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Abstract

Background: NOD26-like intrinsic proteins (NIPs) that belong to the aquaporin superfamily are
plant-specific and exhibit a similar three-dimensional structure. Experimental evidences however
revealed that functional divergence should have extensively occurred among NIP genes. It is
therefore intriguing to further investigate the evolutionary mechanisms being responsible for the
functional diversification of the NIP genes. To better understand this process, a comprehensive
analysis including the phylogenetic, positive selection, functional divergence, and transcriptional
analysis was carried out.

Results: The origination of NIPs could be dated back to the primitive land plants, and their
diversification would be no younger than the emergence time of the moss P. patens. The rapid
proliferation of NIPs in plants may be primarily attributed to the segmental chromosome
duplication produced by polyploidy and tandem duplications. The maximum likelihood analysis
revealed that NIPs should have experienced strong selective pressure for adaptive evolution after
gene duplication and/or speciation, prompting the formation of distinct NIP groups. Functional
divergence analysis at the amino acid level has provided strong statistical evidence for shifted
evolutionary rate and/or radical change of the physiochemical properties of amino acids after gene
duplication, and DIVERGE2 has identified the critical amino acid sites that are thought to be
responsible for the divergence for further investigation. The expression of plant NIPs displays a
distinct tissue-, cell-type-, and developmental specific pattern, and their responses to various stress
treatments are quite different also. The differences in organization of cis-acting regulatory elements
in the promoter regions may partially explain their distinction in expression.

Conclusion: A number of analyses both at the DNA and amino acid sequence levels have provided
strong evidences that plant NIPs have suffered a high divergence in function and expression during
evolution, which is primarily attributed to the strong positive selection or a rapid change of
evolutionary rate and/or physiochemical properties of some critical amino acid sites.
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Background

The aquaporins are a family of small pore-forming inte-
gral membrane proteins, which contain six membrane-
spanning a-helices, with the N- and C-termini facing the
cytosol [1]. On the basis of the first sequenced member -
the Major Intrinsic Protein of bovine lens cells [2], this
family is also referred to as the MIP superfamily. The MIP
proteins are found to be present in all kingdoms from
archaea to plants and animals [1]. However, MIPs consti-
tute a larger and more diverse family in plants than in ani-
mals. There are 35 and 39 MIP genes in the genomes of
the model plants Arabidopsis [3] and rice [4] respectively.
By contrast, mammals only possess 13 distinct MIPs [5].
According to sequence similarities, plant aquaporins are
clearly classified into five major subfamilies: plasma-
membrane intrinsic proteins (PIPs), tonoplast intrinsic
proteins (TIPs), NOD26-like intrinsic proteins (NIPs),
small basic intrinsic proteins (SIPs), and the GlpF-like
intrinsic proteins (GIPs). The divergence of plant
aquaporins into five subfamilies had been already estab-
lished as early as the time of emergence of primitive terres-
trial plants [6,7]. The last subfamily of MIP genes has so
far only been identified in two mosses [8]. Within each of
the other subfamilies, MIP genes can be further subdi-
vided into more than two groups [9] that may correspond
to their localization and transport selectivity [10].

There are strong evidences that aquaporins are central
components in plant water relations [10,11]. The signifi-
cances of plant aquaporins functioning in mediating
water and/or other small solutes across biomembrane and
response to external environmental stresses have been
widely reported [12-14]. It is likely that the particular
abundance of MIP genes in plants may be attributed to the
higher degree of compartmentalization of plant cells and
their greater necessity for fine-tuned water control [3].
Alternatively, the extensive proliferation of aquaporin iso-
forms may offer an adaptive advantage for plants to grow
in different environmental conditions, possibly as a result
of divergent transport selectivities or regulatory mecha-
nisms [11].

NIPs that were defined as NOD26-like intrinsic proteins
on the basis of the archetype nodulin26 protein identified
firstly in soybean [15], are unique to plants. These pro-
teins are presumed to be involved in exchange of metabo-
lites between the host and the symbiont [1]. Nevertheless,
NIPs are widely distributed in both leguminous and non-
leguminous plants, indicating that plant NIP function is
not limited to the role that they play in nodule symbiosis
[16]. Of plant aquaporins, only proteins belonging to this
subfamily have glycerol transport activity [12]. Thus this
may suggest that the common ancestor of plant aquapor-
ins had lacked the ability to transport glycerol and later on
NIPs had acquired this transport activity during evolution
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to compensate for the absence of GLPs in plants [17]. By
reconstructing phylogenetic trees, Zardoya et al. [17] sug-
gested that NIPs might originate from bacteria at the ori-
gin of plants through a single horizontal gene transfer
event. Zardoya [9] confirmed the functional recruitment
of NIPs to glycerol transport, however the gene horizontal
transfer origination of NIPs could not be effectively recov-
ered because of the general lack of resolution of deeper
nodes.

The Arabidopsis thaliana, Oryza sativa, and Physcomitrella
patens genomes encode 9, 13, and at least 5 NIP proteins
respectively [3,4,7]. The occurrence and increase of NIP
genes in plants indicate a wider range of function that may
include a greater range in selectivity [12,18]. Functional
analysis of NIPs indeed has revealed diversity in their
transport substrates. The soybean nodulin26 protein not
only transports water but also glycerol, formamide, malat,
and NH; [12,19,20]. In Arabidopsis, the AtNIP2;1 shows
minimal water and glycerol transport, but displays trans-
port of lactic acid with a preference under the anaerobic
condition [21], whereas AtNIP5;1 is essential for efficient
boron uptake and plant development under boron limita-
tion [22]. Two NIPs (OsNIP2;1 and OsNIP2;2) in rice
show a transport activity of larger solute silicic acid that
enhances resistance of plants to biotic and abiotic stresses
[23], whereas OsNIP1;1 and OsNIP3;1 do not; further-
more, the OsNIP2;1 can be permeable to water, urea, as
well as boric acid, but not glycerol [24]. Therefore, the
substrate specificity is NIP-dependent. Nonetheless, other
unknown factors or structural features may also be
involved in the process of efficient substrate recognition
[24]. Very recently, some NIPs, including AtNIPI;1,
AtNIP1;2, AtNIP5;1, AtNIP6;1, AtNIP7;1, OsNIP2;1,
OsNIP2;2, OsNIP3;2, and LjNIP5;1, LjNIP6;1 were found
to be responsible for the permeability to arsenite [25-28].
It can be proposed thus that arsenite transport through
NIPs should be a conserved and ancient feature.

The molecular basis of aquaporins selectivity is pivotally
due to two filters within the pore; the first one is formed
by the conserved dual NPA motif, and the second one
formed by a constriction region that is also called the ar/R
(aromatic/arginine) filter [11,29,30]. However, it seems
that the NPA motif is not crucial for [30,31], while the ar/
R filter plays an important role in determining the sub-
strate selectivity for the NIP subfamily [24]. The ar/R filter
is located in the narrowest region on the extra-membrane
mouth of the pore, and formed by four residues, one each
from helix 2 (H2) and helix 5 (H5), as well as two residues
from loop E (LE1 and LE2) [16]. It appears that the prop-
erties of the four residues making up the ar/R selectivity
filter govern the substrate specificity of the pore [23], and
are thought to be useful for predicting the function of the
proteins [30]. Based on the ar/R regions of aquaporins,
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NIPs can be divided into three distinct groups [32]. NIP I
proteins in Arabidopsis have been reported to transport
water, glycerol, and lactic acid, whose ar/R region is char-
acterized by Trp (W), Val (V)/Ile (I), Ala (A), and Arg (R).
The consensus of the ar/R region for NIP II proteins,
which are permeable to larger solutes than NIP I protein,
is Thr (T)/Ala (A), Ala (A)/1le (I)/Val (V), Gly (G)/Ala (A),
and R [23,24]. OsNIP2;1 and OsNIP2;2 belong to the
third group (NIP III) [24]. The ar/R region of NIP III con-
sists of Gly (G), Ser (S), Gly (G), and Arg (R), forming a
larger constriction size (>6A) compared with other NIP
groups (<5A and 3.5A), which allows solutes like silicic
acid with a larger diameter (4.38A) to permeate [24,31-
33]. The critical role of the ar/R region is further demon-
strated by the observations that substitution of Trp (W)
with His (H) at the position H2 in LIMP2 abolished its
glycerol transport when expressed in Xenopus oocytes [34].
Moreover, mutation at the Arg (R) residue in LE2 can
cause human disease [35]. This residue is strictly con-
served in NIPs, and thought to be important for providing
hydrogen bonds for transport of water or glycerol mole-
cules and to repel cations from the pore [36].

With a few of exceptions, the subcellular location of most
members from the NIP subfamily is still uncertain. The
archetype NIP, nodulin26 is located in the peribacteroid
membrane (PBM) of soybean nodule cells [37]. The Lotus
japonicus NIP gene, LIMP2 is also probably located in the
PBM [38], whereas Arabidopsis AtNIP1;1 [28], AtNIP5;1
[22], rice NIP2 genes (OsNIP2;1 and OsNIP2;2) and the
barley HvLsil are found to be localized on the plasma
membrane [39-41]. In addition, it was found that the Ara-
bidopsis AtNIP2;1 is predominantly expressed in young
roots and is mainly located to the endoplasmic reticulum
membrane [42]. Accordingly, the subcellular localization
of each NIP protein may be diverse.

It has been reported that the activity of both plant and ani-
mal aquaporins may be regulated by phosphorylation
[11]. The soybean NOD26 can be phosphorylated by a
calcium-dependent protein kinase (CDPK) [37]; phos-
phorylation of NOD26 on Ser262 enhanced its water per-
meability [43]. The phosphorylated Ser262 of NOD26 is
conserved in most but not all NIPs from Arabidopsis [44].
Experiments with the C-terminal extension of the Arabi-
dopsis AtNIP7;1 showed that this gene could be phospho-
rylated by activated AtMPK4 in vitro [16]. Mitani et al.
[24] however found no evidence for the involvement of
phosphorylation in the regulation of OsNIP2;1, because
neither okadaic acid nor K252a affected the transport
activity of this protein for silicic acid in oocytes.

Although NIP proteins exhibit a similar three-dimen-
sional structure [32], functional divergence has exten-
sively occurred among NIP groups. It is therefore
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intriguing to further investigate the evolutionary mecha-
nisms driving the functional diversification of the NIP
groups at the nucleotide and amino acid sequence level
respectively. Here we showed that strong positive selec-
tion had occurred after gene duplication and/or specia-
tion. Functional divergence analysis provided convincing
evidence for shifted evolutionary rate and/or rapid
changes of amino acid properties between NIP groups,
and identified some critical amino acid sites that are
thought to be significantly functional divergence related.
Further, we investigated the expression pattern and the cis-
acting regulatory element organization in plant NIPs also.

Results and discussion

Phylogenetic and sequence character analysis of the plant
NIP subfamily

On the basis of sequence similarity and the conserved MIP
domain, we have identified 6, 8, 9, 11, 6, and 7 NIP genes
from the Vitis vinifera, Populus trichocarpa, Sorghum bicolor,
Glycine max, Cucumis sativus, and Pinus taeda genomes
respectively (Additional file 1). Danielson and Johanson
[7] revealed that the moss Physcomitrella patens encodes at
least five NIP proteins, of which PpNIP6;1 is partial and
excluded from the phylogenetic analysis. Furthermore,
although Chlamydomonas reinhardtii might lack NIP pro-
teins [45], one NIP homolog was identified from the
green alga Ostreococcus lucimarinus in JGI (protein ID
25291), indicating that the NIP subfamily would be more
ancient.

More than eighty NIP sequences were collected, aligned,
and used to reconstruct phylogenetic trees. Figure 1 shows
that plant NIPs are clearly divided into three groups,
which supports the classification of NIPs based on the ar/
R region [24,32]. It is apparent that each NIP group pos-
sesses at least one NIP protein each from P. taeda and P.
patens (Figure 1), with the exception of the NIP I group
where no P. patens NIPs are represented thus far, suggest-
ing that the most recent common ancestor (MRCA) of P.
patens and higher plants should have three ancestral NIP
genes corresponding to the 3 groups. The diversification
of the three ancient progenitor NIPs should have occurred
before the emergence of the moss P. patens but after the
green alga O. lucimarinus.

The diverse NIPs should have arisen from three ancestral
genes, and subsequently species-specific expansion of this
subfamily has occurred to a great extent. For example,
three P. patens NIP5 (PpNIP5;1 - PpNIP5;3) and four P.
taeda NIP1 isoforms (PitNIP1;1 - PitNIP1;4) were tightly
clustered together in the NIP III and NIP I group respec-
tively (Figure 1). Within each group, the monocot and
dicot NIPs have formed distinct clades, indicating that the
extensive proliferation of NIPs should have occurred after
the monocot-dicot split. This proliferation may be attrib-
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Figure |

Phylogenetic tree of NIP proteins in plants. The
number beside the branches represents bootstrap values >
60% based on 1000 resamplings. The scale is in amino acid
substitutions per site. The two NPA motifs and the four resi-
dues making up the ar/R filter are indicated in the figure. To
identify the species of origin for each NIP gene, a species
acronym is included before the gene name: An, Atriplex num-
mularia; At, Arabidopsis thaliana; Ca, Cicer arietinum; Cp, Cucur-
bita pepo; Cs, Cucumis sativus; Gm, Glycine max; Lj, Lotus
japonicus; Mt, Medicago truncatula; Os, Oryza sativa; Pit, Pinus
taeda; Pp, Physcomitrella patens; Pt, Populus trichocarpa; Sb, Sor-
ghum bicolor; Vu, Vigna unguiculata; Vv, Vitis vinifera; Zm, Zea
mays.
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uted to the duplication of individual genes, or even the
entire genome. The rice and Arabidopsis genomes have
undergone two and three rounds of whole genome dupli-
cations (WGD) respectively [46,47], which may be
responsible for the expansion of the NIP subfamily in the
two model plants. We searched against the segmentally
duplicated chromosome segments identified based on the
TIGR rice (http://rice.plantbiology.msu.edu/
segmental_dup/) and Arabidopsis (http://www.tigr.org/
tdb/e2k1/ath1/Arabidopsis_genome_duplication.shtml)
genome annotation release version 5.0 respectively. As
expected, three gene pairs including OsNIP1;1/OsNIP1;4,
OsNIP1;2/OsNIP1;3, and OsNIP2;1/OsNIP2;2 were found
to be located into chromosomal regions that were sup-
posed to have undergone large-scale segmental duplica-
tions. Moreover, three genes (OsNIP3;2, OsNIP3;3, and
OsNIP3;5) were arranged as tandem on chromosome 8.
As observed in rice, we also found evidence for segmental
duplication (AtNIP3;1) and tandem duplications
(AINIP1;1/AINIP1;2, and AtNIP4;1/AtNIP4;2) in Arabi-
dopsis. The duplicated copy for the AtNIP3;1 gene however
should have lost during evolution in that only one copy
of it was found in the corresponding segmental duplicated
regions. Thus, the explosive expansion of rice and Arabi-
dopsis NIPs would attribute primarily to the segmental
duplications and tandem duplications.

Furthermore, the exon/intron lengths and gene structure
for each NIP gene were examined (Additional file 1), since
the exon/intron structures were terribly important for
investigating the evolution of any gene family. It was
found that most of the NIP genes possess four or five
exons, and only a few of them have 2, 3, or 6 exons. More-
over, we observed that with one exception (OsNIPI1;2/
OsNIP1;3), the gene pairs predicted to be produced by
duplications showed similar gene structures, even though
the lengths of introns might be different. For example,
both AtNIP4;1 and AtNIP4;2 have 5 exons, and the length
is the same for each of the five exons too. However, the
lengths of the four introns vary extensively (Additional
file 1). The similar cases were also found in the OsNIP2;1/
OsNIP2;2, OsNIP1;1/OsNIP1;4 gene pairs, and in the
OsNIP3;2/OsNIP3;3/OsNIP3;5 gene cluster. Although
OsNIP1;3 lacks one exon than OsNIP1;2, the length of the
second exon of the former gene is nearly equal to the total
length of the second and third exons of the latter one.
Besides, the lengths of the other three exons are similar to
each other too (Additional file 1). It could be thus inferred
that OsNIP1;2 should have independently gained an extra
intron during evolution, because almost all NIP I genes in
monocot plants possess four exons.

The two major constriction filters corresponding to the
two NPA motifs and the ar/R filter were shown in Figure
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1. It was observed that NIP proteins often have unortho-
dox NPA motifs, which is different from other MIPs. In
the NIP subfamily, the first and second NPA motifs are
always replaced by NPS and NPV (NPG), respectively (Fig-
ure 1, and Additional file 1). In the NIP I and III groups,
the first NPA motif is highly invariant, and the second
NPA motif is also conserved besides several exceptions.
However, more complicated NPA patterns were present in
the NIP II group. There are two types of NPA motifs each
in the first (NPA and NPS) and second (NPA and NPV)
positions. The monocot NIP3 and dicot NIP7 proteins
possess conserved NPA in the second position, while it is
replaced by NPV in other NIP II proteins (Figure 1). Wal-
lace and Roberts [31] demonstrated that in AtNIP6;1 sub-
stitution of Ala for Val in the NPA2 region did not alter its
transport selectivity, indicating that the NPA motifs
should have little effect on determining the transport spe-
cificity for this protein.

The ar/R region is the second constriction filter. It is obvi-
ous that this region is highly subgroup specific for the NIP
I and III groups. With one exception (AtNIP3;1), the ar/R
region is characterized by W, V, A, R for the NIP I group.
The hydrophobic residues W, V, and A, provide a non-
polar surface that hydrophobically interacts with the
hydrocarbon skeleton of glycerol, whereas the R residue
creates a hydrogen bonding with the hydroxyls of glyc-
erol, which facilitates the transit of glycerol and water
molecules across the central water channel [32]. In NIP
III, monocot and dicot NIPs possess a specific ar/R filter
consisting of G, S, G, and R. The tiny character of G and S
residues insures a wider aperture for the ar/R filter [32].
Nonetheless, there are some exceptions. Compared with
CsNIP2;1, CsNIP2;2 possesses a different ar/R filter where
the tiny Gly (G) residue is replace by the bulky Cys (C),
and this ar/R filter may offer a narrower aperture than the
former gene, indicating that the two genes may perform
different transporter functions. The similar case was also
found in PitNIP2;1, where the slight larger Ser (S) residue
substitutes for the first Gly (G). The moss P. patens
PpNIP5s have a unique combination of amino acids at
the ar/R filter (Figure 1, see also [7]), where the four resi-
dues (F, A, A, and R) constitute a mediate aperture that
should be larger than the NIP I protein, but narrower than
the NIP III protein. A considerable variation in the ar/R
region exists in NIP II proteins. The size and hydrophilic-
ity of the four residues are different from each other, sug-
gesting that members belonging to this group should
function in different ways. Notwithstanding, the NPA
motifs (NPA/NPV) and the ar/R filter (A, I, A, R) in the
moss PpNIP3;1 is identical to AtNIP6;1, suggesting that
these genes had the signatures before the split of bryo-
phytes and wvascular plants [7]. However, whether
PpNIP3;1 functions as a boric acid transporter like
AtNIP6;1 [48] needs further experimental investigation.

http://www.biomedcentral.com/1471-2164/10/313

In addition, we found that except for the OsNIP3;2/
OsNIP3;3/0sNIP3;5 gene cluster, other putative gene
duplicates in rice and Arabidopsis possess the same NPA
motifs and the ar/R signature (Additional file 1). The
AtNIP4s (4;1 and 4;2) have the similar gene structure and
the two constriction filters, suggesting that the two genes
should perform same or similar functions in transporting
water and glycerol, etc. In rice, both OsNIP2;1 and
OsNIP2;2 were demonstrated to be permeable to the
larger solute silicic acid [39,40], which supports our spec-
ulation on the AtNIP4s. Given that the ar/R regions in
OsNIP3;2, OsNIP3;3 and OsNIP3;5 are clearly differenti-
ated, we speculated that functional divergence should
have occurred among them. Moreover, we found that the
putative orthologs in the NIP I and III groups have the
same (or with a slight modification) NPA motifs and the
ar/R signature, whereas the orthologs in the NIP II group
are different from each other (Figure 1). It was worth to
note that the corresponding motifs in the green algae O.
lucimarinus, are NPS/NAA, and Y, L, G, R respectively. If
this is not the result of sequencing error, it can be inferred
that this gene should play a quite different role from other
NIPs in moss and higher plants.

In Arabidopsis, as much as seven NIP groups can be defined
[3], whereas there are only three groups in rice [4,49]. This
is a consequence of the large variation in NIP sequence
divergence in dicot species [3]. It is worth noting that
there is no Arabidopsis NIPs classified into the NIP III
group, although the NIP2 genes of some dicots such as
poplar, grape, and cucumber belong to this group (Figure
1). This suggests that Arabidopsis should have lost its coun-
terpart in this group during evolution. Alternatively, it is
likely that extensive sequence and structural variation
should have occurred in Arabidopsis AtNIP2;1, leading to
its functional divergence from other plant NIP2 genes.
Accordingly we examined the gene structure and ar/R filter
for this gene, and found that AtNIP2;1 possesses four
exons and its ar/R filter is W, V, A, R, which is quite differ-
ent from other NIP2 genes that always have five exons and
whose ar/R filter is composed of G, S, G, R (see Additional
file 1).

Detection of positive selection signal

The multiple alignments of NIP protein sequences were
shown in Additional file 2. The estimation of positive
selection was based on the corresponding nucleotide ML
tree (Additional file 3), where the sequences in partial and
whose length are less than 240 codons were excluded so
as to avoid possible analysis biases. To test for variable ®
ratios among lineages, we conducted the likelihood ratio
test (LRT) to compare the two extreme models: the one-
ratio model that assumes a unique rate ratio for all
branches, and the free-ratio model that assumes an inde-
pendent o ratio for each branch [50,51]. The log likeli-
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hood value under the one-ratio model is -23356.6, while
the value is -23007.7 for the free-ratio model. Twice the
log likelihood difference, 2A€ = 697.8, is strongly statisti-
cally significant, revealing a heterogeneous selective pres-
sure among lineages. It is obvious that some branches of
the NIP phylogeny include some internal branches having
o > 1, showing strong evidence for adaptive evolution.
Moreover, we observed that the branches that were
detected to be under positive selection should correspond
to gene duplication or speciation events (see Additional
file 3), which might act as a major evolutionary force driv-
ing the divergence of NIP functions.

The divergence of family members may involve positive
selection, as indicated by many typical studies [52]. In a
gene family, the fate of new genes produced by duplica-
tion would either evolve a new function under positive
selection, or be lost during evolution [53]. Plants have
evolved more abundant aquaporins with multifunctions,
which may reflect the need for plants to better adapt exter-
nal environmental conditions. Evidence for adaptive evo-
lution thus clearly imply that functional diversification of
the NIPs represents an evolutionary advantage for under-
going ecological adaptation to local environment [11]. It
thus appears that continued positive selection should
have acted on the NIP subfamily during evolution and
this selection would be remarkably significant.

Functional divergence analysis (FDA) of plant NIP proteins
Two types of functional divergence (Type-1 and Type-II)
between gene clusters of the NIP subfamily were esti-
mated by posterior analysis using DIVERGE2 that evalu-
ates shifted evolutionary rate and altered amino acid
property after gene duplication [54,55]. The advantage of
these methods is that they use amino acid sequences, and
thereby is not sensitive to saturation of synonymous sites.
The NIP subfamily consists of three major groups (NIP I,
II, and III) ([24,32]; see also Figure 1). However, the
results of positive selection analysis and primary FDA sup-
port the classification of NIP IIA and NIP IIB as two dis-
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tinct groups (see Additional file 3). Thus, herein four gene
clusters of interests were used as input for the DIVERGE2
analysis. As expected, the null hypothesis (no functional
divergence) could be strongly rejected in that the coeffi-
cients of Type-I functional divergence (4,) between NIP
groups were statistically significant (p < 0.01; Table 1),
indicating that significant amino acid site-specific selec-
tive constraints operate on different types of NIP members
leading to a subgroup-specific functional evolution after
their diversification. Further, a functional distance analy-
sis was conducted. We estimated the functional branch
length (b;) for each group by employing the least-squares
method [54], and found that the level of altered selective
constraints of group genes, measured by this index, fol-
lowed by (II, 0.48) > by (IV, 0.32) > by (I, 0.19) > by(1IL,
0.12), suggesting that the NIP II group should be signifi-
cantly divergent in function from other groups. On the
other hand, it was found that the coefficients of Type-II
functional divergence (¢,;) between I/II, I/III, and I/IV
were insignificant (p > 0.05). Nevertheless, we found evi-
dences for Type-II functional divergence between three
group pairs including II/III, 1I/1V, and III/1V, indicative of
a radical shift of amino acid property [55].

To identify critical amino acid sites that may be responsi-
ble for functional divergence between NIP groups, the
posterior probability (Q,) of divergence was determined
for each site. According to the definition, large Q,, indi-
cates a high possibility that the evolutionary rate or amino
acid physiochemical property of a site is different between
two clusters. DIVERGE2 thus identified some critical
amino acid sites (CAASs) that are highly relevant to func-
tional divergence (see Additional file 4, and Table 1). In
order to extensively reduce positive false, Q, > 0.8 was
empirically used as cutoff to identify the Type-I and Type-
II functional divergence-related residues between gene
clusters. The results showed that more than 13 CAASs
were supposed to be responsible for the functional diver-
gence between NIP II and I, III, IV respectively; whereas
there were only two, seven, and one CAAS with Q> 0.8

Table I: Functional divergence between groups of the plant NIP subfamily

Groupl Group2 Type-l Type-ll
6+ SE. LRT b Q>08 Qc>09 6, S.E Q.,>08

NIP | Il 0.449 £ 0.063 51.3 <0.01 17 8 -0.085 £ 0.163 0
NIP | 1] 0.190 £ 0.068 77 <0.01 2 0 -0.105 £ 0.175 0
NIP | v 0.429 + 0.087 24.5 <0.01 7 3 0.004 £ 0.178 0
NIP 1l 1] 0.486 + 0.068 50.6 <0.01 25 Il 0.106 £0.112 2
NIP 1I v 0.534 £ 0.098 29.4 <0.01 13 3 0.131 £0.115 2
NIP 1Il v 0.286 + 0.092 9.7 <0.01 | | 0.221 £0.119 7

Note: ¢ and ¢, the coefficients of Type-l and Type-Il functional divergence between two gene clusters; LRT, Likelihood Ratio Statistic; Q,, posterior
probability. Large Q, value indicates a high possibility that the functional constraint (or the evolutionary rate) or the physicochemical properties of a

given amino acid site is different between two clusters.
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identified between I/111, I/IV, and III/IV respectively. Inter-
estingly, in contrast to the Type-I functional divergence,
two, two, and seven Type-II related CAASs were identified
for the II/I11, 1I/1V, and III/IV pairs respectively (Table 1).
Compared with only one CAAS for the Type-I functional
divergence, there were seven predicted sites for the Type-II
functional divergence between III/IV, indicating that the
functional divergence between the two group genes was
mainly attributed to the rapid changes of amino acid
physiochemical property, and secondly to the shifted evo-
lutionary rate. The contrary cases were found for the II/I,
II/111, and II/IV pairs. These observations indicated that
site-specific shift of evolutionary rate and changes of
amino acid property should not uniformly act on the NIP
subfamily members during long periods time of evolu-
tion. The relative importance of Type-I and Type-II func-
tional divergence may be associated with specific
functional classes of this protein family. However, the
degree of functional divergence between NIP I/III was not
remarkably significant, because there were only two
CAASs with posterior probability >0.8. This suggests that
genes belonging to these two groups might perform simi-
lar functions in some aspects [25,27,28].

These CAASs identified by DIVERGE2 were mapped onto
the alignments of protein sequences (Additional file 4).
We found that these CAASs were mainly located in four
transmembrane regions (TMs 1, 2, 5, and 6), and only a
few of them fell into the intra- or extra-cellular loops. We
take the II/IIl pair as an example. There were 25 and 2
CAASs obtained for the two types of functional divergence
respectively. Among the 27 predicted CAASs, there were
10 sites located in the loop regions, while 17 sites were in
the TMs, with particular abundance in TM6. The similar
cases were also found in other group pairs (Additional file
4). Given the observation that no possible CAAS was iden-
tified in TM4, it indicated that this region should be more
conserved during evolution, and play important roles in
maintaining the fundamental function of NIP aquapor-
ins. In reality, conserved amino acids located in the heli-
ces 4 and 6 are essential to maintain the tetrameric
structure of aquaporins [56].

We observed that among the predicted CAASs, two sites
for the I/II pair, and one each for the II/III, and II/IV pairs
corresponded to the first and/or third residues in the ar/R
region (Additional file 4), suggesting that selective forces
should have worked on the two residues of the ar/R filter,
thereby leading to the diversity of substrate selectivity for
different NIP proteins. In NIP I, the ar/R residues include
W, V/I, A, and R, while these positions are occupied by A/
G/T/S/N, A/1/V, G/A, and R for the NIP II group. The two
identified CAASs in the I/1I pair correspond to the residues
in the H2 and LE1 positions, which involve the changes of
the size and hydrophilicity of the corresponding residues.
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For example, the bulky Trp (W) in NIP I was replaced by
the tiny A/S/T/N in NIP II; the hydrophilic G/S substituted
for the hydrophibic A. These changes play a pivotal role in
determining the substrate specificity. It has been reported
that NIP I proteins can permeate small solutes such as
water and glycerol, whereas NIP II proteins show no
measurable water permeability but transport glycerol, for-
mamide, as well as some larger uncharged solutes than
NIP I protein. Experimental evidences showed that the
substitution of a Trp (W) residue for Ala (A) at the H2
position of the ar/R tetrad of AtNIP6;1 results in enhanced
water-transport activity, but the permeability of the
mutant protein to urea, similar to the NIP I protein soy-
bean nodulin 26, becomes more restrictive [31]. Using
site-directed mutagenesis method, Wallace et al. [34]
demonstrated that the residue in the H2 position should
be a major determinant of glycerol selectivity.

In the II/III pair, the third residue (LE1) of the ar/R filter
is predicted to be functional divergence related. This posi-
tion is invariant Gly (G) in NIP III proteins, whereas the
same position in NIP II contains several amino acids (gly-
cine, alanine, or serine) with different properties, such as
the nonpolar Ala (A). The size of the four residues (G, S,
G, and R) in NIP III is smaller compared to other groups
of NIPs, which form a larger constriction size (>6A) and
allow for passage of much larger solutes [24]. However,
NIP III proteins cannot be permeable to glycerol [57],
although the molecular size of glycerol is smaller than
that of silicic acid. This suggests that other unknown fac-
tors may also be involved in the substrate specificity [24].

To date, the monocot NIP3s (defined as NIP 1V in this
study) were included in the NIP II group. The present
study however provided statistical evidence that monocot
NIP3s should have largely diverged from other NIP II pro-
teins in function, and fifteen CAASs including the H2 res-
idue of the ar/R region were predicted to be responsible
for the functional divergence (Table 1 and Additional file
4). In NIP 1V, the residue in H2 is highly conserved to Ala
(A). In contrast, several types of amino acids, such as
alanine, asparagines, threonine, and serine, occupy the
corresponding position in the NIP II group. However,
whether this residue position is determinant for func-
tional differentiation between NIP II and IV groups
remains unknown.

Using more than 150 MIP proteins, Froger et al. [58] iden-
tified five positions (P1-P5) where the physicochemical
properties of the corresponding amino acids are drasti-
cally different in aquaporins and glycerol permeases. Of
the five positions, P4 and P5 correspond to two consecu-
tive amino acids located in the sixth transmembrane seg-
ment (TMG6). Lagrée et al. [59] demonstrated that
mutations of YW to PL at the two positions totally con-
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verted the selectivity of the channel from water to glycerol.
Thus, it seems that positions P4P5 play a crucial role in
transport specificity. The five positions were designated in
Additional file 4. We found that one position (P5) each
for the I/IT and II/III pairs was predicted to be highly func-
tional divergence related, suggesting that the correspond-
ing position should have acted as a determinant factor in
subgroup-specific substrate transport.

Moreover, we detected some "hotspot" amino acid sites
that are highly contributed to the functional divergence
between different NIP subgroups. For example, there are
three (154, Q72, and A245) and four (P44, S85, Q125,
and G242) such positions identified in OsNIP1;1 and
OsNIP2;1 respectively (Additional file 4). However,
because plant NIPs are comparatively less studied, the
functional importance of the CAASs identified firstly
needs to be further experimentally examined.

Expression analysis of NIP genes

The transcriptional patterns of rice NIP genes in nine tis-
sues and forty cell types were investigated. It is observed
that OsNIPs are unevenly expressed in the examined tis-
sues, and exhibit a clearly tissue-specific expression pat-
tern.  OsNIP2;1, OsNIP3;1, and OsNIP2;2 are
predominantly expressed in root (Figure 2A); their Specif-
icity Measure (SPM) values are 0.994, 0.991, and 0.864
respectively. Similarly, relative to other tissues, OsNIP4;1
and OsNIP3;2 have a much stronger expression level in
anther (SPM = 0.828) and suspension cell (SPM = 0.810)
respectively, suggesting that they should play specific roles
in the corresponding tissues. The similar cases were also
found in Arabidopsis (Additional file 5). Consistent with
the above postulation, Ma et al. [39] demonstrated that
OsNIP2;1 was responsible for the uptake of silicic acid
from soil. The poplar PtNIP1;1 was specifically expressed
in the suspensor ligament of the embryo, and played
important roles in the corresponding process [60]. Fur-
ther, the microarray data for rice NIP genes in forty cell
types were analyzed. It is obvious that OsNIPs represent a
cell-type-specific expression pattern (Figure 2B), support-
ing the idea that NIP transport activities may be prevalent
in a more defined set of cells in the plant [16]. This result
was further validated by the analysis of Arabidopsis AtNIPs
in the root cell-types (Additional file 6).

We further analyzed the expression of OsNIPs during the
reproductive development, and found that the OsNIPs
could be classified in two groups of expression pattern
(Figure 2C). Five OsNIPs (3;3, 3;5, 1;4, 4;1, and 1;1) that
are largely expressed in the inflorescence stage, represent
the first group, while the other OsNIPs that appear to be
root specific, form the second one. Therefore, the expres-
sion of NIPs would be developmental-related. Coinci-
dently, it was found that PsNIP1;1 was expressed in the
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developing seed coats of pea seeds in a developmentally
specific manner [61].

The expression of AtNIPs is generally low under the treat-
ment of constant white light, but the responses of AtNIPs
are different (Figure 2D). For example, AtNIP3;1 exhibits
a higher expression level under 36 hrs constant lighting.
Moreover, we observed that most of the OsNIPs expres-
sion is down-regulated under a variety of stresses, such as
drought, salt, and cold (Figure 2E). However, OsNIP4;1 is
highly regulated by drought. These results indicate that
NIPs are not exception in responding to a diverse array of
stress related signals. Weig et al. [62] found that the
expression of AtNIP1;1 was severely down-regulated by
the stresses drought, salinity, as well as hormone abscisic
acid. Arabidopsis AtNIP2;1 is an anaerobic-induced lactic
acid transporter that may play a role in adaptation to lactic
fermentation under anaerobic stress [21], which pro-
motes us to further examine the expression profiles of
OsNIP genes under the aerobic and anoxic conditions
[63]. Interestingly, we observed that in rice coleoptile
OsNIPs could be clearly divided into two groups: the first
group includes four genes (OsNIPs 1;1, 2;1, 2;2, and 3;1),
which are aerobic-dependent; the second group consists
of the other seven OsNIPs, whose expression is regulated
by anoxic stress (Figure 2F). Overall, the detailed study of
NIP expression will refine our understanding of their
physiological roles in plants.

Regulatory elements for plant NIP genes

Transcription factors bind to corresponding TFBSs (tran-
scription factor binding sites) upstream from genes of
interest, and the profiles of cis-acting elements may thus
provide information for understanding the regulatory
mechanism of gene expression. A computational tool
PlantCARE [64] was adopted to identify putative TFBSs in
the 1000 bp DNA sequence upstream of the translation
initiation codon of NIP genes in rice, S. bicolor, grape and
poplar.

Four types of cis-elements were found to be significantly
abundant in the promoter region of plant NIP genes
(Additional file 7). The first type of cis-element enriched
in the promoter region is the light responsive elements,
such as G-Box [65], GAG-motif [66], and Box 4 [67] etc.
G-Box is the most abundant cis-element in rice. All but
two (OsNIP3;3 and OsNIP4;1) have at least one copy of
this element, whereas the Box 4 element appears to be
more abundant in grape and poplar. Plant hormone
responsive elements, such as ABRE [68], P-box [69], as
well as the TCA-element [70], constitute the second class.
It seems that ABRE is the most abundant hormone-related
cis-element in rice, suggestive of the regulation of the
expression of some OsNIPs by abscisic acid (ABA);
whereas no such element has been detected in grape and
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Figure 2

Gene expression patterns of rice and/or Arabidopsis NIP genes in nine tissues (A), forty cell types (B), during
the reproductive development (C), under constant white light (D), in response to drought, salt and cold (E), as
well as anoxic (F) treatments.

poplar. However, the AtNIP1;1 expression was remarka-  environmental stresses (Additional file 7). Guenther et al.
bly affected by ABA [62]. In contrast, the salicylic acid [43] demonstrated that the phosphorylation of soybean
responsive TCA-element is found frequently in grape and  nodulin 26 was enhanced by osmotic signals (both
poplar. These observations suggest that monocot and  drought and salt stress). We observed that nearly All NIPs
dicot plant NIPs should be significantly regulated by dif-  examined here appear to contain the ARE [71] and MBS
ferent types of hormones. The third class of cis-element in ~ [72] elements. ARE is an element involved in anaerobic
abundance consists of elements in response to external  induction [71]. In rice coleoptile, OsNIPs are classified in
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two distinct expression patterns (Figure 2F). We specu-
lated therefore that the anaerobic regulation of OsNIPs
expression should be tissue or developmental-stage
dependent. The drought responsive element MBS [72] is
also enriched in the promoter. With a few exceptions,
OsNIPs contain more than two copies of this element
(Additional file 7). Circadian that is involved in circadian
control [73] is the fourth type of cis-element found abun-
dant in the promoters of monocot NIP genes. PlantCARE
[64] identified one circadian in the rice silicic acid trans-
porter OsNIP2;1 [39], which may be responsible for its
distinct diurnal expression pattern [74]. The presence of a
diverse of cis-elements in the upstream regions of NIPs
indicates that plant NIPs may function in a wider range of
ways.

In addition, NIP membership-specific cis-elements have
been observed. For example, in rice, OsNIP2;1 and
OsNIP3;2 each possesses a putative LTR motif that is
response to low temperature [75,76]. AC-I, a cis-element
conferring enhanced xylem expression [77,78], is specifi-
cally present in OsNIP1;1. Furthermore, orthologous NIPs
in monocot and dicot plants have different cis-element
organization as well (Additional file 7). These results sug-
gest that plant NIPs should have evolved some specific
regulatory elements, and thereby leading to the differenti-
ation of expression patterns.

Conclusion

Plant NIP subfamily is more ancient, and their diversifica-
tion can be placed at the time before the emergence of the
moss P. patens. As many typical gene families, NIPs have
experienced strong positive selection during evolution.
Consistently, the amino acid level analysis suggests that
functional divergence has occurred between plant NIP
proteins, and identified the critical amino acid sites
involved in this divergence for further investigation. Rice
and Arabidopsis NIPs exhibit distinct expression pattern.
The survey of upstream elements reveals four major
classes of cis-elements in the promoter region of NIPs and
their distinct organization pattern is interpreted to reflect
their varying participation in gene expression regulation.
The rapid proliferation and functional diversification of
plant NIPs is argued to have partially attributed to the
need for plants to better adapt to external different envi-
ronments. These findings provide new insights into
understanding the evolutionary mechanisms of NIP pro-
teins and their functional diversification.

Methods

Sequence data

O. sativa, A. thaliana, Z. Mays, and P. patens NIP sequences
were downloaded from the GenBank and JGI databases
according to the published literatures [3,7,49,79]. The
NIPs were used as query to search against the V. vinifera,
P. trichocarpa, S. bicolor, G. max, C. sativus, and P. taeda
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genomes using the BLASTP and TBLASTN programs
respectively. Other sequences including the Cicer arieti-
num CaNIP (AN: CAG34223), and Cucurbita pepo CpNIP
(AN: CAD67694) were collected from literature [32]. Pro-
grams InterProScan [80] and ConPred II [81] were
employed to detect the conserved MIP domain and pre-
dict the putative transmembrane regions respectively.

Multiple sequence alignment and phylogenetic tree
reconstruction

Plant NIP protein sequences were aligned using the pro-
gram L-INS-i implemented in MAFFT v6.6 [82], with the
parameters: Scoring matrix for amino acid sequences,
BLOSUMG62; Gap opening penalty, 2.0; and Gap exten-
sion penalty, 0.2. The resulting protein alignment was
subsequently employed to generate the codon-alignment
of corresponding coding DNA sequences using a custom
PERL script. Maximum likelihood (ML) phylogenies were
reconstructed with PHYML v2.4 [83]. The programs
PROTTEST [84] and ModelGenerator [85] were utilized to
determine the best model for each ML analysis. Here the
JIT+I1+G model for the protein alignment and the
HKY+I+G+F model for the codon alignment were deter-
mined respectively. The reliability of interior branches
was assessed with 500 bootstrap resamplings. Phyloge-
netic trees were displayed using MEGA v4.0 [86].

Test of positive selection

The CODEML program implemented in the PAML v4.0
software package [51] was utilized to test the hypothesis
of positive selection in the NIP subfamily during evolu-
tion. To test for heterogeneous selective pressure among
lineages [50], models of variable o ratios among lineages
were fitted by ML to the NIP sequence alignment. The
ratio of nonsynonymous-to-synonymous for each branch
under two models (one-ratio and free-ratio for branches)
was calculated, and the two models were compared using
the LRT test to see whether the o ratios are different
among lineages; that is, positive selection is indicated if
the free-ratio model that allows for selection is signifi-
cantly better than the one-ratio model (no selection) in
the LRT analysis.

Estimation of functional divergence

The software DIVERGE2 [55] was used to detect func-
tional divergence between members of the plant NIP pro-
tein subfamily, where 4 gene clusters of interests were
selected. The coefficients of Type-I and Type-II functional
divergence 6 and g, between any two NIP groups were
calculated. If 6 or 6, is significantly greater than O, it
means site-specific altered selective constraints or a radical
shift of amino acid physiochemical property after gene
duplication [54,55]. Moreover, a site-specific posterior
analysis was used to predict amino acid residues that were
crucial for functional divergence.
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Investigation of transcription patterns

Gene expression microarray datasets (GSE7951,
GSE13161, GSE6893, GSE6908, and GSE6901 for rice;
GSE680, GSE7641, and GSE8365 for Arabidopsis) were
downloaded from the GEO database in NCBI. The micro-
array data of rice include the analysis of gene expression
profiles in nine tissues [87] and forty cell types; during
reproductive development; seven-day-old seedlings under
drought, salt, and cold stress treatments [88]; and rice
coleoptile under the aerobic and anoxic conditions [63].
In Arabidopsis, the transcript profiles of NIP genes in root
cell-types after treatment with salt [89], under constant
white light treatment [90], and during the whole plant life
cycle, were investigated as well. Program dChip 2008 (5/
8/08) [91] was used to perform the cluster analysis and
display the expression patterns of rice and Arabidopsis NIP
genes using microarray data as input. The GEPS software
[92] was employed to quantitatively analyze the expres-
sion pattern of NIP genes. Specificity Measure (SPM) was
used to define the tissue-specific expression pattern of a
gene, which may be useful for further understanding its
physiological behaviors [92].

Analysis of cis-acting regulatory elements

1000 bp of nucleotide sequences upstream of the translation
initiation codon for each NIP gene in four species (rice, S.
bicolor, grape, and poplar) was extracted, which were used for
the TFBSs analysis. At present, no full-length cDNA
sequences for grape were available. In order to facilitate com-
parison between species, the sequences upstream of transla-
tion initiation codon rather than transcription start site were
used to screen possible cis-acting regulatory elements. The
software PlantCARE [64] was utilized to determine putative
plant-specific TFBSs in a given DNA sequence. To avoid
biases in analysis, only TFBSs whose matrix score is not less
than 6 were considered further.
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Additional material

Additional file 1

List of NIP genes in plants. For each NIP gene, the information about
the accession number, chromosomal localization, gene length, protein
length, gene structure, the NPA motif, and the ar/R filter sequence were
listed.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-313-S1.pdf]
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Additional file 2

The multiple alignments of plant NIP protein sequences. These
sequences were aligned using the program L-INS-i implemented in
MAFFT v6.6. The alignments were shaded in the "Quantify Mode", and
the residues were displayed in the "Difference Mode" with the "Diff/Con-
sensus Line" style. Dots and "-" indicate similar residues and gaps on the
alignment respectively.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-313-52.pdf]

Additional file 3

Phylogenetic tree reconstructed using plant NIP nucleotide sequences.
The number beside the branches represents bootstrap values >300 based
on 500 resamplings. The scale bar shows total nucleotide distance. The
NIP homologue in the green alga Ostreococcus lucimarinus (defined as
galgaNIP) is used as outgroup sequence to root the tree. Branches with
rates of numbers of nonsynonymous and synonymous substitutions >1, are
indicated by red thick lines.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-313-S3.doc]

Additional file 4

Functional divergence significantly related amino acid site candidates.
A site-specific profile based on the posterior probability (Q,) was used to
identify critical amino acid sites that were responsible for functional diver-
gence between NIP subfamily members. According to the definition, large
Qy indicates a high possibility that the functional constraint (or, the evolu-
tionary rate) or the radical change of amino acid property of a site is differ-
ent between two clusters. Dots indicate conserved residues with the first
protein, such as OsNIP2-1. Amino acids (AAs) with Qyvalues 0.9>Q,>0.8
and Q;>0.9 are shaded with green and red color respectively. The predicted
AAs for Type-1I functional divergence are shown in purple. The six predicted
transmembrane regions (TMs) are marked above the sequences. Arrows
indicate the first and/or the third residue(s) in the ar/R region. The five
positions identified by Froger et al. [58] are indicated by stars. (A) I/II; (B)
/11 (C) Y1v; (D) 11 (E) 1I/IV; (F) HIJIV.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-313-S4 xls]

Additional file 5

The expression patterns of Arabidopsis AtNIPs during the plant life
cycle.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-313-S5.doc]

Additional file 6

The diversity of expression profiles of Arabidopsis AtNIP genes in root
cell-types after treatment with salt.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-313-S6.doc]

Additional file 7

Analysis of cis-acting elements in the 1000 bp sequence upstream of
the translation initiation codon in plant NIP genes.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-313-S7.doc]
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