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Abstract

Background: Skeletal muscle growth and maintenance are essential for human health. One of the
muscle regulatory genes, namely myostatin, a member of transforming growth factor-f, plays a
dominant role in the genetic control of muscle mass. Myostatin is synthesized as a precursor
protein, which generates the N-terminal propeptide and the C-terminal mature myostatin peptide
by a post-translational cleavage event. Previously, transgenic over-expression of myostatin
propeptide in skeletal muscle results in significant muscle growth in early stages of development.
The objectives of present study were to further characterize muscle growth in later stages of life
and to identify genes and their expression patterns that are responsible for adult muscle build-up
by myostatin propeptide.

Results: Immunohistochemical staining with an antibody to the N-terminus indicates a high level
of myostatin propeptide present in the muscles of transgenic mice while there were no apparent
differences in myostatin protein distribution in the muscle fibers between the transgenic and wild-
type mice. Main individual muscles increased by 76—152% in the transgenic mice over their wild-
type littermate mice at 12 months of age. A large number of nuclei were localized in the central
and basal lamina of the myofibers in the transgenic mice as the number of nuclei per fiber and 100
um?2 area was significantly higher in transgenic mice than wild-type mice. By systemic comparisons
of global mMRNA expression patterns between transgenic mice and wild-type littermates using
microarray and qRT-PCR techniques, we have identified distinct gene expression patterns to
support adult muscle build-up by myostatin propeptide, which are comprised of enhanced
expressions of myogenic regulatory factors and extracelullar matrix components, and differentially
down-regulated expressions of genes related to protein degradation and mitochondrial ATP
synthesis.

Conclusion: The results present a coordinated pattern of gene expressions for reduced energy
utilization during muscle build-up in adult stage. Enhanced muscle buildup by myostatin propeptide
is sustained by reduced ATP synthesis as a result of a decreased activity of protein degradation.
Myostatin propeptide may have a therapeutic application to the treatment of clinical muscle wasting
problems by depressing myostatin activity.
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Background

Skeletal muscle growth and maintenance are essential for
human health. A basic understanding of muscle growth
has many clinical applications as it can be used to treat
serious muscle-related diseases such as muscular dystro-
phy and muscle wasting. Muscle fibers elongate and
increase in size by fusion of myoblast cells. Myoblasts are
rapidly dividing cells in culture, but cease the prolifera-
tion and DNA synthesis once they fuse into myotube [1].
In mammals, myofiber numbers are determined before
birth, postnatal muscle growth primarily results from
elongation or increase in muscle fiber size. In adults, skel-
etal muscle regenerative properties decline with age.
Myostatin, one of the muscle regulatory genes, is a mem-
ber of the transforming growth factor- superfamily. It
regulates muscle formation during embryogenesis and
postnatal muscle development as an endogenous inhibi-
tor of muscle mass. Myostatin mRNA sequences were con-
served across most mammalian species. In the absence of
myostatin function, massive muscle growth has been
observed in mice, cattle and humans [2]. In particular,
mice with null mutations in myostatin gene have twice
the muscle mass as wild-type mice, resulting from muscle
fiber hyperplasia and hypertrophy [3]. Whereas, mice
with over-expression of myostatin in skeletal muscle is
associated with lower muscle mass and decreased fiber
size and increased fat mass [4]. Like other TGF-f} family
members, myostatin is synthesized as a precursor protein,
which undergoes two post-translational cleavage events.
The first cleavage event removes the 24-amino acid signal
peptide, and the second cleavage, at an RSRR site located
at amino acid sequence 240-243, generates an N-terminal
and a C-terminal peptide. The N-terminal peptide is
referred to as myostatin propeptide while the C-terminal
peptide is the actual mature form of myostatin with ligand
binding activity. The protenase furin is showed to cleave
the RSRR site in CHO cells [5,6]. The precursor protein is
detected as a predominant form of myostatin in muscle
extracellular matrix and can also be cleaved by furin pro-
teases |[7]. Transgenic over-expression of myostatin
propeptide in skeletal muscle increases animal growth
and muscle mass [5,8]. Enhanced muscle mass phenotype
in the propeptide transgenic mice is primarily achieved by
myofiber hypertrophy rather than myofiber hyperplasia.
The size of fast-twitch, glycolytic muscle fiber at 9 weeks
of age was increased by 60% compared with wild-type lit-
termates [8]. Our recent study with the propeptide trans-
genic mouse model revealed that sufficient muscle growth
during adolescence can prevent high-fat diet induced
obesity and type II diabetes during adulthood [9].

Myostatin is secreted to the intramuscular spaces in the
form of the so-called latent complex. Upon dissociation
of the latent complex, myostatin binds to activin receptor
type IIB and activates Smad2/3 signaling pathway to
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inhibit myoblast cell proliferation and differentiation.
During cell cycles, cyclin-dependent kinases (Cdks) regu-
late G, phase transitions to S phase. Myostatin is able to
increase Cdk inhibitor p21 activity, therefore decreasing
the Cdk levels, concurrently resulting in myoblast cell
cycle arrest in the G, phase [10,11]. Myostatin also inhib-
its MyoD expression and activity via Smad3, which blocks
myoblasts from differentiating into myotubes [12,13].
Therefore, myostatin inhibits both myoblast cell prolifer-
ation and differentiation. Myostatin is also expressed in
satellite cells and adult myoblasts. It negatively regulates
the G1 to S progression of satellite cells to maintain their
quiescent status [14]. Muscles from myostatin-null mice
have an increased number of satellite cells as well as a
higher proportion of activated satellite cells than muscles
of wild-type mice [14,15]. A study with myostatin short
interfering hairpin RNA transfer to rats also showed a sig-
nificant increase in tibialis anterior weight and fiber size
and over 2-fold change of satellite cell number [16]. These
results clearly suggest that myostatin maintains satellite
cells in a quiescent state in adult muscle.

To further characterize the mechanism by which trans-
genic expression of myostatin propeptide enhanced mus-
cle mass, we have located the expressions of myostatin
and its propeptide proteins and studied muscle fiber for-
mation in adult skeletal muscle. Interestingly, transgenic
mice maintained muscle build-up at one year of age.
Based on the role myostatin in muscle satellite cells and
broad physiological regulation of muscle build-up, we
hypothesized that various genes or pathways involved in
muscle growth, protein synthesis and degradation, energy
supply and utilizations to muscle tissue are responsible
for the continuous muscle build-up as a result of myosta-
tin depression by its propeptide. We compared gene
expression patterns of skeletal muscle between myostatin
propeptide transgenic mice and their littermate wild-type
mice. Here, we reported the observations of a clustering of
nuclei in the centre of the adult muscle fibers of the trans-
genic mice. Gene expression patterns were consistent with
enhanced muscle build-up, consisting of enhanced myo-
genic regulatory factors and extracelullar matrix compo-
nents with down-regulated activities of protein
degradation and mitochondrial ATP synthesis. Enhanced
muscle build-up in adult stage is sustained by reduced
ATP synthesis as a result of a decreased activity of protein
degradation. The results present a distinct coordinated
pattern of gene expressions for reduced energy utilization
during adult muscle build-up by myostatin propeptide.

Methods

Animals and Tissue Sampling

Myostatin propeptide-transgenic mice were generated by
standard microinjection techniques, which has been pre-
viously described [8]. Male mice (hemizygous genotype
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for the transgene) from the high-expressing line were
mated with B6SJL F1 wild-type females to produce off-
spring mice, which were used in this study. Mice were
housed in cages; room temperature was maintained at
22°C and 12-h light/dark cycle. Mice were weaned at 4
weeks of age, and given free access to a chow diet (10%
kcal fat, ME3.85 kcal/g). All animal experiments were
approved by the Institutional Animal Care and Use Com-
mittee of the University of Hawaii. Male mice at 2.5
months and 12 months of age were sacrificed for muscle
tissue dissections and sampling after an overnight fasting.
Gastrocnemius and biceps femoral muscle samples and
the white portion of the muscles were immediately dis-
sected from carcass, cleaned from fat, blood and quickly
frozen in liquid nitrogen, and later stored in a -80°C
freezer. Tissue samples from 12 month old mice were
used for all the studies expect the muscle histology studies
in Figure 1, which used tissue from both 2.5 and 12
month old mice.

Immunohistochemistry

Gastrocnemius and biceps femoral muscle samples of
three transgenic and three wild-type littermate mice were
used for this study. Muscle samples was sectioned and
transferred to impregnated slides in ice-cold acetone prior
staining. After quenchingin 0.3% H,0,, the sections were
blocked in 10% rabbit serum, 1% BSA for 30 min and
incubated with or without the myostatin C-terminal anti-
body (1:250, Santa Cruz Biotech) overnight. Then the sec-
tions were incubated with an HRP-coupled secondary
antibody (1:250) followed by a cell nuclei counterstain-
ing with diaminobenzidine (DAB)/peroxidase reaction
(0.05 mg/ml DAB, 0.006% H,O,) until the color was
developed. For immuno-fluorescence double labeling of
myostatin propeptide, muscle samples were extracted,
fixed, embedded, cut, deparaffinized and re-hydrated.
Afterwards, they underwent three PBS washings, a 30 min
incubation with 3% NGS in PBS in the moist chamber,
and 1:50 dilution of primary antibody (GDEF-8, N19,
Santa Cruz Biotech) in 3% NRD for 2 hours. They were
washed in TPBS and covered with rabbit anti-goat 1gG
(Santa Cruz Biotech) with 1:300 dilution for 30 min at
room temperature. After washing in PBS, coverslips with
P2 counterstain mounting medium was applied. The sec-
tions were then mounted on glass slides and coverslipped
using Gelovatol. The sections were examined using Zeiss
LSM5 laser-scanning confocal microscope. All compari-
sons of staining intensity between transgenic and wild-
type mice were done on sections stained simultaneously
and the imaging for each antibody was performed using
identical laser power and software settings to ensure valid-
ity of intensity comparisons.

Hematoxylin and Eosin Staining
Wild-type and transgenic muscle samples were prepared
as mentioned in the previous procedures. After re-hydra-
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tion, they were placed in distilled water for 5 min fol-
lowed by 16 h dips in hematoxylin, and further washed
for 30 sec. 1% Eosin was added for 1 min, then 1% glacial
acetic acid for another 1 min. The samples were washed in
tap water until the red stain turned light red. Dehydration
using absolute alcohol was followed by a 5 min xylene
rinse before mounting with pertex.

Urine sampling and Assays for Urinary Creatinine and 3-
Methylhistidine

Urine samples were collected several times in the morn-
ings from 8 transgenic and 8 wild-type littermate mice at
12 months of age. Creatinine concentration was deter-
mined by the standard picric acid method [17], and 3-
methylhistidine concentration was determined on depro-
teinized samples using automatic amino acid analysis
(Backman Model 6300) following the method [18].

Preparation of Total RNA

Total RNA was isolated from gastrocnemius muscle tis-
sues using TRIzol reagent (Invitrogen, Carlsbad, CA) and
chloroform. Approximately 100-mg muscle tissue was
used for the total RNA extraction and prepared on dry ice.
Tissue was then homogenized in TRIzol reagent using a
Polytron homogenizer at maximum speed for 60 seconds.
Concentration of total RNA was determined by measuring
absorbance at 260 and 280 nm using a Smart Spec 3000
(BioRad, Hercules, CA). The RNA purity and quality was
determined by ratio of A260 to A280 and confirmed by
Agilent 2100 Bioanalyzer Analysis with the RNA 600
Nano Assay kit (Agilent Technologies).

Preparation of cRNA and Gene Chip Hybridization

Total RNA from each group of transgenic and wild-type
mice (n = 5) was pooled in equal molar amount before
use for the experiment with GeneChip Mouse Genome
430 2.0 Arrays (Affymetrix, Santa Clara, CA), which con-
tain probes for detecting 45,000 transcripts with over
34,000 well-characterized genes. After RNA isolation, all
the subsequent technical procedures including quality
control and concentration measurement of RNA, cDNA
synthesis and biotin-labeling of cRNA, hybridization and
scanning of the arrays were performed at the Stanford
Functional Genomics Facility (Stanford, CA). Each chip
was used for pooled total RNA from five mice per treat-
ment group. Briefly, prior to the reverse transcriptase reac-
tion, RNA was treated with deoxyribonuclease 1
(Invitrogen) to remove any residual genomic DNA. cDNA
was then synthesized with 5 g total RNA by SuperScript
IT reverse transcriptase (Invitrogen) and purified by phe-
nol/chloroform extraction. Then cDNA was labeled using
the ENZO BioArray RNA transcript labeling kit (Enzo Life
Sciences, Inc., Farmingdale, NY, USA) to generate bioti-
nylated cRNA. Biotin-labeled cRNA was purified and frag-
mented according to Affymetrix's protocol. The
fragmented cRNA was mixed with control oligonucleotide
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Comparisons of muscle fiber staining of biceps femoris between wild-type and transgenic mice. Mice were sacri-
ficed at 2.5 months and 12 months of age. Biceps femoral muscle samples were used for this study, and samples were frozen-
sectioned. Hematoxylin and Eosin Staining of both wild-type (A, C, E, G, |, K) and transgenic muscle samples (B, D, F, H, J, L)
shows the myofiber size and nuclei. Panels of C, D, G, H was longitudinally sectioned to show myofiber nuclei. Wild-type mice
(C and G) in young and adult ages maintained relative less myofiber nuclei while transgnic mice (D and D) showed accumulative
nuclei. Arrows point the formation of myoblast nuclei (J, L) of transgenic mice in adult age from satellite cells and myofiber
fusions in comparisons with wild-type mice (I, K).
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B2 (Affymetrix) and a hybridization control cRNA mix-
ture (BioB, BioC, BioD, and Cre, Affymetrix). Chips were
hybridized at 45°C for 16 h. The arrays were subsequently
washed and stained in a Fluidics Station (Affymetrix) and
scanned by GeneScanner 3000 according the manufac-
turer's instructions (GeneChip Expression Analysis Tech-
nical Manual, Affymetrix).

Quantitative real-time PCR

Quantifications of mRNA levels for selected genes were
performed by Quantitative real-time-polymerase chain
reaction (qRT-PCR) with SYBR Green reagent in an ABI
7300 Sequence Detection System (Applied Biosystems,
Forrest City, CA). Primers were designed by Primer
Express 3.0 software (Applied Biosystems, Foster, CA) and
listed in Table 1. The qRT-PCR was performed on an
extended set of sample of 4 transgenic mice and 4 wild-
type mice in addition to the RNA of the pooled samples
used in microarray analysis. Optimal annealing tempera-
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tures for the primers used were determined to be 60°C
and 45 cycles. The abundance of each mRNA transcript
was measured and expressed in comparison to glyceralde-
hyde 3-phosphate dehydrogenase (GAPDH). The GAPDH
expression was not different between transgenic and wild-
type mice. Relative expression of mRNA was determined
by calculations of threshold cycle (Ct) according to proto-
col set by Applied Biosystems, and expressed as fold
change compared to wild-type mice. Fold change was cal-
culated by subtracting the Ct number of the gene of inter-
est from the Ct of the endogenous GAPDH. The result of
this calculation was termed ACt, which was further used
for calculation of AACt of each transgenic mouse based on
the mean value of the wild-type mice. The fold change was
calculated as Log,,2(-AACt) [19].

Statistical Analysis
To calculate the number of nuclei, we randomly selected
10 microscopic fields under 40x magnification for both

Table I: Primer sequences used for qRT-PCR

Target Gene

Accession No.

Amplicon (bp) Forward Primer (5-3)

Reverse Primer (5-3)

Glyceraldehyde-3-phosphate dehydrogenase NM_199472 191 aacgaccccttcattgac tccacgacatactcageac
Myostatin propeptide U84005 99 gctctttggaagatgacgat  catttgggcttgecatee
Myogenin NM 031189 100 actcccttacgtccatcgtg  acccagcctgacagacaatc
Follistatin-like | NM_008047 96 cagccaggaatagcatggat  ctcttcctgggeagagtgac
Cyclin-dependent kinase inhibitor |A NP001104569.1 117 ttgggaaggaaaagggctat  gaggaaccgtccaagaatga
Procollagen, type |, alpha | u08020 110 gacctcagggtattgetgga  accttgtttgccaggttcac
Procollagen, type |, alpha 2 AWb545978 138 atgcacatcaatgtggagga  aggctgacacgaactgaggt
Procollagen, type lll, alpha | BG968894 96 ctatgacattgggggtcctg ttttgttttgctggggtttc
Procollagen, type V, alpha 2 NM_007737 11 gcagctccagatgacacaaa  tgggtgtttcttggaaccat
Procollagen, type V, alpha 3 NM 016919 99 getettctgtgggtttectg taaagcagatggagccgagt
Procollagen, type VI, alpha | NM 009933 109 tgacccaactggtcaactca  gggcgggatctagataggag
Procollagen, type VI, alpha 2 BI455189 106 aacccaaagececttaccta  agactctggggtectccaat
Procollagen, type VI, alpha 3 AF064749 101 acggagaacagtgccagact — agaaccaaggactggtcgtg
Fibronectin | BC004724 114 agtgcttcatgecgctagat  acatcactggggtgtggatt
Biglycan BC019502 93 ggtgggcatcaatgacttct  cagtagggcacagggttgtt
Calpain 3 AlI323605 88 ccaccctaaaagtggcagaa  ctgggttgtccatagcacct
Calpain 7 BG068214 93 agtccccatgatgaaagcac — gcaggttggtgaatgtagea
Caspase 7 BB752393 110 cctggeactattggggtaaa  gccatcaaaaagggacacat
Ubiquitin specific protease 25 NM_ 013918 126 cttcccagggtcaccataga — ggtcggcatagtegtttegt
Atrogin |/F-box protein 32 NM_026346 115 gttttcagcaggccaagaag — ttgccagagaacacgctatg
Ubiquitin-conjugating enzyme E2D 3 BG070073 147 gtgacttgcattgggttcct tgatcatgctgtgttcgtga
WW domain E3 ubiquitin protein ligase BB397174 101 ttggtaggccacactgtcaa  taggagaaagctgggggtct
Proteasome 26S subunit, ATPase, 6 NM_025959 106 acactggatcctgetttget  gtcctgegtggattttcaat
Proteasome activator subunit 4 BMI195254 99 agtgtggttgagcgtgtcag  agttttgaccgecttgtgtc
NADH dehydrogenase | o subcomplex, | BC018422 97 gaagtgccctgetttatgga  cgtggaatcctggagatcat
NADH dehydrogenase | o subcomplex, 4 BCOII114 99 tattggagcagggggtactg  catggctctgggtegttctt
NADH dehydrogenase | o subcomplex, 5 NM_026614 108 tctggcaaggaaaatgttga  ccatccaccatctgacactg
NADH dehydrogenase | o subcomplex, 7, €88880 112 gctgecttcatectgacatt  gcaggccttgaactcagaac
NADH dehydrogenase Fe-S protein | BC006660 98 gtgttgctgcagagtggaaa  aatcgcttctaccccaggtt
Ubiquinol-cytochrome c reductase subunit NM_025650 136 gccttacatcaacggcaagt  ctccagtgtccagettecte
Cytochrome c oxidase, subunit Vic AV111078 115 tcgaagagatgacgaaggcta  atagttcaggagcgeaggtc
ATP synthase mitochondrial FI complex assembly factor | BB771055 99 cccttcagagttgecttcag — gggccataagcgacagttta
ATP synthase, H+ transporting, mitochondrial FI complex, O AV066932 96 gaagtgccatgcacagtgac  ttggtttggactcaggaage
subunit
Adrenodoxin D43690 105 ggaacgttggettgetctac  aaaagccaggtcaageatgt
Electron transferring flavoprotein, alpha polypeptide BC003432 106 tgacaaaaagtgaccgacca  tctgccaggtcatacagcag
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wild-type and transgenic mice. The number of nuclei in
the center and the basal lamina for each muscle fiber of
bicep muscles were counted. The average number of
nuclei per 100 um? of wild-type and transgenic mice were
calculated by an imagine software program. Mean com-
parisons for muscle fiber nuclei were analyzed by using
the JMP program (SAS Inst., Cary, NC). Significant differ-
ence between transgenic and wild-type mice was analyzed
by two-tailed Student's t-test. Least square means and
their standard errors of mean are reported. In the microar-
ray data analysis, significance was determined at p <
0.005, the expression value for each transcript was deter-
mined by calculating the average of differences in inten-
sity (perfect match intensity minus mismatch intensity)
between its probe pairs. The expression analysis file cre-
ated from each sample was imported into Affymetrix
GeneChip Operating Software (GCOS) for further data
characterization. All expression values for genes in the
GCOS absolute analyses were determined by global scal-
ing option. The arrays were normalized by quantile nor-
malization and robust multi-array average (RMA)
procedure as low level analysis. Perfect- match values were
background adjusted, normalized using invariant set nor-
malization and log transformed. The intensities were
transformed to log, format and the means of log, were cal-
culated. The mean log, fold change of transgenic group
verse the wild-type littermate group was calculated by sub-
tracting the mean log, intensity of wild-type from the
mean log, intensity of transgenic group. Statistical signifi-
cance of the difference in expression levels was deter-
mined by two-tailed student's t-test. A transcript was
considered differentially expressed if the mean absolute
fold change was larger than 1.0 and the p-value was less or
equal to 0.005, with mean intensity in the group showing
highest expression of larger than 75.

Results

Detection of Myostatin and Its Propeptide in Skeletal
Muscle

The mRNA expressions of myostatin and the transgene
propeptide in skeletal muscle has been previously
reported [20]. To confirm the presences of the corre-
sponding proteins in skeletal muscle tissue, we employed
immunohistochemistry to detect myostatin and the trans-
gene product-propeptide in muscle tissue. By using the
antibody to the C-terminus of mouse myostatin, we were
able to localize myostatin protein on the myofibers of
Biceps femoris in both the propeptide transgenic mice and
wild-type littermates. There were no apparent differences
in myostatin protein distribution in the muscle fibers
between the transgenic and wild-type mice (Figure 2). The
HRP binding was observed mostly on the surface, as well
as the inside of the myofibers in both types of mice
although the densities of the stained proteins were not
evenly distributed among muscle fibers. In contrast, a
clear difference in intensity was observed when an anti-
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body to the N-terminus was used for immunohistochem-
istry staining of myostatin propeptide in both
Gastrocnemius and biceps femoris of transgenic mice and
wild-type mice (Figure 3). Myostatin propeptide, with
weak signals or hardly visible in the wild-type mice,
stained very intensely in the transgenic mice. Certain fib-
ers from biceps femoris of the transgenic mice showed
extremely strong staining signals. The same antibodies
were previously failed to detect specific proteins by West-
ern blot. These results from Immunohistochemistry indi-
cate a high level of myostatin propeptide present in the
muscles of transgenic mice.

Enhanced Muscle Mass and Fiber Formation in Adult Mice
At 12 months of age, mice were sacrificed and muscle tis-
sues were dissected. Muscle weights from transgenic and
wild-type littermate mice are summarized in Table 2.
Main muscles from transgenic mice weighed significantly
more than those from wild-type littermates. The percent-
age increase in main muscles of transgenic mice over the
wild-type mice ranged from 76% to 152%. To characterize
the nature of the consistent muscle enhancement, we fur-
ther characterized the muscle fiber histology (Figure 1).
The muscle fiber staining from young animals at 2.5
months of age confirmed our previous observation that
transgenic mice showed increased fiber size and muscle
fusions [20]. Interestingly, detailed observations of the
myofiber histology indicated more nuclei were localized
in the central and basal lamina of the myofibers of the
transgenic mice (Figure 1) although these mice were at
one year of age. Long and stretched nuclei were also noted
in some fibers, suggesting active fiber fusion in these mus-
cles. In contrast, muscle histology from wild-type litter-
mates did not show such changes in nuclei distributions.
The number of nuclei per fiber in both basal and central
lamina of the myofiber were significantly higher in trans-
genic mice than in wild-type littermates by 58.3% and
458%, respectively (P < 0.01, Figure 4). Similarly, the
number of nuclei per 100 um? fiber area was also higher
by 149% in transgenic mice than in wild-type littermates
(P <0.01, Figure 4) at 12 months of age. These results pro-
vide evidences that transgenic expression of myostatin
propeptide supported continuous muscle build-up in
adult skeletal muscle tissue.

Microarray Analysis of Global mRNA Expression in Adult
Skeletal Muscle

To undercover molecular and global dynamic changes of
skeletal muscle enhancements and metabolisms resulting
from transgenic expression of myostatin propeptide in the
adult stage, we obtained global gene expression profiles of
gastrocnemius muscle by microarray analysis. The results
from microarray data analysis indicated 52 unique genes
differentially expressed in the adult muscle of the trans-
genic mice at the statistical significance of P < 0.005. A
cluster analysis of these genes indicates several functional
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Localization of myostatin in biceps femoris by immunohistochemistry with antibody to the C-terminal. Mice
were sacrificed at 12 months of age. Biceps femoral muscle samples were used for this study. The cross-sectional area of the
muscle samples was frozen-sectioned. The sections were blocked in 10% rabbit serum and incubated with or without (negative
control, A and C) the myostatin C-terminal antibody, followed by incubation with an HRP-coupled secondary antibody and
counterstaining with diaminobenzidine (DAB)/peroxidase reaction (B and D). Panel A and C show the myofibers which were
cross-sectioned, and B and D show myofibers which were longitudinally sectioned. Nuclei were stained as purple/blue color,

and myostatin protein was stained as brown color.

categories, including genes closely related to myogenesis,
extracellular matrix components, protein degradation,
mitochondrial ATP synthesis, and carrier proteins. The
expression levels of specific mRNA were presented as
mean log, fold change of transgenic group compared with
the wild-type littermates (Table 3). The expression of the
genes related to myogenesis and extracellular matrix for-
mation were differentially increased by the propeptide
transgene, with fold change from 1.9 to 3.7 at P < 0.005,
while the expression of the genes corresponding to pro-
tein degradation, mitochondrial ATP synthesis were dif-
ferentially decreased in transgenic mice compared with
wild-type mice with fold change from -1.0 to -1.7 at P <
0.005. To reduce potential technical variability of the
microarray analysis, we employed qRT-PCR and validated
the expression profiles of 33 genes selected from different
functional categories with the RNA samples used for
microarray analysis, as well as extended muscle tissue
samples (Figure 5). The results from all the analyzed genes
by qRT-PCR support the significant differences of mRNA
expressions detected by microarray analysis although the
relative fold change of transgenic mice to wild-type mice

did not match exactly. The results from microarray analy-
sis and qRT-PCR showed the same patterns for either dif-
ferentially increased or decreased expression of the genes,
suggesting the reliability of the microarray analysis.

Enhanced Expressions of Myogenic Regulatory Factors
and Extracellular Matrix Components

Myogenesis during embryo development is regulated by
myogenic regulatory factors, including MyoD, Myf5, myo-
genin, and Mrf4. Adult muscle regeneration also requires
coordinated responses involving satellite cells and interac-
tions between inductive signals from myogenic factors
and the extracellular matrix (ECM). Notably, the expres-
sion of myogenin was significantly up-regulated in trans-
genic mice as determined by microarray analysis (Table
3), which was further confirmed by the qRT-PCR valida-
tion. Additionally, cyclin-dependent kinase (Cdk) inhibi-
tor 1A or p21 was also up-regulated by 3.4 fold change by
the transgene. Follistatin-like 1 (Fstl1) and Rho-associated
kinase (Rock1) showed a fold change of 2.3 and 3.5 by the
transgene propeptide, respectively. Interestingly, the
results from microarray analysis revealed that several ECM
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Figure 3

Detection of myostatin propeptide by immunohistochemistry with antibody to the N-terminal. Mice were sacri-
ficed at 12 months of age. Gastrocnemius (A to D) and biceps femoral (E to J) muscle samples were used for this study. Frozen
muscle samples were cross-sectioned. Following the procedures of immuno-fluorescence double labeling, the sections were
incubated with or without (negative control: A, C, E and H) primary antibody to myostatin propeptide. The P2 counter-stain
mounting medium was applied, and the images were examined using Zeiss LSM5 laser-scanning confocal microscope. The
nuclei were stained as red color, myostatin propeptide reactive with the primary antibody was showed as green color. A (wild-
type) and C (transgenic): negative control (without primary antibody), showing myofibers and stained nuclei of Gastrocnemius.
B: Gastrocnemius muscle section from wild-type mice was incubated with primary antibody, showing little myostatin propep-
tide on myofiber surface. D: Gastrocnemius muscle section from transgenic mice was incubated with primary antibody, show-
ing intense myostatin propeptide on myofibers. E (wild-type) and H (transgenic): negative control (without primary antibody),
showing myofiber and stained nuclei in cross-section of biceps femoral muscle. F and G: biceps femoral muscle cross-(F) and
longitudinal (G) sections from wild-type mice, showing minimal reactive proteins to the primary antibody. | and J: biceps femo-
ral muscle cross-(I) and longitudinal (J) sections from transgenic mice, showing strong and intense density of myostatin propep-
tide.
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components were up-regulated in transgenic mice, includ-
ing procollagen type I (a1, 02), III (oc1), V (02, 03), VI (o,
02, 03), matrix metalloproteinase 2 (MMP2), fibronectin
1 and biglycan (Table 3). The validation analysis by qRT-
PCR supports the consistent pattern of the up-regulation
of ECM components (Figure 5). The combination of up-
regulated myogenic regulatory factors and ECM compo-
nents supports active muscle fiber fusions still occurring
in the one-year-old skeletal muscle of the transgenic mice.

Down-regulated Expression of Protein Degradation and
ATP synthesis

The results from microarray analysis disclosed a large pool
of genes that regulate muscle protein deposition. In par-
ticular, a group of genes responsible for myofibril protein
degradation were significantly down-regulated in trans-
genic mice, including calpain 3 and 7, caspase 7, ubiquitin
(Ub) specific protease 25, Ub-conjugating enzyme E2D3,
WW domain containing E Ub protein ligase, proteasome
26S subunit 6, proteasome activator subunit 4 (Table 3).
The fold change ranged from -1.0 to -1.7. The expression
levels of these genes between transgenic and wild-type
mice were further verified by qRT-PCR. The addition of
ubiquitin to protein during post-translational modifica-
tion is a key step in protein degradation, which is dynamic
and reversible process controlled by Ub-conjugating and
deubiquitylating enzymes. The conjugation of Ub to pro-
tein is catalyzed by the successive actions of three types of
enzymes: Ub-activating (E1), Ub-conjugating (E2) and
Ub-protein ligase (E3) enzymes. Several protease families
participate in the deconjugation of ubiquitin. Ubiquitin-
specific protease (USP) is one type of deubiqutylating
enzymes, which are cysteine proteases, removing ubiqutin
from ubiquitylated substrates to rescue them from degra-
dation by the proteasome. Consistent with the biological
functions of Ub activating (E1), Ub-conjugating (E2) and
Ub-protein ligase (E3), muscle tissue from the transgenic
mice showed decreased expression levels of these genes,
along with Ub-specific protease 25 (Usp25), which may
suggest that the regulation of Ub-dependent protein deg-
radation were down-regulated in the transgenic mice.
Additionally, proteins from proteasome pathway such as
26 subunit and activator subunit 4 were also down-regu-
lated in the transgenic mice. Taken together, these data
suggest a distinct pattern of reduced protein degradation
of adult muscle build-up by the myostatin propeptide.

To confirm the data of muscle protein degradation, we
further analyzed urinary creatinine and 3-methylhistidine
in the transgenic and wild-type mice at 12 month of age.
3-methylhistidine is formed by post-translational methyl-
ation of histidine in muscle actin and myosin. Skeletal
muscle mass is the main source of urinary creatinine,
which is highly correlated to the total muscle mass of ani-
mals fed a meat-free diet [21]. The results showed a signif-

http://www.biomedcentral.com/1471-2164/10/305

icantly increased level of urinary creatinine and 3-
methylhistidine in the transgenic mice compared with the
wild-type littermates (Figure 6). The ratio of urinary 3-
methylhistidine to creatinine, an index of muscle protein
catabolism [17], was significantly lower in transgenic
mice than that in wild-type mice (P < 0.01, Figure 6C).
These results provide further evidence that skeletal mus-
cles in the transgenic mice had a decreased level of protein
degradation, consistent with the data extracted from glo-
bal gene expression analysis by microarray analysis.

Interestingly, the genes related to mitochondrial respira-
tory chains for ATP synthesis in the transgenic mice were
also significantly down-regulated, as represented by con-
sistent lower expressions of NADH dehydrogenase 10,
subcomplex 1, 4, 5, 7 and Fe-S proteinl, ubiquinol-cyto-
chorome C reductase subunit, cytochrome c oxidase, ATP
synthase, mitochondrial F1 complex factor 1 and O subu-
nit. The fold changes of these genes in transgenic mice
compared with wild-type littermate ranged from 1.0 to
1.2. The data suggest that the biochemical activities of oxi-
dative phosphorylation of mitochondrion were down-
regulated in the transgenic mice. In myosatin-deficient
mice, the ratio of mitochondrial DNA to nuclear DNA and
mitochondria number are decreased [22]. We analyzed
the enzyme activity of citrate synthase, an exclusive
marker of mitochondrial matrix. The muscle tissue had
lower citrate synthase activities in transgenic mice than
that in wild-type mice (data not shown). As different fiber
types contain about same number of mitochondria per
myonucleus [22], our data may suggest a decreased
number of mitochondria per unit of muscle tissue as a
result of enlarged myofiber in the myostatin propeptide
transgenic mice. We also noted that increased expression
levels of solute carrier proteins such as glucose transporter
4 (Slc2a4) and zinc transporter (Slc39a4) and monocar-
boxylic acid transporter (Slc16a9, Table 3). Together with
decreased mitochondrial ATP synthesis, the data suggest
that glycolytic pathway is dominant for glucose metabo-
lism in gastroncmius. Additionally, increased glucose to
the muscle may be a significant regulator for muscle pro-
tein synthesis as recent studies indicates that glucose
alone can also increase protein synthesis in fast-twitch gly-
colytic muscle [23]. Based on these observations, we
believe that enhanced adult muscle build-up by myostatin
propeptide create a distinct mechanism that favors effi-
cient ATP synthesis through glycolytic pathway and
reduced protein degradation activities to support increase
muscle protein accumulation.

Discussion

In adults, skeletal muscles make up approximately 30 to
40% of body mass. Along with adipose tissue, skeletal
muscles growth and maintenance are the main sites of
energy utilization. To gain a better understanding adult
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Comparison of number of myofiber nuclei between wild-type and transgenic mice. Biceps femoral muscle samples
of three transgenic and three wild-type littermate mice were used for this study. Ten random microscopic fields under 40x

magnification were selected for both wild-type and transgenic mice. The number of nuclei in the center and the basal lamina for
each muscle fiber bicep muscles were counted. The average number of nuclei per 100 um? were calculated by an image analysis
software. Bars represent mean + SEM (n = 10 per group). Superscript ** and *above the bars indicate significant differences at

P < 0.0l and P < 0.05, respectively.

muscle build-up and its associated energy metabolism, we
employed a mouse model with transgenic expression of
myostatin propeptide and dramatic muscle growth. The
results demonstrated continuous and significant muscle
buildup at 12 months of age, with 76% to 153% increase
in individual muscles of transgenic mice over the wild-
type mice. In muscle tissue, the basal lamina is extremely
thin, it is relatively difficult to determine if the nuclei are
outside the basal lamina, which can be a good indicator
of active satellite cells. In principle, muscle fiber nuclei or
"centralized" nuclei can be a good indicator of muscle tis-
sue in active developing stage. From the muscle fiber his-
tology, the transgenic mice also showed the increased
nuclei in the central region of muscle fiber, indicating
active myofiber fusions in adult stages of the transgenic
mice. Previous studies showed that a lack of myostatin
increased muscle regeneration through enhanced satellite
cell activation and self-renewal, leading to better muscle
healing and reduced fibrosis after injury [14,15]. We
believe that the enhanced muscle mass of the transgenic
mice is initiated by muscle-specific expression of myosta-

tin propeptide at early stage of muscle development. It is
continuously maintained until adult stage.

In relation to myogenic regulatory factors, the results from
microarray and gRT-PCR analysis showed increased
expression of myogenin, Cdk inhibitor p21, Fstll and
rockl. During myogenesis, MyoD and Myf5 are redun-
dant in myoblast specification whereas myogenin with
either MyoD or Mr1f4 are required for differentiation [24].
Myogenin is associated with terminal differentiation and
fusion of myogenic precursor cells to new or existing fib-
ers. When satellite cells are activated, cell-cycle markers,
MyoD and Myf5 transcripts are detectable. Subsequent
satellite cell differentiation is marked by the appearance
of myogenin [24]. In this study, we did not observe signif-
icant changes of MyoD, Myf5 and Mrf4 gene expressions.
Cdk inhibitor p21 is induced during early stage of skeletal
muscle differentiation, and a high level of p21 expression
is sustained when myotubes are re-exposed to high
mitogen media, its expression is critical for myocyte via-
bility [25]. Cdk inhibitor p21 was significantly up-regu-
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Table 2: Individual muscle weight of transgenic and wild-type littermate mice*

Individual Muscle Wild-type Transgenic % increase of wild-type
Observations 12 I

Body weight 31.2 £ 1.272 38.6 £ 0.570 24
Gastrocnemius/plantaris 0.25 + 0.0352 0.53 + 0.026° 112

Biceps femoris 0.27 £ 0.0232 0.68 + 0.038> 152
Semitendinosus 0.31 £0.0222 0.72 + 0.046° 132

Pectoralis 0.32 + 0.0292 0.49 + 0.015> 53
Longissimus dorsi 0.44 + 0.0192 0.80 + 0.045> 82

Triceps brachii 0.29 £ 0.0282 0.51 £0.0330 76

*Transgenic and wild-type littermate mice were sacrificed at 12 months of age. Individual muscles were dissected and weighed at the time of
sacrifice. Means + SEM with different superscript letter were different at P < 0.01.

lated in the transgenic mice. Regarding to Fstl1, it is not
known about its definite biological role in muscle tissue.
Although Fstl1 is classified as a protein similar to follista-
tin, it only share 7% sequence homology with follisatin
[26]. Follistatin binds to activin to neutralize its activity by
prevent its binding to type II receptor, therefore blocking
myostatin activity when transgenic expression of follista-
tin specifically to skeletal muscle [5]. Follistatin also
directly antagonize myostatin during myogenesis [27].
During the embryonic stage, Fstll mRNA is strongly
depressed by MyoD induction [28]. In adult muscle, Fstl1
appears to behave like a myokine that acts on vascular
endothelial cells as it is secreted into the media by cul-
tured skeletal muscle cells [26]. Fstl1 has direct action on
endothelial cell signaling pathways as it was upregulated
by muscle ischemia, and its over-expression enhance
endothelial cell differentiation and migration. Fstll can
stimulate revascularization in response to ischemic insult
through its ability to activate Akt-eNOS signaling [29].
The increased expression of Fstl1in the adult muscle in the
transgenic mouse model may simply result from muscle
hypertrophic status. It is certainly worth further investiga-
tion. In regard to Rockl, it is a down-stream effector of
Rho GTPase or RhoA, playing a critical role in myoblast
fusion [30]. RhoA is progressively and specifically down-
regulated for execution of tissue-specific morphogenetic
events such as fusion into multinucleated syncitia, and
maintenance of the terminally differentiated phenotype.
Rock appears to concur in keeping myoblasts cycling and
in preventing commitment to terminal differentiation
[31]. A further study of Fstll and Rockl1 in this model is
likely to yield new information regarding their impor-

tance and specific roles in muscle myogenesis in adult
stages.

In adults, muscle regeneration requires coordinated
actions of capillary morphogenesis, satellite cells, and
interactions between inductive signals from myogenic fac-
tors and ECM [32,33]. The identified ECM genes such as
procollagens had been reported to be up-regulated during
adult skeletal muscle regeneration [33]. The increased
expression of MMP?2 is consistent with a report that dem-
onstrated that increased MMP2 expression and activation
is concomitant with regeneration of new myofibers [34].
Biglycan is a leucine-rich proteoglycan involving matrix
organization, as well as modulation of growth factors
[35]. Biglycan, along with periostin, was highly up-regu-
lated during adult muscle regeneration, and modulated
by transformation growth factor 1 [33]. The up-regula-
tion of ECM components further complements the
enhanced expression of myogenic regulatory factors of the
skeletal muscle. Taken together, these results support a
distinct regulatory mechanism of myofiber formation in
adult skeletal muscle, resulting from the over-expression
of myostatin propeptide.

The balance of protein synthesis and degradation deter-
mines net protein deposition of skeletal muscle. In skele-
tal muscle tissue, four proteolytic systems are possibly
involved in protein degradation, including the calpain
system, the caspase system, the lysosomal system, and the
proteasome. The expression levels of calpain 3, 7 and cas-
pase 7 was down-regulated in the transgenic mice. Cas-
pase 7 is a member of the cysteine-aspartic acid protease
family, which plays a central role in the execution-phase
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Expression analysis by qRT-PCR. The mean and SEM at each bar represents the Log,, fold change of transgenic mice rela-
tive to their wild-type littermate mice. Statistical differences between transgenic and wild-type mice were determined by two-
sided Student's t test (*: P < 0.05; ** P < 0.01; *** P < 0.001). The gene symbols can be referred to Table 2.
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Table 3: Differentially expressed genes in myostatin propeptide transgenic mice compared with wild-type littermates

Accession No. (UniGene) Gene symbol Gene name

Transgenic verse wild-type littermates

-Fold change P-value
Genes related to myogeneis
Mm.16528 Myog Myogenin 22 0.000244
Mm.22763 Fstll Follistatin-like | 23 0.000244
Mm.34446 Cdknla Cyclin-dependent kinase inhibitor 1A 34 0.00002
Mm. 6710 Rock 1 Rho-associated coil-containing protein kinase | 35 0.00045
Genes of extracellular matrix components
Mm.22621 Collal Procollagen, type |, alpha | 3.7 0.000244
Mm.4482 Colla2 Procollagen, type |, alpha 2 34 0.000244
Mm. 147387 Col3al Procollagen, type Ill, alpha | 3.6 0.000244
Mm.10299 Col5a2 Procollagen, type V, alpha 2 1.9 0.000244
Mm.30477 Col5a3 Procollagen, type V, alpha 3 2.1 0.001953
Mm.2509 Coléal Procollagen, type VI, alpha | 1.6 0.000244
Mm.1949 Coléa2 Procollagen, type VI, alpha 2 2.1 0.001221
Mm.7562 Coléa3 Procollagen, type VI, alpha 3 1.9 0.000244
Mm. 193099 Fnl Fibronectin | 2.1 0.001221
Mm.2608 Bgn Biglycan 22 0.000244
Genes related to protein degradation
Mm.20863 Capn3 Calpain 3 -1.5 0.000732
Mm.24778 Capn7 Calpain 7 -1.5 0.004443
Mm.201535 Casp7 Caspase 7 -1.7 0.003759
Mm.40986 Usp25 Ubiquitin specific protease 25 -1.5 0.002392
Mm.40466 Fbox32 Atrogin |/F-box protein 32 -1.6 0.000244
Mm.24529 Ube2d3 Ubiquitin-conjugating enzyme E2D 3 -1.5 0.000732
Mm.78312 Wwp | WW domain containing E3 ubiquitin protein ligase -1.3 0.000732
Mm.18472 Psmcé Proteasome 26S subunit, ATPase, 6 -1.0 0.001709
Mm.21963 Psme4 Proteasome activator subunit 4 -1.2 0.000244
Genes for mitochondrial ATP synthesis
Mm.5545 Ndufafl! NADH dehydrogenase | alpha subcomplex, | -1.2 0.001953
Mm.41926 Ndufa4 NADH dehydrogenase | alpha subcomplex, 4 -1.4 0.000244
Mm.27677 Ndufas NADH dehydrogenase | alpha subcomplex, 5 -1.3 0.000244
Mm.29513 Ndufa7 NADH dehydrogenase | alpha subcomplex, 7, -1.5 0.000244
Mm.218595 Ndufas| NADH dehydrogenase Fe-S protein | -1.2 0.000732
Mm.43162 Ugcr Ubiquinol-cytochrome c reductase (6.4 kD) -1.1 0.000244
subunit
Mm.548 Coxbc Cytochrome c oxidase, subunit Vlc -1.0 0.000244
Mm.29512 Atpafl ATP synthase mitochondrial FI complex assembly ~ -1.1 0.000585
factor |
Mm.41 Atp5o ATP synthase, H+ transporting, mitochondrial Fl -1.4 0.000244
complex, O subunit
Mm.1061 Fdx|1 adrenodoxin -1 0.000732
Mm.26949 Etfa Electron transferring flavoprotein, alpha -1.1 0.000244
polypeptide
Carrier proteins
Mm. 10661 Slc2a4 Facilitated glucose transporter 4/solute carrier 2 1.3 0.000244
Mm. 4312 Sic9al Solute carrier family 9, member | 35 0.000889
Mm. 129110 Slc7a2 Solute carrier family 7, member 2 2.1 0.00009
Mm. 28937 Slc39a4 Solute carrier family 39, member 4 3.8 0.00002
Mm. 22260 Slc38a4 Solute carrier family 38, member 4 1.6 0.00003
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Table 3: Differentially expressed genes in myostatin propeptide transgenic mice compared with wild-type littermates (Continued)

Mm. 46067 Slc25a30 Solute carrier family 25, member 30 3.1 0.00002
Mm. 19325 Slc162a9 Solute carrier family 16, member 9 24 0.00448
Mm. 28506 Slcl5a4 Solute carrier family 15, member 4 1.5 0.00002
Mm. 63479 Slcl5a4 Solute carrier family 15, member 2 23 0.00017
Others

Mm.221164 Myhé Myosin heavy polypeptide 6 1.7 0.00002
Mm157026 Rsn Restin 23 0.00002
Mm.17306 Tmp3 Tropomyosin 3, gamma 1.4 0.00077
Mm.203875 Ablim| Actin-binding LIM protein 33 0.00002
Mm. 104975 Méprbp | Mannose-6-phosphate receptor binding protein | 1.5 0.00003
Mm.26053 Pfkfb3 6-phosphfructo-2-kinase/fructose-2,6- 24 0.00002

biphosphastease 3

Mm.200770 Gsk3b Glycogen synthase kinase 3 beta 1.4 0.00002
Mm. 36640 Map3ké Mitogen activated protein kinase kinase kinase 6 22 0.00002

of cell apoptosis. Caspases cleave and activate other cas-
pases that subsequently degrade cellular targets, leading to
cell death. Caspase 7 is one of the effector caspases, or
downstream activator caspases. Skeletal muscles with
neurogenic atrophy showed distinct up-regulation of cas-
pase 7 and 9. Expression of caspase 7 was restricted to
atrophic fibers, and up-regulated by caspase-9 in proteo-
lytic cascade of degradation of denervated muscle fibers
[36]. These results may suggest that enhanced muscle
build-up of the adult stage in the transgenic mice is also
supported by decreased activities of apoptosis.

It has been well established that myostatin is implicated
in the induction of muscle cachexia. Increased levels of
myostatin have been implicated in AIDS patients, sarco-
penia, chronic human muscle disuse atropy, glucocorti-
coid-induced muscle atrophy [37-42] A systemic
administration of myostatin also induced cachexia [43]
while functional blockage of myosatin by intraperitoneal
injection of its antibody increases muscle mass and
strength in dystrophic mouse model [44]. The mechanism
of myostatin action on muscle cachexia appears to acti-
vate the ubiquitin proteolytic system independently of
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cytokine-tumor necrosis factor-o. (TNF-o) and transcrip-
tion factor-xB (NF-xB) pathway [45]. Myostatin induced
muscle atrophy through up-regulation of Forkhead box O
(FoxO1) transcription factor, and atrophy-related genes
such as atrogin-1. FoxO1 have recently beenidentified as a
key activator of the atrophy process downstreamof AKT in
the IGF-1 signaling pathway [46,47]. Transgenic over-
expression of active FoxO1 in skeletal muscle was also
shown to inhibit protein synthesis, causing severe skeletal
muscle atrophy [48]. In the transgenic mice with possibly
depressed myostatin function by its propeptide, we
detected a decreased level of atrogin-1 expression. No sig-
nificant changes in TNF-oo and NF-xB expressions were
detected in the muscle tissues from the transgenic mice,
which is consistent with the observations of myostatin-
knockout mice [45]. The role of Fox O1 in the current
myostatin propeptide transgenic model is under investi-
gation.

Conclusion

The results from microarray analysis of global gene
expression profile, supported by qRT-PCR assays and bio-
chemical analysis, provide distinct gene expression pat-
terns that integrate low protein degradation and ATP
synthesis for efficient muscle build-up and energy utiliza-
tion. Adult muscle build-up is sustained by high-level
expressions of myogenin, Cdk inhibitor P21, follistatin-
like factor (Fstl), and Rho-associated kinase (Rock1), and
ECM components such as procollagen, fibronectin and
biglycan. Decreased levels of protein degradation and
mitochondrial ATP synthesis were coordinately observed
in the transgenic mice, suggesting efficient energy utiliza-
tion for adult muscle build-up. Although the profile
change and patterns of muscle gene expressions were
caused and maintained by the manipulation of a single
gene namely myostatin, many genes associated with
myofiber fusions and energy utilizations were dynami-
cally changed accordingly. Therefore, we conclude that
adult muscle build-up through decreased protein degra-
dation and mitochondrial ATP synthesis may represent an
important mechanism or metabolic type of healthy mus-
cle in adult stages. Given the fact that adult muscle build-
up is complicated by age-induced muscle atrophy, we
have begun to define more specific mechanisms of myo-
genic initiation, maintenance of myogenic states and
mitochondrial energy production in adult stages. Further
studies with this model may shed light on its potential
application to the treatment of muscle dystrophy and
cachexia by depressing myostatin activity.
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