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Abstract

Background: Gender appears to be determined by independent programs controlled by the sex-
chromosomes and by androgen-dependent programming during embryonic development. To enable
experimental dissection of these components in the human, we performed genome-wide profiling of the
transcriptomes of peripheral blood mononuclear cells (PBMC) in patients with rare defined "disorders of
sex development” (DSD, e.g., 46, XY-females due to defective androgen biosynthesis) compared to normal
46, XY-males and 46, XX-females.

Results: A discrete set of transcripts was directly correlated with XY or XX genotypes in all individuals
independent of male or female phenotype of the external genitalia. However, a significantly larger gene set
in the PBMC only reflected the degree of external genital masculinization independent of the sex
chromosomes and independent of concurrent post-natal sex steroid hormone levels. Consequently, the
architecture of the transcriptional PBMC-"sexes" was either male, female or even "intersex" with a
discordant alignment of the DSD individuals' genetic and hormonal sex signatures.

Conclusion: A significant fraction of gene expression differences between males and females in the human
appears to have its roots in early embryogenesis and is not only caused by sex chromosomes but also by
long-term sex-specific hormonal programming due to presence or absence of androgen during the time
of external genital masculinization. Genetic sex and the androgen milieu during embryonic development
might therefore independently modulate functional traits, phenotype and diseases associated with male or
female gender as well as with DSD conditions.
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Background

Biological sex is the product of genetic and hormonal pro-
grams activated during embryonic development, with the
most striking gender differences occurring in the internal
and external genitalia. Biological sex is a core determinant
of sex-specific behavior [1-3] and also a major modifier of
a variety of maladies including cancer [4,5] and autoim-
mune diseases [6]. Delineation of the determinants of
biological sex could provide valuable insights into gender-
specific behaviors, diseases, treatment responses and out-
comes [7]. Sex-specific differences in gene expression have
been documented and they are hypothesized to reflect
gender-specific development [8,9]. However, sex-specific
gene expression appears to be the product of two distinct
pathways: sex chromosome genotype (46,XX versus
46,XY) [8,9] and androgen-dependent programming dur-
ing embryogenesis [10,11]. In contrast to established con-
cepts of androgen programming in rodents [12-14] it has
not been possible to tease out the contributions of these
two pathways experimentally in normal male and normal
female humans since they always work in parallel.

Disorders of sex development (DSD, previously named
"intersex") are the product of chromosomal and hormo-
nal abnormalities during development that result in geni-
tal ambiguity and incongruent combinations of gender-
specific external genitalia, reproductive ducts and gonads
in a single individual. Therefore, DSD can serve as an
"experiment of nature" to decipher the genetic and hor-
monal components of sex-specific gene expression in the
human. Genetic and hormonal influences on gender
extend beyond the reproductive tract, modifying body
proportions, hair distribution, gender identity, sex-spe-
cific behavior and many other features that also affect
DSD patients clinically in multiple ways [1-3,15-17].
Therefore, improved understanding of the architecture of
sex specific gene expression may also contribute to better
clinical assessment of DSD-patients. In the present study,
we hypothesized that sex chromosome controlled gene
expression and androgen action during embryonic devel-
opment in the first trimester as documented by the clini-
cal degree of genital masculinization after birth could be
distinguished by comparing normal males and females to
individuals with DSD having well-defined clinical, hor-
monal and molecular characteristics. Because of simple
accessibility, lack of overt organ-specific topography bias-
ing gene expression [10,18] and documented androgen
receptor expression [19] we used peripheral blood mono-
nuclear cells (PBMC) for genome-wide transcriptome
analysis. Our study is the first that profiles blood gene
expression data in DSD individuals.

Results

Genome-wide transcription profiling

Transcript profiles for 9 normal male and 10 normal
female controls were measured using spotted cDNA
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microarrays with more than 44,000 cDNA elements repre-
senting 26,000 unique genes. The Significance Analysis of
Microarrays (SAM) procedure [20] was used to identify
157 sex-specific transcripts (121 unique named genes)
(false discovery rate < 0.09): 136 transcripts with higher
expression in males (86.6%) and 21 (13.4%) with higher
expression in females. Gene expression across these 157
sex-dimorphic transcripts was analyzed across all 19 con-
trols and 14 DSD-patients. The DSD patients were com-
prised of ten 46,XY subjects whose genitalia ranged from
normal female to Prader 4, three 46,XX subjects with mas-
culinized genitalia from high prenatal androgenic steroid
levels due to congenital adrenal hyperplasia (CAH, 21-
hydroxlase deficiency) and one Prader 4 45,X0/46,XY sub-
ject. In addition, one normally masculinized 46,XY male
with CAH was investigated (Additional file 1 and Figure
1A, B, C, additional files 2, 3, 4, 5).

Hierarchical cluster analysis sorted the subjects into 2
groups that directly correlated with the sex chromosomes
(Figure 1A, B, C). Segregation of the 46,XX and 46,XY sub-
jects into 2 major groups was driven by large differences
in expression of 11 of the 157 transcripts corresponding to
8 unique genes (Figure 1B, D, E). High expression of XIST
(X (inactive)-specific transcript) and LOC554203
(Xq13.2) characterized genetic females (Figure 1A, D),
while DDX3Y (DEAD (Asp-Glu-Ala-Asp) box polypeptide
3, Y-linked) and five additional Y-linked genes character-
ized genetic males (Figure 1E). RT-PCR confirmed abun-
dant expression of XIST mRNA in two female controls (N-
020, N-031) and in two 46,XX virilized CAH-individuals
(P-103, P-105) and showed an absence of expression in
two 46,XY-controls (N-003, N-015) and two sex-reversed
46,XY DSD-females (P-019, P033). RT-PCR also con-
firmed that DDX3Y transcript levels were abundant in
these same 46,XY individuals, but absent in the 46,XX
subjects (data not shown).

Within each of the 46,XX and 46,XY groups were 2 sub-
groups that largely correlated with the degree of genital
masculinization (Figure 1B, F, G). The 46,XX normal
female subjects clustered separately from the three 46,XX
subjects with genital masculinization and CAH based on
differences in expression across 146 of the 157 sex-specific
transcripts. Similarly, the 46,XY individuals separated into
a group comprised of normal males and highly masculi-
nized individuals with DSD (with one exception) and a
group with predominantly female external genitalia,
again based on expression differences across the same 146
transcripts. Only two patients did not follow this pattern.
Subject P-115, who clustered with phenotypic males, had
46,XY DSD and Prader 1-2 genitalia due to an unclassi-
fied defect in androgen biosynthesis. Subject P-088 had
mixed gonadal dysgenesis due to 45,X0/46,XY mosaicism
and Prader 4 genitalia yet clustered with phenotypic
females. Since mosaicism can vary between tissue com-
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Hierarchical clustering analysis of 34 microarray experiments on PBMC total RNA derived from 9 normal
males, 10 normal females, one 46,XY-male with CAH and 14 individuals with DSD [see additional files 2, 3, 4, 5].
(A) Transcript levels of 157 transcripts identified by SAM as differing significantly between PBMC from 9 normal males and 10
normal females. Transcripts are grouped by hierarchical cluster analysis and displayed in rows while experiments are displayed
in columns. Expression values per gene are centered by the mean log, Cy5/Cy3 normalized ratio across the arrays. Increasing
blue intensity in the heat map corresponds to higher relative transcript levels compared to the mean expression level across all
34 array experiments. Increasing yellow intensity corresponds to relatively decreased transcript levels compared to the mean.
Dark grey corresponds to missing data. Examples taken from these gene clusters are marked by color within the gene tree on
the left of the heat map. The red gene tree corresponds to the enlarged gene cluster D, the blue gene tree corresponds to F,
the pink gene tree corresponds to G, and the green gene tree corresponds to E, respectively. Gene symbols of the named
transcripts are shown on the right. (B) Enlarged cluster dendrogram of the PBMC samples demonstrating the degree of relat-
edness (Pearson correlation) between the expression patterns of the |57 transcripts. The length of the arms of the dendro-
gram reflects the degree of correlation between experiments. Samples are color coded to reflect the degree of external genital
virilization according to Prader that had been applied to both XX and XY individuals to enable comparability of genital pheno-
types independent of the sex chromosomes. The dark grey bar below the experiment cluster represents individuals with an
XX karyotype, light grey represents an XY karyotype. The major subdivison of the individuals corresponds strictly to the kary-
otype. The second level of subdivision in each of the major arms reflects mostly the phenotype of external genital virilization
independent of the karyotype. (C) Schematic representation of the Prader stages of external genital virilization. (D) X-chromo-
some gene cluster (E) Y-chromosome gene cluster (F) Genes with predominantly higher transcript levels in the phenotypic
females and the normal females independent of the karyotype (G) Genes with higher transcript levels in the strongly virilized
individuals and the normal males independent of the karyotype.
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partments and since developmental genes may modify the
site-specific expression level of the androgen receptor in
the external genitalia [21,22], some discrepancies
between genital phenotype and systemic androgenization
are not unexpected. Using qRT-PCR, we evaluated tran-
script levels of FZD6 (Frizzled 6), since levels measured by
microarray analysis correlated with genital phenotype
(Figure 1G). Similar to the microarray experiments, mean
FZD6 transcript levels were significantly higher in normal
46,XY-males and in strongly virilized 46,XX-CAH females
compared with normal 46,XX-females and 46,XY DSD-
females (Figure 2).

Influence of X- and Y-chromosome genes

We excluded the 11 X- and Y-linked transcripts that corre-
lated with the two sex chromosome clusters and reana-
lyzed the samples by hierarchical clustering. With the
remaining 146 sex-specific transcripts, subjects no longer
grouped according to karyotype, but separated into 2
groups largely distinguished by external genitalia masculi-
nization (Figure 3, additional files 6, 7, 8, 9). Four of the
five highly virilized Prader 4 DSD-individuals and all nor-
mal males clustered together as did the normal females
and subjects with feminized external genitalia. The mean
Prader stage of the DSD-individuals excluding the normal
controls was 1.6 in the "female" group and 3.2 in those
that clustered with the normal males (p = 0.02) (Figure 3).

6
5
8
s
5! N © N-003 (46,XY)
= = [ N-015 (46,XY)
=]
2 3 A P-103 (46,XX; CAH)
S o .
g o © P-105 (46,XX; CAH)
E 2 <> —mean
A A A
1 O] o
M 9 O
0 T T T
N-020 (46,XX)  N-031 (46,XX)  P-019 (46,XY;  P-033 (46,XY;
GD) P450scc)
normal female controls and 46,XY female individuals
Figure 2

Ratio of FZDé6 transcript levels in 2 46,XY normal
males (N-003; N-015) and 46,XX strongly virilized
females (P-103; P-105) compared with two 46,XX
normal females (N-020; N-031) and two 46,XY
females (P-019; P-033) by semi-quantitative RT-PCR.
The y-axis reflects the ratios of expression levels of the nor-
mal male — and the strongly virilized DSD individuals, respec-
tively, divided through the phenotypic female individuals
(normal females and 46,XY-sex reversed females) as indi-
cated. RT-PCR confirms higher expression of FZD6 in viri-
lized individuals.
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When we excluded all normal controls from the cluster
analysis, DSD-individuals separated into the same 2
groups (data not shown) indicating that the normal con-
trols used for SAM had not significantly influenced the
clustering of the DSD-patients.

Influence of concurrent sex hormone levels

At the time of collection of PBMC RNA the 46,XY DSD-
subjects with feminized genitalia varied widely in their sex
steroid hormone status. Individuals who clustered in the
female (left main branch) of Figure 3 included pre- and
post-pubertal normal individuals with intact steroid bio-
synthetic pathways and individuals lacking steroid hor-
mones (subjects P-017, P-032 and P-089 with 46,XY DSD
who had been gonadectomized and were not on hormone
replacement therapy and subject P-033 who had an inher-
ited defect in, and almost complete lack of, steroid biosyn-
thesis). This cluster also included gonadectomized 46,XY
DSD-individuals on estrogen replacement, such as subject
P-027 who showed normal adult female plasma estradiol
of 492 pmol/L (normal range 73-1065 pmol/L).

Similarly, the phenotypic "male" cluster (right main
branch of Figure 3) contained normal postpubertal males
(several with documented fertility and presumably adult
male testosterone concentrations) and prepubertal indi-
viduals (N-028, P-103, P-105, P-110, P-113). The prepu-
bertal subjects P-103, P-105 and P-110 had low serum
testosterone levels compared with age - and male sex
adjusted normal ranges at the time of blood sampling (P-
103: 0.1 nmol/L; P-105: 0 nmol/l; P-110: 0 nmol/l; nor-
mal range 0.14-1.32 nmol/l). Subject P-112, who was
46,XX and had a 21-hydroxylase deficiency usually result-
ing in high levels of androgenic steroids, had been treated
prenatally with dexamethasone. Despite having only
slightly virilized Prader 1 genitalia, transcript levels of the
PBMCs more closely resembled phenotypic males, sug-
gesting residual effects due to elevated adrenal androgens.
One subject (P-004), born with Prader 4 external genitalia
due to 5o-reductase type II deficiency and gonadect-
omized in early childhood, was on estrogens and gesta-
gens at the time of blood sampling (plasma estradiol: 822
pmol/L). Therefore, the assignment to either the "female"
or "male" clusters based on the 146 sex-specific transcript
levels reflected neither pubertal status nor concurrent
serum androgen or estrogen levels.

Biological function of sex-specific transcripts

PANTHER (Protein ANalysis THrough Evolutionary Rela-
tionships) [23] identified 121 named genes from the 157
sex-specific transcripts. Compared with the NCBI Homo
sapiens reference list, 28 biological processes were signifi-
cantly enriched (p < 0.05) and included developmental
processes, extracellular matrix, cell communication and
several that are involved in proliferation (table 1). GSEA
(Gene Set Enrichment Analysis) [24] was performed using
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Figure 3

41 p =0.02
5

zj

.
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(A) Hierarchical clustering analysis using the 146 transcripts that did not correlate with karyotype. Genes of the
two sex chromosome gene clusters (see D and E in Figure 1) were excluded from calculating the dendrograms, but are dis-
played in the figure to show their distribution across the samples. All color codes are the same as in figure 1. (B) Enlarged den-
drogram demonstrating that major subdivision of the individuals mirrors the degree of genital virilization independent of
karyotype. (C). Mean Prader stage of genital virilization (x | SD) of the DSD individuals the main branches of the dendrogram
excluding the normal controls. The mean Prader stage on the left side is Prader "1.6" and "3.2" on the right (p = 0.02) [see also

additional files 6, 7, 8, 9].

all interpretable genes from normal males and females
using 1,107 gene sets from the Molecular Signature Data-
base http://www.broad.mit.edu/gsea/msigdb. 18 gene
sets were significantly enriched in males, one in females,
of which the majority had been associated with prolifera-
tion, often in a context of cancer (e.g., Figure 4[25], http:/
/microarray-pubs.stanford.edu/sob). Interestingly, many
of the sex-specific genes identified in our study have pub-
lished roles in human cancer, including TFPI2 (Tissue fac-

tor pathway inhibitor 2) (Figure 1G) [26], LUM
(Lumican) [27], PDPN (Podoplanin) [28], SDC1 (Synde-
can-1) [29], ESCO2 (Establishment of cohesion 1
homolog 2) (Figure 1G) [30], SSX2IP (Synovial sarcoma,
X breakpoint 2 interacting protein) [31], CTGF (Connec-
tive tissue growth factor) [32], MMP2 (Matrix metal-
lopeptidase 2) [33]. IGF1R (Figure 1F) [34], SERPINA1
(Serpin peptidase inhibitor, clade A) [35] and SEPT6 (sep-
tin 6) (Figure 1F) [36]. A subgroup of these genes function
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Table I: Biological processes identified by PANTHER [23] as being significantly over-represented (p < 0.05) in the 157-transcript sex-

specific SAM-list compared to the NCBI human reference gene list.

Biological process Detected number of genes in Expected number of genes based on NCBI  p-value
SAM list reference list
Extracellular matrix protein-mediated 4 0.29 0.000239
signaling
Cell adhesion-mediated signaling 8 1.8 0.000493
Cell communication 15 5.77 0.000674
Chromatin packaging and remodeling 6 1.13 0.00101
Cell cycle 13 48 0.00108
Mitosis 7 1.82 0.00246
Chromosome segregation 4 0.58 0.0028
Cell adhesion 9 2.96 0.00303
Embryogenesis 4 0.67 0.0048
Cell structure 9 3.27 0.00575
Gametogenesis 5 1.15 0.00614
Cell structure and motility 12 5.46 0.00878
Blood clotting 3 0.44 0.00993
Developmental processes 18 10.24 0.0134
Stress response 4 0.95 0.0157
mRNA transcription 3 9.11 0.0166
Receptor protein tyrosine kinase 4 | 0.0187
signaling pathway
Protein modification I 5.5 0.0225
Cell proliferation and differentiation 10 4.89 0.0253
DNA metabolism 5 1.71 0.0294
Protein metabolism and modification 22 14.46 0.0294
Signal transduction 24 16.21 0.0305
Lipid, fatty acid and steroid 8 3.66 0.0313
metabolism
Protein phosphorylation 7 3.14 0.0389
Other homeostasis activities 2 0.33 0.0432
NO mediated signal transduction | 0.05 0.0465
DNA repair 3 0.8 0.0474
Immunity and defense I 6.27 0.05

in DNA damage repair, such as CHEK1 (CHK1 checkpoint
homolog) [37], XRCC1 (X-ray repair complementing
defective repair in Chinese hamster cells 1) [38], H2AFX
(H2A histone family, member X) [39], ALKBH (alkylation
repair homolog 1) [40] and DCC1 (Defective in sister
chromatid cohesion homolog 1) [41].

Discussion

Differences in gene expression that correlate with gender
can be dissected into a small set of sex chromosome genes
and a larger set of genes that appear to be programmed by
androgens, most likely during embryonic development.
PBMCs from individuals with diverse well-defined etiolo-
gies of DSD including gonadal dysgenesis, defects of
androgen biosynthesis, and high levels of androgenic ster-
oids due to 21-hydroxylase deficiency showed strikingly
consistent patterns of gene expression across 146 tran-
scripts that correlated most strongly with the genital phe-
notype. Expression across all 157 transcripts identified as
differentially expressed between normal males and
females allowed separation of PBMCs into four categories
of "PBMC-sexes": chromosomal and phenotypical male,

chromosomal and phenotypical female and two intersex
constellations in which the chromosomal and steroid
influenced transcripts were discordant. While it is possible
that transcript profiling of a higher number of DSD-
patients could lead to demarcation of even diagnosis-spe-
cific patient clusters, the consistency of the transcript pro-
files across the different diagnoses argues strongly that
these four categories are relatively robust.

Animal studies on rodents underlined the importance of
sex specificity of the pattern of GH secretion and GH sig-
naling involving STAT5b for maintenance of a large part
of sexual dimorphism of gene expression in the liver [42].
Since human PBMC express the GH receptor [43], this
mechanism could have a potential influence on the genes
detected in the present study. However, in contrast to the
extensive sex specific differences in rats with males show-
ing pulsatile GH secretion and females showing more
continuous GH levels, data on sex specificity of GH secre-
tion in humans is less clear. While age and puberty status
but not sex are important determinants for GH secretion
during growth and puberty [44], there is other data show-
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Gene Set Enrichment Analysis. Enrichment plot is shown for a set of upregulated genes of a transcriptional profile com-
monly activated in undifferentiated cancer ("CANCER_UNDIFFERENTIATED_META_UP" as compared to differentiated can-
cer [22]). The enrichment score (ES, green line) reflects the degree to which the gene set is over-represented at the top or
bottom of the ranked list of genes. Black bars illustrate the position of genes belonging to the gene set in the ranked list of
genes included in the analysis. The ranked list metric shown in gray measures a gene's correlation with a phenotype. A positive
value indicates correlation with "normal female "- phenotype, a negative value with "normal male" — phenotype.

ing that GH pulse amplitude but not pulse frequency dif-
fer between women and men in adulthood [45].
However, looking at the data of the current study, the cor-
relation between gene expression profiles and genital
masculinization was independent of the individuals' sex
hormone levels at the time of expression profiling.
Puberty status, presence of gonads and sex hormone
replacement did not influence expression across the sex-
specific transcripts. Additional GSEA on transcription fac-
tor targets gene sets did not reveal sex specific enrichment
of STAT5b target genes in our study (data not shown).
Therefore, we have no experimental evidence that sex spe-
cific differences of GH secretion or changes of GH secre-
tion due to age or puberty could have influenced the sex
specific gene set of the PBMC of our study. However, it
cannot be excluded that a considerably larger set of inves-

tigated patients would allow the identification of some
sex-dimorphic genes influenced by the GH signaling path-
way in PBMCs.

Genital masculinization is a direct consequence of early
embryonic androgen action between the 7thand 12th week
of gestation. Our findings therefore support the existence
of lasting programming of sex-specific genes imple-
mented by presence or absence of androgen during the
first trimester of embryogenesis. Sex-specific gene expres-
sion patterns have been observed in other tissues [8-
11,46-48], yet the relative contribution of the sex chromo-
somes and androgen programming was unknown. Based
on expression patterns readily apparent in PBMCs, cells
not usually thought to differ significantly between males
and females, our data suggest that many of the sex-specific
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differences in gene expression are due to the influence of
presence or absence of androgens during embryonic
development. Given the limited lifespan of PBMCs, the
lasting changes in transcript programs due to androgens
are likely embedded in progenitor stem cells of fetal leu-
kopoesis. It cannot be excluded that some of the genes
detected in our study also played functional roles in
androgen programming of lasting PBMC expression pat-
terns during embryogenesis. However, more research is
needed to understand the molecular mechanisms of long
term hormonal programming, e.g., by studying the effects
of androgens on embryonic stem cell differentiation [49].
Whether such programming affects the stem cells of other
tissue types is unknown, but highly likely.

In a previous genome-wide assessment of transcript pro-
files, we have identified transcripts differentially expressed
in cultured genital fibroblasts from normal males and
46,XY females with androgen insensitivity syndrome due
to inactivating androgen receptor mutations [11]. Similar
to the current study we identified a set of transcripts with
reproducible differences in gene expression that corre-
lated with the degree of genital masculinization. Since
subjects in those studies all had a 46,XY karyotype, the dif-
ferentially expressed transcripts were almost certainly pro-
grammed during development and remained apparent
despite serial passage of the fibroblasts in culture. Interest-
ingly, the overlap was restricted to 7 genes. In both data-
sets FZD6 (Frizzled 6) (Figure 1G), SSX2IP, SDCI,
ALKBH, SPRED1 (Sprouty-related, EVH1 domain con-
taining 1), PYCR2 (Pyrroline-5-carboxylate reductase
family, member 2) and TOMM40 (Translocase of outer
mitochondrial membrane 40) were differentially
expressed between the subjects with male and female gen-
italia. Recent work by Yang and coworkers [9] in which
334 male and female mice were profiled confirms our
findings that a significant number of genes differ between
males and females. More importantly, as we observed in
genital fibroblasts and PBMCs, the degree of overlap of
the sex-specific genes between tissues was limited in this
study. Our work extends on that of Yang et al by demon-
strating that sex steroid induced programming accounts
for the majority of the differences in gene expression
between phenotypic males and females. Taken together
these data suggest that the sex chromosomes to a small
degree and androgen signaling during development to a
larger degree account for a large part of the differences in
gene expression in different tissue types between males
and females. Furthermore, the influences of each of these
differ significantly between tissue types as evidenced by
the limited overlap in the sex-specific transcripts between
tissue types. Additional work will be necessary to test
whether these differences in gene expression between
analogous tissues between males and females underlie
developmental, anatomical, and functional differences
between the sexes.

http://www.biomedcentral.com/1471-2164/10/292

Our data also provide a framework for investigating differ-
ences in diseases between the sexes and could have future
implications for risk assessment and disease monitoring
[7]. PBMC expression profiling has been suggested as a
diagnostic tool in that germline mutations in disease-
causing genes could produce unique transcriptional signa-
tures detectable in blood cells [50-52]. Disease-linked
expression profiles are likely to be modified by biological
sex [8,9] and might need to be accounted for when devel-
oping diagnostic tools. In addition, our data raise the pos-
sibility that lasting transcriptional programs that differ
between males and females could underlie differential
susceptibility to a variety of diseases. For instance, we
observed a striking over-representation of genes involved
in growth control and cancer in PBMCs between males
and females. Whether sex-specific gene expression could
affect a tissue's transcriptional background and oncogenic
potential or response to anti-cancer therapy is unknown,
but merits consideration in light of differences in cancer
incidence between the sexes and our new findings.

Our data have relevant implications for understanding the
biology of DSD as well as potential future applications in
its management. In Western societies, every schoolchild
learns that "sex chromosomes" decide "who's a boy and
who's a girl". Our data broaden the view of what deter-
mines sex and gender by revealing distinct male and
female transcript profiles that correlate with either the
karyotype or the androgen milieu present during embry-
onic development. Therefore, our data confirm the con-
cept of long term androgen programming as established
in rodent models [12-14] for the first time on the level of
the human PBMC-transcriptome. Our data also reveal 2
categories of gene expression in PBMCs in individuals
with DSD in which the karyotypic and androgen-pro-
grammed transcript profiles are discordant. Based on our
findings, it is possible that other transcript profiles in
PBMC could be identified that correlate with sex or gender
specific traits outside the genitalia. Were that the case, it
might be possible to specify transcript signatures that
reflect sex-specific differences in tissues such as the brain
and in turn mirror sex-specific behavior, sexual orienta-
tion or gender identity. If so, subsets of the sex specific
genes of our study could serve as future transcriptional
biomarkers in DSD outcome studies in order to develop
novel diagnostic tools contributing to decisions on gender
assignment in DSD children.

Conclusion

The sex chromosomes and the long term effects of the
early embryonic androgen milieu as evidenced by the
degree of genital masculinization in defined patients with
DSD contribute independently to sex specific gene expres-
sion in PBMCs. This gives rise to 4 transcriptional catego-
ries of PBMC sexes: normal male, normal female and two
"intersex" conditions with discordant alignments of the
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DSD individuals' genetic and hormonal sex signatures.
This previously unknown architecture of sex specific gene
expression in the human provides new perspectives for
understanding the biology of sexual dimorphism in nor-
mal anatomy, physiology and behavior, its particular
influences on diseases and its specific alterations in DSD.

Methods
The study was approved by the ethical committee of the
University of Litbeck, Germany.

Normal controls and DSD patients

Blood samples were obtained from 34 individuals includ-
ing 9 normal 46,XY males, 10 normal 46,XX females, one
46,XY male having CAH due to 21-hydroxylase deficiency
and 14 individuals with DSD (Additional file 1). Mean
age of normal males and normal females was 33 years,
and 26.2 years, respectively (not different by t-test).
Informed consent was obtained from control subjects,
affected individuals, or their parents.

RNA-isolation, RNA-amplification and aRNA-labeling
Blood samples were taken at 1:00 pm +/- 1 h to control for
circadian influences on gene expression. White blood cell
counts did not differ between normal males and females
(by t-test). PBMC were isolated by Ficoll (Biochrom, Ber-
lin, Germany) gradient centrifugation and total RNA was
extracted by TRIZOL (Invitrogen, Karlsruhe, Germany). 3
ug of total RNA and 1 pg of T7-oligo(dT)15 were used for
linear RNA-amplification. Reverse transcription was done
by SuperScript II (400 U) (Invitrogen, Karlsruhe, Ger-
many) at 42 °C for 90 min. Second-strand synthesis buffer
containing RNaseH (2 U), DNA-Polymerase-I (40 U), and
dNTPs (1 mM) (Roche, Mannheim, Germany) was mixed
with first reaction mixture and incubated for 2 h at 15°C.
In-vitro-transcription-mixture ~ containing  T7-RNA-
Polymerase (60 U) and NTPs (1 mM) (Roche) was added
and incubated for 5 h at 37°C. 3 ug PBMC aRNA, 7.5 ug
random-hexamer-primers (Roche), and Cy5-dUTP (0.1
mM) (Amersham, Freiburg, Germany) were used for Cy5-
labeling, and 50 pg of human universal reference-RNA
(Stratagene; Amsterdam; The Netherlands), 4.5 pg
T20VN-primer (TIB MolBiol, Berlin, Germany), and Cy3-
dUTP (0,1 mM) (Amersham) for Cy3-labeling.

Microarrays and data analysis

DNA microarrays were obtained from Stanford Func-
tional Genomics Facility http://www.microarray.org/sfgf/
, hybridized according to established procedures http://
cmgm.stanford.edu/pbrown/, scanned with
GenePix4000B scanner, analyzed with GenePixPro 4.1
(Axon Instruments, Inc., Union City, CA) and loaded into
Stanford Microarray Database http://genome-www5.stan
ford.edu/[53]. Gene filtering, log, transformation, micro-
array normalization and centering of fluorescence ratios
were performed as described previously [11]. Genes with

http://www.biomedcentral.com/1471-2164/10/292

significant differences in transcription between normal
males and females were identified by Significance Analy-
sis of Microarrays (SAM) [20] and further analyzed by
hierarchical clustering analyses [54]. The one 46,XY CAH
individual was not part of the group of 9 normal males
considered for SAM.

Functional categorization of sex-specific genes

PANTHER was used to identify enrichment of biological
processes with p-values < 0.05 considered as significant
(http://www.pantherdb.org/[23]). GSEA was carried out
with the Molecular Signature Database (http://
www.broad.mit.edu/gsea[24]) using gene sets with at
least 15 and maximal 500 genes. A p-value < 0.01 and a
false discovery rate < 0.05 were considered significant.

RT-PCR

Quantitative RT-PCR of XIST, DDX3Y and FZD6 was per-
formed on two 46,XY male controls (N-003, N-015), two
46,XX female controls (N-020, N-031), two 46,XY DSD-
females (P-019, P-033) and two virilized 46,XX CAH-indi-
viduals (P-103, P-105). Probes were FAM (F) labeled with
dabcyl (DB) quencher. Exon-spanning primers and
probes (TIB Molbiol, Berlin, Germany) had the following
sequences: XIST-forward: ACCACCACACETCAAgCTCIT;
XIST-reverse: CTATCCTCAAgTgCTAgAgIgCCAg, XIST
labeled probe: 6FAM-TTCCTACAAgCAgTgCAgAgAgCT-
gAgT-DB; DDX3Y-forward: gAAAAACAgAgTggAggAg-
CAAgTA; DDX3Y-reverse: gTCCACgATCATCAAATCTTC
CC, DDX3Y labeled probe: 6FAM-ATAAAgACAZITCAg-
gTTggAgTTgCAgCA-DB; FZD6-forward: CgTCAgTACCAT-
ATCCCATEICCITA, FZDG6-reverse: gAAATgACCIT
CAgCTTgIgTgAAC, FZD6 labeled probe: F-AAAg-
CAAAAgCTCgACCAgAATTggCT-DB; TATA-binding pro-
tein (TBP) was used to normalize expression values (TBP-
forward: CACgAACCACggCACTg-ATT, TBP-reverse: TTT-
TCTTgCTgCCAgTCTggAC; TBP-labeled probe: 6FAM-TgT-
gCAC-AggAgCCAAgAgTgAAgA-DB). 2 ug of total RNA, 0.5
UM dNTPs, 5 uM random decamers and 200 U of MMLV-
RT polymerase were used per reverse transcription reac-
tion. Heat denaturation for 3 min at 85°C was followed
by reverse transcription for 1 hr at 44°C and subsequent
inactivation for 10 min at 92°C. C-DNA corresponding to
12 ng of initial total RNA served as template. Primers (0.4
uM), probe (0.17 pM) and TagMan Universal PCR master-
mix (Applied Biosystems, Foster City, CA, USA) including
Taq polymerase were added (final volume 25 pl). Initial
denaturation at 95°C for 10 min was followed by 1 min
cycling intervals at 60°C using RotorGene RG-3000 cycler
(Corbett-Research, Sydney, Australia). Differential tran-
scription was calculated by the AACT method [55].

Abbreviations

DSD: disorders of sex development; CAH: congenital
adrenal hyperplasia; SMD: Stanford Microarray Database;
SAM: Significance Analysis of Microarrays; GSEA: Gene
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Set Enrichment Analysis; PANTHER: Protein ANalysis
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Additional file 7

Zip file containing cdt file. Cluster file to visualize data for Figure 3
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Click here for file
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Additional file 8

Zip file containing atr file. Array tree file to visualize data for Figure 3
together with additional files 6, 7 and 9 in TreeView [54].

Click here for file
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Additional file 9
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