hairpin (Figure
2C). However, there is convincing co-variation found at
all positions along the stem with the exception of the first
base-pair which is always a cytosine-guanosine pair. Addi-
tionally, there is significant sequence conservation within
the bulge. In particular the two cytosine residues are
found in nearly every example.

The signal recognition particle (SRP) is an essential RNA-
protein complex conserved in all three domains of life
that targets secreted proteins to the plasma membrane in
eubacteria and archaea or to the endoplasmic reticulum in
eukaryotes through interactions with peptide signal
sequences [21]. The eubacterial SRP complex consists of
the 4.5S RNA, a cytoplasmic protein (Ffh), and a receptor
protein (FstY) that targets the complex to the membrane.
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Ffh binds directly to a conserved portion of the 4.5S RNA
known as helix 8 [65], and FstY in turn binds Ffh [66,67].
The eukaryotic and archaeal SRPs typically consist of
larger RNAs and a greater number of proteins. However,
the interactions between the RNA component and the
cytoplasmic protein are conserved [68].

How the levels of the Ffh protein and the 4.5S RNA are
regulated is not fully understood. In E. coli the 4.5S RNA
is present in excess compared to Ffh [69], and it has been
shown using both depletion studies [70] and examination
of a temperature sensitive ffh mutant in E. coli [71] that
Fth is significantly stabilized by its interactions with the
4.5S RNA and is rapidly degraded when not bound to the
RNA. However, no regulation at the transcriptional or
translational level has been described. The RNA motif
identified does not appear to resemble the portion of the
4.5S8 RNA bound by Ffh. However, it is possible that the
motif plays a role in the regulation of the ffh gene, espe-
cially given the widespread distribution of this motif and
the precedent for cis-regulatory mRNA elements associ-
ated with the genes of RNA binding proteins [72].

Methionine biosynthesis associated motif

We identified a conserved RNA motif preceding the
methionine biosynthesis genes mmum, metY, and bhmt.
This conserved sequence was previously identified as a
potential regulatory region in 'Cand. P. ubique' as the
three genes appear to be co-regulated from proteomic
studies [73]. We found 690 representatives (505 unique
sequences) in metagenomic sequences, most of which
precede metY (Additional file 7). However, there are
metagenomic examples that precede bhmt, metH, and
mmum. In addition, there is a single example in the
genome of Psychroflexus torquis ATCC 700755 (RefSeq
accession NZ_AAPR0000000) also preceding metY.

The motif consists of a simple pseudoknotted structure
that is typically within ten nucleotides of a start codon
(Figure 2D). Both stems show covariation and many loop
nucleotides are well-conserved. Based on the association
of the motif with methionine biosynthesis genes, the
coregulation of the three genes in 'Cand. P. ubique' [73],
and the prevalence of S-adenosylmethionine (SAM)-bind-
ing riboswitches [74], we hypothesized that the RNA was
a SAM-binding riboswitch. In vitro biochemical character-
ization of the RNA has revealed that representatives of this
RNA motif selectively bind SAM (M. Meyer, E. Poiata, and
R. Breaker; unpublished data).

The RNA motif also displays some similarities to the pre-
viously described class II SAM riboswitches (SAM-II) that
bind SAM and control sulfur metabolism genes in Alp-
haproteobacteria [28]. In particular the two RNA motifs
share a similar overall pseudoknotted structure and many
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of the bases shown to contact the ligand in a crystal struc-
ture of the class II SAM riboswitch [75] have equivalent
nucleotides in the new-found motif. Despite these simi-
larities, the motif lacks the final 3' base-pairing element
present in most SAM-II riboswitch representatives. More-
over, both paired regions in the new motif differ in length
from those in the SAM-II consensus, and the loop regions
outside those that bind the ligand in the SAM-II ribos-
witch are not well conserved. Such differences in the
riboswitch aptamers for SAM-I and SAM-IV riboswitches
cause representatives to be sorted into distinct collections
when examined using bioinformatics search algorithms
that identify common sequence and structural elements
[76]. Likewise, the differences between SAM-II and the
new-found motif also cause them to be sorted independ-
ently, suggesting that this is a new class of SAM-binding
riboswitches that we have termed SAM-V.

Other potential RNA motifs

In addition to the motifs that we identified that have
strong support as structured RNAs based on their align-
ments and distribution, we also identified several poten-
tial RNA motifs that are less well-supported. These
candidate RNA motifs have fewer positions with covaria-
tion or compatible mutations and are not identified out-
side the genome of 'Cand. P. ubique' and metagenomic
sequences. However, they do exhibit evidence of possible
RNA structure formation and our models are supported
by sequence alignments from the marine metagenome.

The first of these motifs consists of a single bulged hairpin
(Figure 3A). Both portions of the stem are conserved, and
show indications of covariation and compatible muta-
tions at many positions. Both the loop and the bulge are
also well-conserved. The alignment consists of ~1250 rep-
resentatives (919 unique sequences) from the marine
metagenome and 'Cand. P. ubique' (Additional file 8). In
'Cand. P. ubique' the motif is flanked by a hypothetical
protein and rhtB (LysE type translocator). In the metagen-
omic sequence, this context is largely conserved. However,
the motif also appears upstream of proC (pyrroline-5-car-
boxylate reductase), as well as other genes further down-
stream of rhtB in 'Cand. P. ubique' such as livM and livK
(components of putative branched amino acid transport-
ers). Approximately 50% of examples of this motif,
including the one in 'Cand. P. ubique', are directly fol-
lowed by a poly-uridine track of 6-9 nucleotides poten-
tially forming a rho-independent terminator stem [77].
This feature suggests either a potential regulatory function
or a conserved termination signal. However, the lower
portion of the well-conserved hairpin structure also forms
a fairly convincing inverted repeat sequence, which may
indicate alternative functionality.
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The second motif consists of two base-paired stems in
series where the loop of the second is especially well-con-
served (Figure 3B). The alignment includes 365 unique
sequences derived from metagenomic sequences (~400
total representatives), in addition to the example in 'Cand.
P. ubique' (Additional file 9). In 'Cand. P. ubique' the
motif is flanked by rpmJ, which encodes the ribosomal
protein L36, and pntA, which encodes the alpha subunit
of a pyridine nucleotide transhydrogenase. In the marine
metagenome the motif consistently precedes pntA, but the
gene annotated directly 5' of the motif varies. Most fre-
quently it is the 5S rRNA gene, or rmIB (dTDP-D-glucose
4,6-dehydratase, COG1088). The conserved position of
this motif 5' of the pntA gene suggests a regulatory func-
tion related to pntA. However, there is an additional ~60
bp of sequence between the motif and the start of the
gene. While this sequence is somewhat conserved at the
nucleotide level, this region does not appear to have any
structure supported by compatible or covarying base-pair
interactions.

The third motif (Figure 3C) also consists of a set of pre-
dicted base-pairing stems in series. The sequence of the
first predicted stem is very strongly conserved, with no
mutations observed in any of the representatives identi-
fied. The second stem shows a few compatible mutations
and the position nearest the loop frequently fails to main-
tain base pairing. The loops and linker regions exhibit
almost no conservation. Approximately 540 representa-
tives (314 unique sequences) were identified in the
marine metagenome, and the genomic context is well
conserved (Additional file 10). The motif occurs between
rnhB1 (RNaseHII) and babIM (a site-specific DNA methy-
lase) in the genome of 'Cand. P. ubique' and the vast
majority of metagenomic examples fall between genes
annotated as rnhB1 and a DNA methylase.

The fourth motif is somewhat more complex than others
in this category (Figure 3D). There are ~640 representa-
tives (338 unique sequences) in the marine metagenome
in addition to that in the genome of 'Cand. P. ubique'
(Additional file 11). Its three-stem junction carries a well
conserved stem (P2) that contains two bulged regions,
one of which is highly conserved. Due to this conserva-
tion, none of the base pairs are supported by covariation
and only a few by compatible mutations. The other two
stems (P1 and P3) are only moderately conserved, and the
loop of P3 is variable in length containing between 5 and
12 nucleotides with no strong conservation. The motif
occurs between two hypothetical proteins. One
(SAR11_0635) is annotated as both an SOS-mediated
transcriptional repressor and an S24-like peptidase
depending on the database, and the other (SAR11_0636)
is annotated as a SOUL heme-binding protein. In the
metagenomic data, neither of these associations is strictly

http://www.biomedcentral.com/1471-2164/10/268

conserved and the annotated genes on either side vary
widely. The genes annotated directly 5' to the motif are
typically syntenous with those in 'Cand. P. ubique' (i.e.
predicted glycoyltransferase, SAR11_0633). The genes
annotated directly 3' of the motif show even greater varia-
tion and do not seem to be syntenous with the 'Cand. P.
ubique' genome. Based on these observations, it seems
likely that the RNA is not a cis-regulatory element, but
rather could be a separately transcribed non-coding RNA.

Microarray studies show that transcripts for all of these
genes, although not necessarily any untranslated regions,
are present in 'Cand. P. ubique' during both exponential
growth and stationary phase cells. Interestingly, compari-
son of microarray and quantitative proteomic data
(unpublished data) for pntA shows a ~300% increase in
protein as cells enter stationary phase, starkly contrasting
the corresponding 9% decease in transcript levels. This
disparity between transcript and protein expression pro-
vides further evidence for post-transcriptional regulation
of the gene. Unfortunately, proteomic data are not availa-
ble for RhtB and BabIM (not included in the AMT-tag
library), and SAR11_0636 was never observed in the pro-
teomic dataset, so direct comparisons are not possible for
these genes.

Discussion

In this study we identified structured RNAs that are con-
served in both the genome of 'Cand. P. ubique' and the
marine metagenomic datasets. A few these RNAs were
assigned to previously-known classes, while this is the first
description of others. Our work differs from other surveys
of ncRNAs in the metagenome [6,7] in that we did not
seek to identify additional examples of known motifs, but
rather we sought to discover motifs not previously
described. We identified three likely cis-regulatory protein
binding motifs and a new riboswitch class, and our
approach is validated by the confirmed biological func-
tion for two of the four motifs (rpsB motif and SAM-V
riboswitch). In addition to these four RNA cis-regulatory
elements, we also describe a series of motifs for which
there is less evidence of RNA structure. While these RNA
motifs are less well-supported by compatible and covary-
ing mutations than the others we present, the structures
are credible given the number of representatives identi-
fied, the degree of sequence conservation, and the ther-
modynamics of RNA folding.

There are many additional IGRs in 'Cand. P. ubique' that
contain a high percentage GC and seem highly conserved
(Table 1), yet have no discernable RNA structure. For
some of these IGRs, the large number of BLAST hits is the
result of many different short aligned sections of high
identity within the IGR (e.g. the IGR between
SAR11_0641 and SAR11_0642). By contrast, in the IGRs
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where we identified convincing structured RNAs there is
typically a longer region of alignment with mutations dis-
tributed throughout. For several other IGRs there are a
large number of BLAST hits that align but form no detect-
able RNA structure (e.g. the IGR between SAR11_0037
and SAR11_0038). These regions may contain RNAs that
are not extensively structured (e.g. antisense RNAs that
base pair to target RNAs) [78], or perhaps they are con-
served protein binding sites that act at the level of DNA.

The parameters we used to identify IGRs for inspection
were based on the properties of previously annotated
RNAs and were designed to capture most structured RNAs.
However, one IGR containing a known structured RNA
does not meet our parameters for inspection. The IGR
containing a SAM-II riboswitch preceding metX
(SAR11_0217) failed to rank highly based on GC-enrich-
ment. The IGR containing this riboswitch is 191 nucle-
otides long and 22.5% GC (ranked 121stin the genome
based on Additional file 1), significantly below where we
arbitrarily stopped examining IGRs due to the decreasing
number of convincing BLAST matches (Table 1). How-
ever, the SAM-II aptamer alone is 70 nucleotides long and
30% GC. An early investigation of the 'Cand. P. ubique'
genome did explore ranking the IGRs by the highest per-
cent GC within a "sliding window" of 50 nucleotides [19].
However, this did not change the rankings of 'Cand. P.
ubique' IGRs significantly (R2 = 0.84, Additional file 11).
Thus, this additional level of complexity was not imple-
mented for the final analysis.

In contrast to other computational genomics studies [3],
we identified relatively few candidate RNAs. This is likely
because there is relatively little to find in 'Cand. P. ubique'
compared with organisms that have larger genomes. The
genome of 'Cand. P. ubique' is hypothesized to be stream-
lined to minimize nutrient use [14,79]. Even the strong
AT bias may reflect adaptation to nitrogen limitation in a
nutrient poor environment because GC pairs require an
additional nitrogen compared to AT base pairs. A survey
examining lengths of the RNase P RNA, SRP RNA, TPP
and glycine riboswitches in 'Cand. P. ubique' compared
with those in other Alphaproteobacteria showed that
RNAs in 'Cand. P. ubique' have tendency toward fewer
nucleotides (Additional file 12). On average they are
greater than one standard deviation lower than the mean
for a given RNA (average Z-value of -1.12). While this
result is not statistically significant, the motifs identified
here further reflect this tendency. The S2 motif identified
in 'Cand. P. ubique' is among the shortest with an exceed-
ingly short P2 stem (3 bp) and no P3 stem. The presence
of RNA-based regulatory motifs in 'Cand. P. ubique' indi-
cates that such mechanisms can be an effective use of
scarce resources, and the smaller RNAs likely reflect pres-
sure to decrease the number of nucleotides at both the
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DNA and RNA level. Interestingly ribosomal RNAs and
tRNAs both showed less variation in length among Alp-
haproteobacteria than other structured RNAs, as well as
less or no evidence of reduction in 'Cand. P. ubique' sug-
gesting that it is difficult to alter RNAs with functions crit-
ical for survival.

Conclusion

This study increased the number of candidate structured
RNAs in both 'Cand. P. ubique' and the marine metagen-
ome. Several of the RNAs discovered have wide phyloge-
netic distribution, while others can only be found through
examination of metagenomic data. The combination of
computational approaches used in this work is relatively
simple and in principle might be applied to any organ-
isms with similar properties. This work also underscores
how single completed genomes that are carefully anno-
tated are important components in the effort toward
annotating and understanding the vast amount metagen-
omic data available.

Methods

Identification of candidate RNA motifs

Non-protein coding segments of the 'Cand. P. ubique'
genome (RefSeq accession number NC_007205.1) were
computationally identified based on the RefSeq version
25 gene annotations and their sequences extracted [80].
The size and percent GC values for these regions were
established. Individual sequences annotated as harboring
a structured ncRNA according to the Rfam database (ver-
sion 8.1) were identified [24]. Two additional sequences
containing tRNAs were identified from the RefSeq anno-
tation of the 'Cand. P. ubique' genome, and the ribos-
witches were located based on alignments maintained
through periodic homology searches [81].

As all known structured RNAs in 'Cand. P. ubique' are
present in IGRs longer than 100 bp (Fig. 1), we used 100
bp as the minimum size requirement for the IGRs we
examined. The conservation level for each IGR was deter-
mined by the number of hits returned with an E-value less
than 105 from a nucleotide BLAST analysis of the IGR
against the "GOS: All Metagenomic Sequence Reads"
database maintained at the CAMERA website [20]. IGRs
not well-conserved in metagenomic sequence data (less
than 200 blast hits) were removed from consideration.
The remaining IGRs were screened for the presence of
unannotated protein coding regions first through BLASTX
and subsequently TBLASTX searches of the NCBI nr and
nr/nt databases  http://www.ncbi.nlm.nih.gov/blast
Blast.cgi and TBLASTN searches of the "All Metagenomic
Sequence Reads" CAMERA database. Those sequences
containing a conserved protein coding region (Additional
File 2) were excluded from further analysis.
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For the remaining IGRs, all blast matches from the conser-
vation analysis were collected and the sequences extended
to match the length of the IGR, or to the end of the
sequence read (average trimmed sequence read is 822 bp
in length [13]). This collection of sequences was then used
as input for CMFinder version 0.2 [34] which created mul-
tiple sequence alignments with putative conserved sec-
ondary structures. These alignments were manually
examined for features indicative of a structured RNA such
as extent of covariation within predicted stems and con-
servation in areas outside base-paired regions. For most
IGRs, several alternative structures were initially chosen
for further analysis due to the high level of conservation
in the sequences.

The alignments and hypothetical secondary structures
were used to search for additional homologs in the
RefSeq25 database [80] along with metagenome
sequences from acid mine drainage [82], soil and whale
fall [83], human gut [84,85], mouse gut [86], gutless sea
worms [87], sludge [88], Global Ocean Survey scaffolds
[12,13], other marine sequences [89] and termite hindgut
[90].

Homology searches were performed using RAVENNA ver-
sion 0.2f, essentially as described previously
[35,36,91,92]. For each IGR, homologs resulting from
these searches were used in conjunction with the original
sequences as the starting input for a second CMFinder
search and the homology search process was iterated to
derive a single structure, or in cases of predicted pseudo-
knot interactions two compatible structures, supported by
the alignment.

Analysis of motifs

The alignments of IGRs where convincing RNA structure
could be identified were manually edited by RALEE [93].
We used RNAshapes [94], CMFinder [34] and RAVENNA
[36] during these analyses. Additional homology searches
were conducted using the RAVENNA '-local' and '-global'
command line options with the microbial subset of Ref-
Seq version 25, and the metagenomic sequence databases
described above. As the full RefSeq database is
3,717,469,431 nucleotides and the combined metagen-
omic databases total 5,529,658,033 nucleotides, several
subset databases (Proteobacteria, Alphaproteobacteria,
Bacteroidetes, Additional File 2 and Global Ocean Survey
Scaffolds) were used to reduce the number of false posi-
tive hits. Local searches tended to have greater success
identifying homologs of motifs with variable length or
optional stems.

For the genome context annotations, protein-coding
genes were assembled from the annotations in RefSeq and
from "predicted proteins" [5] in Global Ocean Survey
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sequences or annonatated genes in IMG/M [95]. How-
ever, sequences from three metagenome projects
[85,89,90] were extracted from GenBank and genes were
predicted using the MetaGene program (dated Oct. 12,
2006) with default parameters [96]. Conserved protein
domains were detected using the Conserved Domain
Database version 2.08 [97].

The extent of covariation and conservation of sequences
reflected in consensus diagrams (e.g. Figure 2) was deter-
mined as previously described [92]. Sequences were
weighted to de-emphasize highly similar homologs using
the GSC algorithm [98] implemented by Infernal [35].
Base pairs where both positions in the sequence align-
ment varied among sequences while maintaining Watson-
Crick or G-U wobble base pairing were classified as cova-
rying. Base pairs where a single position varied were clas-
sified as compatible mutations. If the frequency of non-
Watson-Crick or G-U pairs exceeded 5%, no covariation
or compatible mutation was annotated.

List of abbreviations

IGR: intergenic region; ncRNA: noncoding RNA; GOS:
Global Oceanographic Survey; CAMERA: Community
Cyberinfrastructure for Advanced Marine Microbial Ecol-
ogy Research and Analysis; SRP: signal recognition parti-
cle; UTR: untranslated region; SAM: S-
adenosylmethionine; bp: base pair.
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Additional file 2

Misannotated protein coding regions identified. A list of likely misan-
notated protein coding regions identified in the course of this study.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-268-52.doc]

Additional file 3

IGR ranking by %GC and sliding window %GC. Comparison of rank-
ing IGRs by %GC and an alternative ranking methodology based on a
sliding window of 50 nucleotides.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-268-53.doc]

Additional file 4

rpsB alignment. Text file containing Stockholm alignment of the rpsB
motif, may be viewed in any text editor including XEmacs with the RALEE
extension, or MS-wordpad.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-268-584.txt|

Additional file 5

rpsL alignment. Text file containing Stockholm alignment of the rpsL
motif, may be viewed in any text editor including XEmacs with the RALEE
extension, or MS-wordpad.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-268-S5.txt]

Additional file 6

ffh alignment. Text file containing Stockholm alignment of the ffh motif,
may be viewed in any text editor including XEmacs with the RALEE exten-
sion, or MS-wordpad.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-268-S6.txt]

Additional file 7

SAMYV alignment. Text file containing Stockholm alignment of the SAM-
V motif, may be viewed in any text editor including XEmacs with the
RALEE extension, or MS-wordpad.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-268-S7.txt]

Additional file 8

thtb alignment. Text file containing Stockholm alignment of the rhtb
motif, may be viewed in any text editor including XEmacs with the RALEE
extension, or MS-wordpad.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-268-S8.txt]

Additional file 9

pntA alignment. Text file containing Stockholm alignment of the pntA
motif, may be viewed in any text editor including XEmacs with the RALEE
extension, or MS-wordpad.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-268-89.txt]

Additional file 10

bablM alignment. Text file containing Stockholm alignment of the
bablM motif, may be viewed in any text editor including XEmacs with the
RALEE extension, or MS-wordpad.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-268-S10.txt]

Additional file 11

SAR11_0636 alignment. Text file containing Stockholm alignment of
the SAR11_0636 motif, may be viewed in any text editor including
XEmacs with the RALEE extension, or MS-wordpad.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-268-S11.txt]

Additional file 12

RNA motifs from Alphaproteobacteria ordered by length. Glycine ribos-
witch, TPP riboswitch, SRP, and RNaseP RNAs from Alphaproteobacteria
ordered by length.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-268-S12.doc]
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