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Abstract

Background: Analyzing gene expression data by assessing the significance of pre-defined gene
sets, rather than individual genes, has become a main approach in microarray data analysis and this
has promisingly derive new biological interpretations of microarray data. However, the detection
power of conventional gene list or gene set-based approaches is limited on highly heterogeneous
samples, such as tumors.

Results: We developed a novel method, the regulatory event-based Gene Set Analysis (eGSA),
which considers not only the consistently changed genes but also every gene regulation (event) of
each sample to overcome the detection limit. In comparison with conventional methods, eGSA can
detect functional changes in heterogeneous samples more precisely and robustly. Furthermore, by
utilizing eGSA, we successfully revealed novel functional characteristics and potential mechanisms
of very early hepatocellular carcinoma (HCC).

Conclusion: Our study creates a novel scheme to directly target the major cellular functional
changes in heterogeneous samples. All potential regulatory routines of a functional change can be
further analyzed by the regulatory event frequency. We also provide a case study on early HCCs
and reveal a novel insight at the initial stage of hepatocarcinogenesis. eGSA therefore accelerates
and refines the interpretation of heterogeneous genomic data sets in the absence of gene-
phenotype correlations.

Background changes is commonly revealed by gene function annota-
In the past decade microarray technology has become a  tion enrichment analysis based on a list of statistically
popular tool for identifying differentially expressed genes  selected DEGs. It is also called as Individual Gene Analysis
(DEGs) associated with a given phenotype or sample clas-  (IGA) by Nam [1]. However, since only the most signifi-
sification. The biological interpretation of transcriptomic  cant portion of DEGs was taken into account, the small set
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of genes might not perfectly represent the whole transcrip-
tomic changes [1-5]. Indeed, Pan et al. showed that the
selections of DEGs significantly affected the IGA results
[6]. In addition, IGA usually tests functional changes by
annotation enrichment methods such as hypergeometric
test. These algorithms equally count each DEG so that the
significance levels of gene-phenotype correlation are flat-
tened [2].

Recently, gene set-based approaches have been proposed
to overcome the drawbacks of IGA [1,3,7]. In principle,
these approaches measure the gene-phenotype correla-
tions (e.g. t-statistic) of every gene in a predefined gene set
(GS), usually according to the Gene Ontology (GO) cate-
gories or the sets of genes representing biological path-
ways in the cell, and then give a GS score to represent its
changes associated with the phenotype [1]. The statistical
significance of the GS score can be determined by two dif-
ferent null hypotheses: competitive (Q;) and self-con-
tained (Q,). In Q, test, it assumes the genes in a gene set
have the same level of association with the phenotype
compared with the rest of the genes; in Q, test, it assumes
no gene in the gene set is associated with the phenotype.
Although the gene set-based approaches are promising in
deriving new information, their limitations and the
underlying hypotheses have been discussed intensively.
For example, Q, approaches are very sensitive to correla-
tion structure in gene sets that tend to give false positives
[7]. Q, approaches have low power of detection in highly
varying samples such as clinical data sets [3]. Moreover, in
Q, test, it can be detected as significant by chance when
the size of the gene set is large. Another approach, called
gene set enrichment analysis (GSEA), which is a combina-
tion of two hypotheses (mixed model, Q;) has become
one of the most mentioned and used gene set-based
approaches [5,8]. However, a series of reports have also
shown that GSEA inherited the limitations from both null
hypotheses [3,8,9].

Although many gene set-based approaches and gene-
based approaches have been developed, all of them are
based on the same rationale, i.e., the detection of gene-
phenotype correlation (Figure 1). This rationale is based
on the assumption that samples with the same pheno-
typic change are homogenous and their gene expressions
are correlated with their phenotypes. Such assumption is
quite applicable for many cases, such as treatment versus
control cell culture studies, but perhaps not always suita-
ble for heterogeneous clinical samples, such as tumors
versus normal tissues. Tumors are usually defined accord-
ing to their common morphological and functional char-
acteristics, such as abnormal growth, immortality,
invasion etc. However, it is known that tumors have het-
erogeneous gene expression level even though they origi-
nated from the same tissue type and stage. This
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heterogeneity implies that those common characteristics
could be regulated by various mechanisms. Thus, the
functional changes might not be revealed by gene-pheno-
type correlation tests, and most gene-/gene set-based
approaches based on this rationale cannot be applied on
such data sets.

Here, we propose a novel method, called regulatory event-
based Gene Set Analysis (eGSA), to evaluate the signifi-
cantly changed functions or pathways from diverse
genomic data sets. eGSA is not based on the gene-pheno-
type correlations, but rather on gene expression regulatory
events which are determined by comparing each gene
expression level with the corresponding reference data set
(Figure 1). Total regulatory events in a given gene set (GS)
are counted as a GS score and then the significance of GS
is tested by Q, null hypothesis using hypergeometric test.
Comparing with the approaches based on gene-pheno-
type correlation, we show in this study that eGSA can suc-
cessfully derive new functional information from gene
expression profiles that are very heterogeneous in nature.

Results and discussion

Heterogeneity of tumor transcriptome

We collected six independent microarray data sets from
two public archives (see Methods) to demonstrate the het-
erogeneity of tumor samples. We measured sample heter-
ogeneity by calculating the average Pearson dissimilarity
distance between paired samples within a sample type
(Figure 2A). We found that most tumor samples (gray
bars), including hepatocellular carcinoma (HCC), lung
and colon tumors, were more heterogeneous than normal
and precancerous tissues. Even for the most initial stage of
HCC (very early HCC, # in Figure 2A), the sample hetero-
geneity is significantly higher than that of normal livers (p
= 1.73E-5) or pre-cancer samples (p = 3.38E-9). We further
used multidimensional scaling (MDS), a dimensional
reduction algorithm [10], to visualize the heterogeneity of
tumor samples. The distance in MDS plot represents the
degree of Pearson dissimilarity among samples. When
transcriptomes of samples are similar (i.e., homogene-
ous), the samples will be closely clustered. In HCC? data
set (Figure 2A), four types of non-tumor samples (normal
liver, cirrhosis, low-grade and high-grade dysplasia) are
distinctly distributed in the MDS plot (see Additional file
1), and those samples are closely clustered according to
their clinical type. However, such clustering was not seen
in HCC samples (see Additional file 1).

The limitation of gene-phenotype approaches on tumor
samples

The biological interpretations of microarray experiments
are often performed by gene- or gene set-based
approaches according to the gene-phenotype correlations.
However, such correlation is barely detectable in hetero-
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Schematic representation of the analysis principles and differences between eGSA and other array analysis
approaches. Both individual gene analysis (IGA) and Gene Set Analysis (GSA) approaches are based on the gene-phenotype
correlation. In GSA, the correlation value is mapped to GSs, and then summarized by the scoring functions such as averaged t-
statistic or K-S test [5]. The significance of each score is then estimated by statistic tests [|]. In IGA, differentially expressed
genes (DEGs) are selected based on the correlation threshold, and GS significance is estimated by enrichment statistics. In
eGSA, the gene expression levels of test samples (test 1-6) are converted to expression regulatory events (REs) by comparing
with the reference sample pool (reference 1-6). The sum of RE frequency is then used for GS scoring and estimation of the sig-

nificant levels.
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Figure 2

Transcriptome heterogeneity of tumors. (A) Six independent microarray experiments, including one normal tissue
(Normal) and five tumor collections (HCC!, HCC?2, tumor!, tumor?, and tumor3), were compared. The transcriptomic hetero-
geneity of each sample type was measured by the average of Pearson dissimilarity between paired samples. The heterogeneity
of HCCs, even at the most initial stage, appeared to be significantly higher than those of normal livers (p = 1.73E-5, *¥) and pre-
cancers (p = 3.38E-9, ¥**). Four data sets used for later analyses are marked (% Sts, §Sci, #: Sve and }: Sva), respectively. (B)
The MDS plot of the normal liver and three different liver pathological sample sets. Both very early HCC (green circle) and
very advanced HCC samples (red circle) show an obviously wider distribution than normal liver (open circle) and cirrhosis
samples (blue circle). (C) The MDS plot of Sts data set. Liver and spleen samples are labeled with opened and filled circle
respectively.
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geneous genomics data sets (such as tumor transcrip-
tomes) so that the detection power of either approach is
decreased. To illustrate the influence of sample heteroge-
neity on data analysis, we selected data sets from three dif-
ferent liver pathological stages (Sci: cirrhosis, Sve: very
early HCCs and Sva: very advanced HCCs in HCC? exper-
iment) to present the different levels of transcriptomic
changes and heterogeneity. Six samples of each stage were
compared with six normal liver samples to identify
changes in gene expression. As shown in Figure 3F, the
transcriptomic changes increase along with the HCC pro-
gression. Sva have the greatest changes from normal liver
(average Pearson dissimilarity: 0.049 + 0.013), indicating
many genes are de-regulated. The other early stages have
relatively small changes and the change levels of Sci and
Sve are similar (Sci: 0.021 + 0.004 and Sve: 0.025 + 0.003,
Figure 3F).

The transcriptomes of cirrhosis samples (§ in Figure 2A)
are homogeneous and their transcriptome profiles (blue
circle) as well as that of normal livers (open circle) are
closely self-clustered in MDS plot (Figure 2B). Both very
early HCC (# in Figure 2A) and very advanced HCC sam-
ples (# in Figure 2A) are heterogeneous and their tran-
scriptome profiles are dispersed (very early HCC: green
circle, very advanced HCC: red circle; Figure 2B). We also
added an extreme case, 4 normal liver and 4 normal
spleen samples in the analysis. The gene expression pat-
terns of normal tissues are tightly controlled by tissue-spe-
cific regulation. The high homogeneity is shown in Figure
2C and @ in Figure 2A. A huge transcriptome difference
(0.120 + 0.009, Sts: Tissue comparison in Figure 3F) can
be detected between the two tissue types.

To estimate background variations for each data set, we
compared the t-distributions of these four data sets (Sci,
Sve, Sva and Sts) with their corresponding null data sets
(Snull), which have the same sample number but their
gene signals were randomly sampled from normal distri-
bution (1 =0, 62=1). In such comparison, heavier tail dis-
tribution indicates more genes have significant gene-
phenotype correlations, i.e., data sets with heavy tails are
more readily being analyzed by conventional ¢ value-
based methods. As an extreme case, Sts showed the most
heavy tail distributions (black line in Figure 3D) among
all tested data sets. We then compared two data sets with
similar transcriptomic change level (Sci and Sve, Figure
3F). The tail distributions of Sci (blue line, Figure 3A) are
heavier than those of Sve (green line, Figure 3B). Even in
Sva (red line, Figure 3C), which contains over 2-fold dis-
similarity than Sci (Figure 3F), the tail distributions (red
line, Figure 3D) were still smaller than those of Sci (blue
line, Figure 3D). The variation of t value is less informative
in heterogeneous data sets. Classical approaches are there-
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fore more applicable to homogenous data sets, but not
heterogeneous ones (such as clinical tumor samples).

In IGA, the function annotation enrichment analysis is
based on the most significant de-regulated genes (Figure
1). These genes are selected from both ends of the t-statis-
tic distribution, which are the most informative regions.
Hence, IGA is expected to be a sensitive method for heter-
ogeneous samples. However, de-regulated genes can
barely be identified from heterogeneous and mild-
changed samples, such as Sve (Figure 3B and 4B). The
selection of thresholds presents researchers with the
dilemma of obtaining accurate interpretations but only
few significant DEGs or obtaining more DEGs by reducing
selection threshold (i.e., by reducing statistic powers) to
expand the scope of analysis.

In gene set-based analysis (GSA), the GS score, which is
summarized from gene-phenotype correlations of all
members in a gene set, is used to estimate functional
changes (Figure 1). Because GSA bypasses the threshold
selection step, it can avoid the dilemma mentioned above.
However, we wondered if such algorithms, based on the
gene-phenotype correlation, also decrease their detection
power in heterogeneous samples. We calculated the aver-
age t-statistic for each gene set (GS) to get GS scores. The
increasing or decreasing of GS score represents the degree
of gene set correlation with phenotype. We compared
scores distribution of all data sets in Figure 3E. Sts shows
the most significant GS score variation (-5.5~22.7), which
represents the obvious function difference between liver
and spleen. The score variations of Sci, Sve and Sva are
much smaller than Sts since they have similar tissue back-
ground when compared with reference samples, the nor-
mal liver. Although Sci has the smallest transcriptomic
changes (Figure 3F), Sci shows a more significant GS score
variation (-5.22~-6.20) than the other data sets do (Sve: -
3.35~4.52, Sva: -4.75~4.09). The result implies that the
heterogeneity of tumor samples reduces the detection
power of GSA too.

Threshold insensitivity and robustness of eGSA

Recognizing the limitations of current gene- or gene set-
based methods on heterogeneous samples, we alterna-
tively analyzed transcriptomic changes by using regula-
tory events. Regulatory event is defined as a gene signal
change of a test sample compared with a reference sample
pool (see Materials and Methods). The distribution of regu-
latory event frequency in all data sets is clearly distin-
guishable from null data sets (Figure 4A) and the gradual
increasing of tail distributions correlates with their tran-
scriptomic change levels (Figure 3F). This result implies
regulatory event is a better approach for analyzing hetero-
geneous samples. Based on this observation, we designed
a novel regulatory event-based strategy, which we called
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the regulatory event-based Gene Set Analysis (eGSA), for
the exploration of significant gene sets and compensate
for the insufficiency of traditional method in heterogene-
ous samples.

One might argue that the regulatory event determination
is still under an arbitrary cut-off threshold and its results
also suffer from the same dilemma of threshold selection
as IGA does. This argument can be partially answered by
the insensitivity of regulatory event detection in different
threshold values (see Figure 4B). The number of differen-
tially expressed genes (DEGs) is sensitive to the threshold
selection and is dramatically decreased when a stringent
threshold is applied. Under a strict threshold (g-value <
1.0E-3), 1204 genes could be detected in homogenous
data set (Sci, Figure 4B). However, only a few differentially
expressed genes could be detected in heterogeneous data
sets (Sve: 1 and Sva: 229, Figure 4B). In contrast, even
under the most stringent threshold in our test (g-value <
1.0E-7), thousands of regulatory events could be detected
robustly. Moreover, the event numbers of those data sets
also correlated with the level of transcriptomic changes
(Figure 3F).

The threshold insensitivity of regulatory event detection
also reflects the robustness of eGSA. We selected the lipid
metabolic process (GO:0006629) category in the GO
databases as an example because both liver cirrhosis and
carcinogenesis cause the defective lipid metabolism
[11,12]. Obvious down-regulation of this functional cate-
gory is expected in all Sci, Sve and Sva data sets (red line,
Figure 4C-E). In IGA, hypergeometric test p-values
increase heavily toward the background values of the
opposite regulation when higher threshold stringency was
used in heterogeneous data set (dash line, Figure 4D-E).
IGA even loses the detection power due to no annotated
de-regulated genes (dash line, Figure 4C-E). Although the
homogeneous data set, Sci, showed higher tolerance to
stringent thresholds, the p-values appeared unstable when
different thresholds were selected (red dash line, Figure
4C). Nevertheless, in eGSA the p-values are more stable in
both homogeneous and heterogeneous data set (red solid
line in Figure 4C-E) and could be distinguished from the
background values in all tested threshold values. Conclu-
sively, measuring regulatory events is insensitive to
threshold selection and can be performed more robustly
in hypergeometric test.

Precise and broad biological interpretation of
transcriptomechanges by eGSA

We further compared the accuracy and analysis scope
between eGSA and IGA. Using 1634 gene sets defined by
GO terms, we calculated the significance levels of gene
sets based on the up-regulated genes or regulatory events.
To make these two results comparable, we ranked gene

http://www.biomedcentral.com/1471-2164/10/26

sets by their p-values and then present their ranking orders
in a scatter plot (Figure 5A and 5B). For every gene set, we
also calculated the ratio of up-regulated regulatory events
over the total regulatory events within the gene set to indi-
cate their regulatory directions.

In Sts, the most distinctive data set (Figure 3F), the rank-
ing orders of gene set are highly correlated between eGSA
and IGA (Figure 5A), suggesting that eGSA has compara-
ble detection power to that of IGA in homogeneous sam-
ples. This is due to the fact that most of the consistent gene
regulations in Sts can be detected by both strategies. In
Sve, the most indistinctive data set (Figure 3F), the top-
and bottom-ranked gene sets of IGA and eGSA are corre-
lated and are aligned in the diagonal corners (Figure 5B).
This is because these gene sets represent the most consist-
ent changes. However, eGSA detected more up-regulatory
gene sets that were under-estimated (red nodes in the 2nd
quadrant) or missed (green triangle) by IGA. This data
demonstrates that eGSA has a broader scope of analysis
than IGA. Moreover, several down-regulated GSs (blue
nodes in the 4th quadrant) are misidentified as up-regu-
lated GSs by IGA (Figure 5B).

We selected two extremely contradictory gene sets to dem-
onstrate the different preferences between these two
methods. The first gene set, the regulation of signal trans-
duction (GO:0009966; indicated by a red arrow in Figure
5B), is highly-ranked in eGSA (170th) but not in IGA
(1554th). The second gene set, the amino acid metabolic
process (GO:0006520; blue arrow in Figure 5B), is highly
ranked in IGA (94t%) but not in eGSA (1359th). The details
of both gene sets, including their differentially expressed
genes, regulatory events and signal values, are shown in
Figure 5C and 5D. In the first gene set, regulatory event-
based analysis shows that 20% of genes (total regulatory
events/(total genes x total test samples)) are up-regulated,
which is in agreement with the observation in sample sig-
nal values. However, only 4% up-regulatory de-regulated
genes can be detected due to the lack of consistency in
gene expression level (Figure 5C). This also suggests that
IGA may sometimes under-estimate the significance of a
gene set. In the second GS, IGA detects a certain number
of consistently up-regulatory de-regulated genes and con-
clude this gene set as a significantly up-regulated one (p =
7.99E-05). But this doesn't perfectly present the fact that
there are actually more down-regulatory (24%) than up-
regulatory (15%) expression changes in this gene set (Fig-
ure 5D). We conclude that for heterogeneous samples,
since eGSA takes into account all REs in a gene set, this
novel strategy can overcome certain limitations of IGA.

Functional patterns of very early HCC
To demonstrate the advantage of eGSA, we applied eGSA
on the discovery of biological functions associated with

Page 8 of 15

(page number not for citation purposes)



BMC Genomics 2009, 10:26

Sts data set

1700

1530

1360

1190

1020

850

680

Gene set ranking order of IGA

510

340

170

0 170 340 510 680 850 1020 1190 1360 1530 1700

Gene set ranking order of eGSA

Gene set events ratio (up/total)

0% 50% 100%

G0:00009966
Regulation of signal transduction

Event Signal
N Rl
5038388 5803388
O00000 S J3IZ29000000
I I T I I I Z2ZZ2ZZZZI I IIITTI

I II Up-DEGs

Signal >1 or

Signal < -1 or
up-DEGs REs

Signal level
Down DEGs,REs

Figure 5

Gene set ranking order of IGA

@ Gene set detected in both methods

http://www.biomedcentral.com/1471-2164/10/26

1700

1530

- -
- w
© =2}
o o

1020

[+
(4]
o

[=2]
<]
o

@
g
o

w
5
o

N
N
=]

0 170 340 510 680 850 1020 1190 1360 1530 1700
Gene set ranking order of eGSA

D
G0:0006520
Amino acid metabolic process
Event Signal

r AN Rl
TN M N M ¢ v ©
3888 339538883883
I T T T =z z =z I T T T T

HCC5
HCC6
NL1
NL2

L

NL4

L

L
|| Heer

i

|| lH

3

V I
f:'i
Wiy

0

!

I

Correlations between eGSA and IGA. (A) and (B), Scatter plots of GS significance ordered by eGSA (y-axis) and IGA (x-
axis). Each circle represents one GS, and green triangles represent missed GSs in IGA. The color represents the percentage of
up-regulated REs in a GS (RE; i, gs/REioi in gs)- Most GSs in Sts are correlated and aligned on the diagonal line. In Sve, the
high- and low-rank GSs are also correlated but many GSs appear inconsistent (in 2"d and 4th quadrant). Their gene changes of
two extremely inconsistent GSs, which are indicated by red and blue arrows, are further shown in (C) and (D). In these heat-
maps, each row represents one gene in a GS while each column represents a tissue sample. The first column is the up-DEGs
detected by IGA (shown in red). The event panel is REs detected by eGSA (red: up-REs; green: down-REs), while the signal
panel is the standardized (mean = 0, SD = 0.5) microarray signals of all samples. The signal level is presented by the color scale

(red: up-regulation; green: down).

Page 9 of 15

(page number not for citation purposes)



BMC Genomics 2009, 10:26

liver cancer tumorigenesis. Hepatocellular carcinoma
(HCC) is characterized as an obvious multistage process,
just like many other types of human tumors. Understand-
ing the de-regulated biological functions in early stage
HCC will help to reveal the initial processes of hepatocar-
cinogenesis. The insights of early HCC functional changes
and regulatory mechanisms are far from clear due to the
lack of common oncogenes and tumor suppressors. One
of the major difficulties in identifying common regulatory
mechanisms is the genetic heterogeneity of HCCs [13,14].
To overcome this heterogeneity issue, we applied eGSA on
the analysis of the initial functional changes of HCV-
induced HCCs (HCC?) [15].

In the original paper of HCC? only 104 differentially
expressed genes were identified when dysplasia samples
(n = 17) were compared to early HCCs (n = 18) [15]. The
authors interpreted the biological function of early HCC
based on gene functional classification. As a result, only a
few gene sets were analyzed and their statistical signifi-
cance had not been estimated yet. To provide a more com-
prehensive view on the initial processes of
hepatocarcinogenesis, we applied eGSA on the earliest
stage of HCCs (very early HCC in Figure 2A, n = 6). Owing
to the insensitivity of eGSA to transcriptomic heterogene-
ity, we can now identify more altered biological functions
with statistical significance in very early HCC. To avoid
potential errors from name-space issues [2], we carefully
removed the gene sets containing high percentage of
duplicative genes (>10%). The filtered gene sets were
functionally clustered into branches of an acyclic network
according to their GO term relationships (Figure 6). The
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GS ranking orders are presented in a color scale (red: up-
regulated; green: down-regulated). The top 100 up- or
down-regulated gene sets are listed in Additional file 2.

In the eGSA results, the major functional changes are basi-
cally consistent with the original observations and previ-
ous descriptions on HCC [11,15-17]. Moreover, eGSA
provides new insights into the initial processes of HCC.
Gene sets related to major hepatic metabolisms, including
cholesterol, steroid, hormone and amino acid metabo-
lisms, are significantly down-regulated (see section B of
Additional file 2). The down-regulation of these biologi-
cal functions may be due to the failure of normal hepatic
functions. On the contrary, nucleoside and protein
metabolisms required for rapid cell growth are signifi-
cantly up-regulated. These include pyrimidine nucleoside
metabolism (p value is 2.3E-5, ranking order is 89th),
ubiquitin-mediated protein degradation (4.76E-5, 37th),
tRNA aminoacrylation (3E-3, 98th) and ribosome biogen-
esis and assembly (9.52E-4, 76t) (see section A of Addi-
tional file 2).

The down-regulation of lipid metabolisms has been fre-
quently reported in liver diseases [11,12]. In the initial
stage, fatty acid metabolism (2.6E-5, 22th), steroid biosyn-
thesis (6.5E-3,77%) and sterol related metabolisms, e.g.
hormone metabolism (6.4E-3,76t), are all down regu-
lated since several common enzymes are shared within
these metabolic processes (see B section in Additional file
2). Although lacking a consistent conclusion, several stud-
ies did report that a sterol hormone, androgen, was asso-
ciated with HCC development: high level serum androgen
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was found as risk factor for HCC [18], and androgen
receptor has also been reported to promote cell growth
and anti-apoptosis in hepatic cell line model [19]. Hence,
the linkages between the down-regulations of sterol
metabolisms and the abnormal hormone metabolisms,
and their effects on HCC initiation could be interesting
and worthy of further study.

Escaping and surviving from attacks by the immune sys-
tem are two other significant functional changes in HCC
initiation. Certain immune functions, such as the inflam-
matory response (8.0E-3, 81%), innate immune response
(3.5E-3, 64th) and immune effector process (9.2E-3, 86th),
are down-regulated while the survival pathway, the regu-
lations of [kkB/NF«B cascade [20,21] (2.6E-3, 93t), is up-
regulated (Additional file 2). These observations are sup-
ported by many studies. For example, the number of dif-
ferent types of inflammatory cells are decreased in HCC
tissue sections [22]; the suppression of T cell-mediated
immune responses is found in HCC patients and is asso-
ciated with poor prognosis [23,24]. To understand the
regulatory mechanisms, we analyzed the biological path-
ways involved in those immune-related gene sets. Genes
with high regulatory event frequency (up + down > 0.8)
were annotated with their involved KEGG pathways [25],
and the most annotated pathways are listed in Additional
file 3. Several biological signaling pathways are high-
lighted, including the Toll-like receptor, JAK-STAT, MAPK
and T cell receptor signaling pathway. Besides, a number
of immune-related processes are also highlighted, such as
the cell adhesion molecules, cytokine-cytokine receptors,
antigen-processing and presentation, and NK cell medi-
ated cytotoxicity (see Additional file 3).

It is not surprising that cell cycle is up-regulated at the ini-
tial stage of HCC. However, in an advanced comparison
of cell cycle phases, we identified that M phase (4E-3,
111%h) is the most significant phase over G1 (2.4E-1,
554th) and S (2.5E-2, 180t). M phase related gene sets,
such as regulation of mitosis (1E-2, 94%) and mitotic cell
cycle checkpoint (1E-3, 79th), are both significantly up-
regulated (Figure 6 and section A of Additional file 2). To
further illustrate the early changes of M phase regulation,
we mapped the up-regulated regulatory event frequencies
of four stages (very early, early, advance and very advance
HCC stages) on a KEGG cell cycle pathway (hsa04110). As
shown in Figure 7, most G2/M key regulators (CCNA2,
CCNB and CDK1) are up-regulated at the first stage (also
see Addtional file 2, the dashed box in panel A). These
genes appear earlier than many G1/S key regulators (RB,
RBL1, CDK2, CDK4 and CDKG6) (Figure 7). The early up-
regulation of G2/M phase can also be supported by the
appearance of the corresponding down-stream genes. For

http://www.biomedcentral.com/1471-2164/10/26

example, the regulators of mitosis and chromosome seg-
regation (BUB1, BUB1B, BUB3, MAD2L1 and CDC20)
were frequently up-regulated at the first stage, while the
regulators of DNA replication (ORC and MCM complex)
are up-regulated only at the later stages (Figure 7). In
another sample set (HCC!), although lacking in stage
information, we still found that these G1/M regulators
were more frequently and synchronously up-regulated
(see panel B of Additional file 4). On the contrary, G1/S
regulators, which are accompanied by DNA synthesis, are
seldom found (panel B of Additional file 4). Our findings
are consistent with the previous protein and kinase activ-
ity studies. The enhancement of CCNA/CDK1 protein
expression and kinase activity are observed in early HCC
stage and non-tumorous cirrhosis tissues, but not in nor-
mal livers. G1/S regulators, CCND1, CCNE1 and CDK4,
are higher in poorly differentiated HCC and advanced
HCCs [26].

CCNA2 is considered as an important factor leading to
cancer because of its dual roles in both S and M phase
[27,28]. The increased expressions of CCNA2 mRNA and
protein were observed in many clinical HCC studies
[27,29,30]. However, in cell model experiments, over-
expression of CCNA2 alone could not promote cell cycle
but delayed metaphase/anaphase onset [31]. These find-
ings suggest that the high expression of CCNA2 might
simply reflect high tumor proliferation rate rather than
promote tumorigenesis [27].

In our study, CCNA2 appears as a most frequent and ear-
liest up-regulated cyclin at the initial stage. This strongly
suggests that CCNA2 might play a crucial role in HCC ini-
tiation. Accompanying CCNA2, several mitosis-related
regulators, such as CDC2, CCNB1/2 and CDC20, are syn-
chronically up-regulated (Figure 7), indicating that all
these mitosis genes are also required for HCC initiation.
However, previous individual gene studies did not test the
gene combination (see Additional file 4). Besides, an
interesting supportive mechanism, the up-regulation of
ubiquitin mediated proteolysis activity (4.76E-05, 37th),
could also potentially contribute to the rapid turn-over of
cyclin and other mitosis components, and then help to
complete the cell cycle (see section A of Additional file 2).

Conclusion

The common transcriptomic heterogeneity of tumor
reduces the detection power of gene-list or gene-set analy-
sis to identify functional patterns of transcriptome pro-
files. We developed eGSA, a novel method based on
regulatory events, to overcome such limitations. eGSA is
insensitive to threshold bias and can provide more robust
and precise results than IGA. These properties make eGSA
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an excellent approach to analyze complex tumor tran-
scriptome profiles.

eGSA overlooks the highly heterogeneous regulatory
mechanisms and directly targets the question "what hap-
pened on cellular functions?". Once functional issues are
addressed, the regulatory event frequency can be applied
to highlight potential regulatory routines in the gene net-
work and to present their prevalent regulatory mecha-
nisms. The identification of these regulatory routines will
greatly accelerate the development of pharmaceutical tar-
geting strategies and personalized therapy.

Along with this study, we also noticed a few limitations of
eGSA. First, the determination of regulatory events is

heavily dependent on a stable and highly correlated refer-
ence pool. This requirement cannot always be met in
many cases, such as the comparison between two hetero-
geneous sample types. Second, the biological interpreta-
tion of eGSA relies heavily on the definition and
composition of a gene set. Several unsolved problems,
such as name-space issues, imprecise or incorrect annota-
tions, will interfere with eGSA results. It still lacks an opti-
mization process to avoid these problems so far. Finally,
like most gene set-based analysis, eGSA counts the contri-
bution of each gene in biological regulations equally. This
equality is not always true in a cell because certain genes
are more crucial in changing the whole cellular function
than others. Hence, an advanced weighting algorithm of
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gene set definition remains to be developed for more pre-
cise biological function interpretation.

Methods

Data collections and preprocessing

Six independent data sets (Normal, HCC!, HCCZ?,
Tumor!, Tumor?, Tumor3), including one normal tissue
data set (GSE3526), two HCC data sets (E-TABM-36 and
GSE6764), and data sets for other three tumor types: thy-
roid cancer (GSE3678), colon cancer(GSE4107) and lung
cancer (GSE7670), were downloaded from two public
archives (NCBI GEO [32] and ArrayExpress [33]). The
sample accession numbers and tissue types are listed in
Additional file 5. All data were implemented in Affymetrix
U133A and U133 Plus 2.0 platform, and the raw data
(.CEL) were normalized by RMA algorithm using statistic
software Partek® Genomics Suite™ (Partek Inc., St. Louis,
MO, USA). Affymetrix probe set IDs were converted to
UniProt IDs before mapping onto the GO database. The
expression level of each UniProt ID (gene) is the average
of the corresponding probe set signals. In total, 26300
genes were summarized from 54675 probe sets of U133
plus 2.0 platform and 18033 genes were annotated in GO.

Gene set (GS) definition

GS is comprised of genes with the same GO term. By using
the biological process category of GO, there are 4903 GSs
encapsulated from the Affymetrix U133 Plus 2.0 platform.
After excluding the GSs containing less than 10 genes,
1643 GSs were used for GS-based analysis. The GS map-
ping, gene ID converting and summarization were proc-
essed by Microsoft Access 2007 and VBA.

The measurement of sample heterogeneity

We measured the Pearson dissimilarity distance (defined
as [1 - r]/2, where r is the Pearson correlation) to present
the transcriptome difference between two samples. The
heterogeneity of a sample type was presented by the mean
of distances between paired samples. The transcriptomic
change between two sample types was presented by the
mean of all pairwise distances between members of the
two groups concerned. Multidimensional scaling plot
(MDS) was used to illustrate the distances among samples
in a data set [10]. The calculation of Pearson dissimilarity
distance and MDS plotting were performed using the sta-
tistical software Partek Genomic Suit.

The measurement of gene-phenotype correlation

In homogeneous data sets, the gene-phenotype correla-
tions were measured by the Student's t-test. Alternatively,
Welch's t test was applied for the heterogeneous data set
due to the possible unequal variance observed in the two
samples types. The t-statistic of each gene was applied for
GSA scoring (average t-statistics) and t-distribution plot.
For detecting differentially expressed genes, the multiple-

http://www.biomedcentral.com/1471-2164/10/26

test correction of p-value was performed by positive false
discovery rate (g-value) [34] and genes were filtered by a
given g-value threshold. The t-statistic of genes and posi-
tive false discovery rate (g-value) were calculated by the
Partek Genomic Suit.

Signal-to-event conversion

In a data set, samples were classified into test and refer-
ence groups. The statistical significance of gene signal (x)
in a test sample was estimated by the cumulative probabil-
ity distribution of the normal distribution. The signal
mean ( ) and standard deviation () of reference sample
pool were calculated and applied to cumulative probabil-
ity distribution function in  Microsoft  Excel,
NORMDIST(x, , , True). The multiple-test correction of p-
values was performed by g-value. The significant signal
change, as an expression regulatory event (RE), was deter-
mined by a given significance cut-off. According to the
regulated direction, RE was defined as up-regulatory event
(up-RE) or down-regulatory event (down-RE).

Event-based gene set analysis (eGSA)

eGSA contains two processes to estimate the significance
level of a gene set (GS): (1) GS scoring and (2) Gene set
statistic (Figure 1).

(1) GS scoring

In an event matrix, up-regulatory event (RE) frequency
and down-RE frequency were calculated respectively as:

Gene RE frequency = EREj,
where j is the sample number of a given test sample type.
A GS score (k) is the sum of gene RE frequency in a GS and
calculated as:
k = SRE/j,
where i is the gene number of a GS.
(2) Gene set statistic

The probability of observing at least k& from a particular GS
is tested by hypergeometric distribution.

mY N—-m
k=1{ 1 n—i
) ,
i=0 N

where m is the total gene number in a GS, N is the total
gene number in a microarray platform, and 7 is the aver-
age REs in a sample type. The calculations of hypergeo-
metric test were performed by R packages http://www.r-

project.org/.
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Simulated null data set

We generated a null data set to mimic random variation
of a testing data set. The null data set has the same sample
number and gene number as the test data set but its signal
values were randomly sampled from normal distribution.
The simulated data set was generated by using a standard
function, NORMSINV(RAND), in Microsoft Excel 2007.
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Additional material

Additional file 1

Relationships of HCV-induced HCCs. The inter-sample dissimilarities
of HCC:s are presented in a MDS plot. Each node represents one sample
and colors of the nodes represent their clinical stages as indicated.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-26-S1.pdf]

Additional file 2

The major functional changes of very early HCCs. The top 100 ranked
GSs by up-(A) or down-RE (B) eGSA. The corresponding results from
IGA are also listed. The "Hits" panel represents the average RE number
and DEG number in a gene set. The "Significance" panel shows the p-
value of hypergeometric test. The Err% panel represents the percentage of
duplicative genes, which are defined as several genes measured by a single
probe set of the Affymetrix chips. Total error% indicates the percentage of
duplicative gene in a GS and the Hits error% indicates duplicative DEG
in a GS. The GS information is listed in the last three columns, included
GO id, gene number and GO term.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-26-S2.pdf]

Additional file 3

Cross-analysis of high regulatory event frequency genes between gene
sets and KEGG pathway. The overlapped gene numbers are shown in the
"Hits" column and the pathways they are involved in are listed.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-26-53.pdf]
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Additional file 4

The event tables of cell cycle regulators in two independent microarray
experiments. 35 central regulators are listed in rows and are grouped
according to their roles in cell cycle pathways, including the G2/M, M,
G1/S, RB/E2F, and S phase (see also Figure 7) (A) In HCC? data set, 63
samples are aligned in the columns according to progressive HCC stages.
Each cell represents the detection of RE (up-RE: red, down-RE: green, no
change: gray). In very early HCCs (dash box), the RE frequency of G2/M
and M phase are higher than that of RB/E2F, G1/S and S phases. (B) In
another experiment (HCC'), G2/M regulators are also the most fre-
quently up-regulated genes.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-26-84.pdf]

Additional file 5

Data set information. * obtained from NCBI GEO [32]. # obtained from
ArrayExpress [33]. Data set reference: HCC! [15], HCC? [17],
Tumor![35], Tumor3 [36]

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-26-85.pdf]
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