- )
BIVIC Genomics Bioted Centa

Research article

In silico identification of a core regulatory network of OCT4 in
human embryonic stem cells using an integrated approach
Lukas Chavez*1, Abha S Bais?, Martin Vingron?, Hans Lehrach!,

James Adjaye! and Ralf Herwig!

Address: 'Department of Vertebrate Genomics, Max-Planck-Institute for Molecular Genetics, Thnestrasse 73, D-14195 Berlin, Germany and
2Department of Computational Molecular Biology, Max-Planck-Institute for Molecular Genetics, Ihnestrasse 73, D-14195 Berlin, Germany

Email: Lukas Chavez* - chavez@molgen.mpg.de; Abha S Bais - bais@pitt.edu; Martin Vingron - vingron@molgen.mpg.de;
Hans Lehrach - lehrach@molgen.mpg.de; James Adjaye - adjaye@molgen.mpg.de; Ralf Herwig - herwig@molgen.mpg.de

* Corresponding author

Published: 15 July 2009 Received: 13 January 2009
BMC Genomics 2009, 10:314  doi:10.1186/1471-2164-10-314 Accepted: 15 July 2009
This article is available from: http://www.biomedcentral.com/1471-2164/10/314

© 2009 Chavez et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: The transcription factor OCT4 is highly expressed in pluripotent embryonic stem
cells which are derived from the inner cell mass of mammalian blastocysts. Pluripotency and self
renewal are controlled by a transcription regulatory network governed by the transcription factors
OCT4, SOX2 and NANOG. Recent studies on reprogramming somatic cells to induced
pluripotent stem cells highlight OCT4 as a key regulator of pluripotency.

Results: We have carried out an integrated analysis of high-throughput data (ChlP-on-chip and
RNAI experiments along with promoter sequence analysis of putative target genes) and identified
a core OCT4 regulatory network in human embryonic stem cells consisting of 33 target genes.
Enrichment analysis with these target genes revealed that this integrative analysis increases the
functional information content by factors of 1.3 — 4.7 compared to the individual studies. In order
to identify potential regulatory co-factors of OCT4, we performed a de novo motif analysis. In
addition to known validated OCT4 motifs we obtained binding sites similar to motifs recognized
by further regulators of pluripotency and development; e.g. the heterodimer of the transcription
factors C-MYC and MAX, a prerequisite for C-MYC transcriptional activity that leads to cell
growth and proliferation.

Conclusion: Our analysis shows how heterogeneous functional information can be integrated in
order to reconstruct gene regulatory networks. As a test case we identified a core OCT4-
regulated network that is important for the analysis of stem cell characteristics and cellular
differentiation. Functional information is largely enriched using different experimental results. The
de novo motif discovery identified well-known regulators closely connected to the OCT4 network
as well as potential new regulators of pluripotency and differentiation. These results provide the
basis for further targeted functional studies.
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Background

Several studies on reprogramming human somatic cells to
induced pluripotent stem cells (iPS) have demonstrated
that the transduction of only a few transcription factors
(TFs) is sufficient for resetting differentiated cells into a
molecular state similar to embryonic stem cells (ESCs).
While Takahashi et al. [1] and Wernig et al. [2] obtained
iPS cells by transduction of the TFs OCT4, SOX2, KLF4,
and C-MYC, Yu et al. [3] achieved similar results with a
transcription factor set composed of OCT4, SOX2,
NANOG, and LIN28. Only the TFs OCT4 and SOX2 are
common in both approaches and Huangfu et al. [4] dem-
onstrated that iPS cells can be derived at higher efficien-
cies by the transduction of these two factors in
combination with the supplementation with the histone
deacetylase inhibitor -valproic acid.

The TF OCT4 is known as a key regulator for maintaining
pluripotency in the mammalian embryo [5-7]. The HMG-
box containing TF SOX2 interacts with OCT4 and the
SOX2/OCT4 heterodimer complex is able to promote
selective gene activation or repression during mammalian
embryogenesis [8-11].

Functional data on OCT4 regulatory action is available
from heterogeneous sources: to reveal DNA-Protein bind-
ing events of OCT4, SOX2 and of the pluripotency associ-
ated TF NANOG, chromatin immuno-precipitation
followed by microarray experiments (ChIP-on-chip) has
been performed using hESCs [12]. Additionally, sequence
motifs have been identified, for example the octamer
motif ATTTGCAT interacting with POU domain factors
like the homeodomain containing TF OCT4 and a motif
recognized by the SOX2/0OCT4 heterodimer complex [13-
15]. Mapping of these known transcription factor binding
motifs to the promoter sequences of putative OCT4 target
genes provides additional evidence for direct binding
events.

Although ChIP-on-chip experiments and sequence-based
methods have the ability to detect such putative protein-
DNA binding sites, these techniques do not allow infer-
ence of directional transcriptional dependencies between
DNA binding and the effect on regulation of gene expres-
sion. In order to test the regulatory influence of OCT4 to
the transcription rate of its target genes, Babaie et al. [16]
performed RNA interference-mediated suppression of
OCT4 function in the H1 hESC line and analyzed the
resulting global gene expression changes by microarray
experiments. Transcriptional changes induced by OCT4
knockdown are expected to include genes linked with
pluripotency, and genes activated upon differentiation
along the trophoblast lineage [16].
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ChIP-on-chip experiments, promoter sequence analysis
and RNA interference provide complementary pieces of
information on transcriptional dependencies. In this
study, we performed an integrated analysis of these meth-
ods in the context of OCT4 dependent regulation of
pluripotency and differentiation along the trophoblast
lineage in hESCs in order to construct a core network com-
posed of the genes that were detected by all individual
experimental approaches. Using this conservative selec-
tion, we observed a 1.3-4.7 fold increase of functional
information content compared to single experiment anal-
ysis. In order to extend the analysis of OCT4 regulation,
we performed a comprehensive in silico promoter
sequence analysis with the OCT4 target genes and identi-
fied binding sites related to potential co-factors of OCT4.

Results

Analysis of individual experimental methods

We performed a re-analysis of the OCT4, SOX2 and
NANOG ChlIP-on-chip data from hESCs (NIH Code:
WAO9 cells) [12] including the mapping of the 60 mer oli-
gonucleotide probes to an updated NCBI build (v36.1). In
total, 230,068 oligonucleotides matched to their original
position (+/-100 bp) whereas 141,270 probes were
mapped more than 500 bp away from their original posi-
tion. Processing of the uniquely-mapped probes includes
background correction, normalization, fold-enrichment
and peak identification and resulted in 308 potential
OCT4 target genes (see Figure 1a for a histogram of OCT4
ChIP-on-chip ratios and Materials and Methods for a
detailed description of the analysis). Figure 1b shows a
histogram of the distances between binding sites and tran-
scription start sites (TSSs) for the 308 direct OCT4 target
genes. Most OCT4 binding sites (72.07%) are located less
then 3 kb upstream of the TSS. 37.98% of all binding sites
are located less then 1 kb upstream of the TSS and a sec-
ond accumulation of binding sites is observed in the
region between -1 kb to -2 kb with nearly a quarter
(23.05%) of all binding sites.

Because protein-DNA binding events do not give informa-
tion on the direction of the regulatory influence of the TF
with respect to the transcription rate of its target genes, we
complemented the results of the OCT4 ChIP-on-chip
experiment with the results of the RNAi mediated OCT4
silencing in hESCs (H1 clone) performed by Babaie et al.
[16]. Identifier mapping of the different chip platforms
(Agilent oligochips and ¢cDNA microarrays) resulted in
10,065 genes that were represented as cDNA clones on the
microarray (see Materials and Methods) and that had pro-
moter regions covered by the Agilent tiling arrays. From
the originally published 623 OCT4 target genes [12], 472
were also represented on the cDNA microarray. From the
1,104 genes that show significantly altered expression 72
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Histogram of processed OCT4 ratios. a) Histogram of quality controlled and normalized OCT4 ChlIP-on-chip ratios for
the individual probes. The blue line represents the threshold for the upper 0.001 quantile of the distribution (green line: upper
0.0l quantile and red line upper 0.05 quantile, respectively). b) Histogram of distances between OCT4 binding sites and closest
TSS for all 308 validated OCT4 target genes, (c) Histogram of distances between OCT4 binding sites and closest TSS for the
33 isolated functional OCT4 target genes. The red fraction corresponds to stemness related genes, the green fraction to differ-

entiation related genes.

hours after the OCT4 knock down, 40 genes (<4%) were
also identified as direct OCT4 target genes.

In order to obtain an even more stringent set of OCT4 tar-
get genes, we searched the promoter sequences of the tar-
gets for the occurrence of the known OCT4-related
octamer and SOX-OCT joint motifs within a distance of 8
kb upstream of the respective TSSs (see Material and
Methods). Even though we neglect information on bind-
ing events caused by OCT4-DNA interactions mediated by
unknown cofactors and heterodimer complexes, our
results reflect confirmed functional circuitries dependent

on direct OCT4 and SOX-OCT binding. The combination
of the three approaches resulted in a set of 33 genes (Fig-
ure 2). Nevertheless, it has to be mentioned that a motif
could be mapped to the genomic environment of a ChIP-
on-chip derived significant peak (distance of less then 1
kb) for only a third of these genes, whereas for the remain-
ing genes the genomic position of the mapped motif is
further away from the centre of the peaks.

The complete results of the individual studies (together
with the results of the re-analyzed SOX2 and NANOG
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Figure 2

Overlap of the individual studies. Overlap of the re-ana-
lyzed OCT4 ChlP-on-chip experiment, the OCT4 RNAI
experiment and the motif mapping results with the octamer
and sox-oct joint motifs.

ChIP-on-chip experiments) are summarized in Additional
file 1.

Positional distribution of OCT4 transcription factor
binding sites (TFBSs)

Figure 1c shows a histogram of the distances between
binding sites and TSSs for the 33 functional OCT4 target
genes. Similar to the histogram of all 308 validated direct
OCT4 target genes (see Figure 1b), the majority of OCT4
binding sites (69.68%) are located less then 3 kb
upstream of the TSS, 30.30% of all binding sites are
located already less then 1 kb upstream of the TSS and a
second accumulation of binding sites can be observed in
the region between -1 kb to -2 kb with nearly a quarter
(24.24%) of all binding sites. Interestingly, slight differ-
ences in the distribution of binding site distances to TSSs
can be observed when the set of OCT4 target genes is split
into functionally distinct subsets (see Figures 1¢): 43.75%
of the genes that are functionally connected to the process
of differentiation (defined by negative regulation by
OCT4) have the OCT4 binding site within the 1 kb
upstream region of their TSS, whereas only 17.65% of the
stemness related genes (defined by positive regulation by
OCT4) have the OCT4 binding site within this region. On
the other hand, 35.23% of the stemness related genes
have an OCT4 binding site within the -1 kb to -2 kb region
whereas only 12.5% of the differentiation related genes
have the OCT4 binding site within this region. Therefore,
it seems that differentiation related genes tend to have an
OCT4 binding site closer to their TSS.

OCT4 target genes

Among the 33 genes, several well-known targets of OCT4
can be found as well as genes whose regulatory interaction
with OCT4 is less well-described. In general, OCT4 binds
to and regulates diverse classes of genes encoding for
example transcription factors (TGIF2, EOMES, FOXD3,
GSC, TSC22D1, GATAG6, OCT4, SOX2, NANOG, PAX6,
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CDX2, TCF4), transcriptional regulators (SSBP2), regula-
tors of kinase, transferase, and catalytic activity (GAP43,
TDGF1), members of the Wnt receptor signalling pathway
(SFRP2, FRAT2, DKK1), and growth factors (FGF2,
LEFTY2, TDGF1). A functional classification of the 33
OCT4 target genes is given in Additional file 2.

As an example, Figure 3 illustrates ChIP-on-chip data
results in the promoter regions of two target genes. Figure
3a shows two identified peaks located approximately 155
bp and 2027 bp upstream of the transcription start site of
CDX2 (Caudal-type homeobox transcription factor 2). A
binding event was identified for NANOG at the same
genomic positions but not for SOX2. Additionally, the
octamer motif was found approximately 233 bp upstream
of the TSS. OCT4 negatively regulates the transcription of
CDX2, as it is significantly up-regulated upon OCT4
knockdown [16]. This observation is in line with the func-
tion of CDX2 which encodes a protein that is important
in a broad range of cellular functions such as trophoblast
differentiation in human and mouse [17,18] to mainte-
nance of the intestinal epithelial lining of both the small
and large intestine [19]. Furthermore, it has been shown
that Oct4 directly regulates the expression of Cdx2 in
mouse embryonic stem cells [20,21].

As a second example, Figure 3b shows two identified
peaks located approximately 1304 bp and 4212 bp
upstream of the TSS of FOXD3 (Forkhead box protein
D3). Binding events were identified for NANOG at the
same genomic position but not for SOX2. The octamer
motif was found approximately 4679 bp upstream of the
TSS. Moreover, OCT4 has a positive regulatory influence
on the transcription of FOXD3 as it is significantly down-
regulated 72 hours after RNAi mediated OCT4 depletion
[16]. This observation is consistent with the function of
Foxd3 in mouse embryonic stem cells, as it is required for
maintenance of progenitor cells in the inner cell mass and
in the trophoblast [22,23]. Additionally, it has been
shown that Foxd3 has an important role in repressing dif-
ferentiation, promoting self-renewal, and maintaining
survival of mouse ESCs [24].

Further evidence for the regulatory influence of OCT4 on
the 33 target genes has been agglomerated from published
experimental studies. Additional file 3 contains a glossary
for the 33 core OCT4 target genes that summarizes further
independent published experimental validations on the
regulatory influence of OCT4 to its presented target genes.

Integration of data enriches functional content of OCT4
target gene set

Enrichment analysis [25] revealed that the functional
information content of the gene set is accelerated (factors
of 1.3 - 4.7) by integrating the results of the individual

Page 4 of 14

(page number not for citation purposes)



BMC Genomics 2009, 10:314

a) cDx2

T T T
&—= Fold Enrichment | 4

‘ ]
\ ]
JM | l \/’\/\/

\
27440000 ywm J-l-ll 00 77445000 27450000

ElwERCA

Figure 3

http://www.biomedcentral.com/1471-2164/10/314

b) FOXD3

i

i AR ]
7\ % LA »J = i
VN Lo~ \f‘

2

! P

| ! | L L
0
63554000 63556000 63558000 63560000 63562000
Chr. 1
P

liu,':__CAT,;

63564000

Example peaks taken from the isolated set of OCT4 target genes. Example peaks within the promoter regions of a)
CDX2 and b) FOXD3, two of the isolated OCT4 target genes. The coloured lines refer to the thresholds corresponding to
the quantiles given in Figure la. The motifs represent the octamer motif mapped to the respective promoter regions. The two-
sided arrows illustrate the sub sequences taken for the de novo motif discovery.

studies. Figure 4 shows the increase in the percentage of
genes connected to gene ontology terms, for example
"GO:0003700: Transcription factor activity", with respect to
the original set of ChIP-on-chip targets (origChIP,
22.72%), the re-analyzed set of ChIP-on-chip target genes
(ChIP, 26.62%), the additional filtering according to the
RNAi experiment (+RNAi, 35%) and additional motif
mapping (+Motif, 36.36%). The same trend can be
observed with other GO terms such as "G0O:0030154: Cell
differentiation", "GO:0045165: Cell fate commitment",
"GO:0009790: Embryonic development", "GO:0008283: Cell
proliferation”, and others (see Figure 4). Table 1 shows the
top enriched gene ontology terms (see Additional file 2
for the complete results of the enrichment analysis).

OCT4 core regulatory network

The resulting OCT4 core regulatory network, also incorpo-
rating the information on direct target genes from the re-
analyzed SOX2 (red lines) and NANOG (blue lines)
ChIP-on-chip experiments, is shown in Figure 5. The net-
work distinguishes genes that are suppressed (left side)
from those that are activated (right side) by OCT4. Among
the 33 genes a high fraction is annotated with transcrip-
tion factor activity (GO:0003700, indicated as rhom-
buses). Furthermore, a classification in hESCs specific
genes (red boxes) and genes that are associated with the
process of differentiation (green boxes) was performed by
accessing several further public sources [16-18,26]. White
boxed genes could not be annotated using these sources,
but the information about up or down regulation after the
OCT4 knock-down indicates, whether the respective gene

is functional connected to the process of differentiation or
to the maintenance of pluripotency.

An additional level of gene regulation has been added to
this core OCT4 target network by further literature and
database mining (Additional file 4). This additional figure
shows the core network extended by known up- and
downstream target genes of the respective TFs as given by
TRANSFAC [19] and by another published work [27].

Further interactions of the OCT4 target genes were
revealed using the ConsensusPathDB [28], a database that
integrates the content of 12 different interaction databases
with heterogeneous foci. As an example, Additional file 5
shows known interaction partners of CDX2. Among these
interactions, interestingly, a physical interaction is
observed between CDX2 and PAX6, that is another impor-
tant differentiation associated TF included in the pre-
sented set of OCT4 target genes. The core OCT4 network
is represented in SBML format (Additional file 6) which
can be used for further studies, e.g, mathematical model-
ling.

De novo motif discovery

Transcription factor co-localizations targeted by multiple
transcription factors are sites that integrate the external
signalling pathways to the transcriptional regulatory cir-
cuitry governed by OCT4, SOX2, and NANOG and these
sites may serve as focal points for the assembly of further
regulatory nucleoprotein complexes [29]. In order to test
for further regulatory co-factors of OCT4, we performed a
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Enrichment of functional information through integrated analysis. Increase of functional information content of
selected gene lists. As an example, the gene ontology term "GO:0003700 Transcription factor activity" is described in detail
(from left to right): OCT4 target genes using the original ChIP-on-chip data (origChlP), using the re-analyzed OCT4 ChlP-on-
chip data (ChlP), after integration of the results of the OCT4 RNAi experiment (+RNAI) and after integration of the motif
mapping (+Motif). The corresponding absolute numbers of selected target genes are 122, 82, 14 and 12 (not indicated within
the illustration).
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Table I: Enrichment analysis
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Term Count % PValue

GO:0007275~multicellular organismal development 18 54.55%  0.000000
GO:0003700~transcription factor activity 12 36.36%  0.000000
GO:0009653~anatomical structure morphogenesis 16 48.48%  0.000000
GO:0032502~developmental process 20 60.61%  0.000000
GO:0009790~embryonic development 10 30.30%  0.000000
GO:0048856~anatomical structure development 17 51.52%  0.000000
GO:0030528~transcription regulator activity 13 39.39%  0.000002
GO:0030154~cell differentiation 15 45.45%  0.000002
GO:0048869~cellular developmental process 15 45.45%  0.000002
GO:0007389~pattern specification process 6 18.18%  0.000010
GO:003250 | ~multicellular organismal process 19 57.58%  0.000019
GO:0045165~cell fate commitment 5 15.15%  0.000022
GO:0043565~sequence-specific DNA binding 8 24.24%  0.000029
GO:0003677~DNA binding 14 42.42%  0.000051
GO:0031323~regulation of cellular metabolic process 16 48.48%  0.000063
GO:0019222~regulation of metabolic process 16 48.48%  0.000095
GO:0009887~organ morphogenesis 7 21.21%  0.000105
GO:0031325~positive regulation of cellular metabolic process 7 21.21%  0.000107
GO:0009893~positive regulation of metabolic process 7 21.21%  0.000154
GO:0001824~blastocyst development 3 9.09% 0.000356
GO:0045449~regulation of transcription 14 42.42%  0.000413
GO:0019219~regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process 14 42.42%  0.000519
GO:0050789~regulation of biological process 19 57.58%  0.000533
GO:0065007~biological regulation 20 60.61%  0.000539
GO:0006350~transcription 14 42.42%  0.000597
GO:0009798~axis specification 3 9.09% 0.000640
GO:0050794~regulation of cellular process 18 54.55%  0.000754
GO:0010468~regulation of gene expression 14 42.42%  0.000756
GO:0006355~regulation of transcription, DNA-dependent 13 39.39%  0.000890

Top enriched gene ontology categories for the 33 OCT4 target genes as received by DAVID [25] (see Additional file 2 for the complete results).

de novo motif discovery analysis based on specific pro-
moter regions of the 308 direct OCT4 target genes derived
from the re-analysis of the ChIP-on-chip data (sub-
sequences of length 200 bp around the identified peaks;
such selected regions are highlighted as arrows in Figure
3). The selected sub-sequences were repeat-masked [30]
and used as input for several de novo motif discovery algo-
rithms (see Material and Methods). We identified 12
unique sequence motifs of higher quality (Figure 6 and
Additional file 7). These motifs were compared against
two existing databases of known motifs (TRANSFAC [19]
and JASPAR [31]) using the STAMP tool [32] (for the com-
plete results see Additional files 8 and 9). Motifs similar to
the octamer and sox-oct joint motifs were discovered.
Additionally, sequence motifs were identified that are
potentially recognized by factors involved in maintaining
pluripotency and development. For the 33 core OCT4 tar-
get genes, Figure 6 lists the individual genes that contain
the discovered motifs within their promoter regions.

Interestingly, we identified a motif similar to the binding
site of MYC-MAX (see Figure 6), a heterodimer of the tran-
scription factors C-MYC and MAX, a pre-requisite for C-
MYC transcriptional activity that leads to cell growth and

proliferation [33,34]. C-MYC has been utilized in a set of
four transcription factors for deriving iPS cells from
somatic cells [1,2]. The C-MYC related motif was identi-
fied in the promoter region of PIP5K1C which encodes
PIPKI gamma of the phophatidylinsitol pathway [35]. C-
MYC is even further connected to the presented OCT4 reg-
ulatory network as it is a direct target of TCF4 (Transcrip-
tion factor 7-like 2) whose transcription is enhanced by
OCT4 function and which is a CTNNB1 binding protein
that regulates Wnt signalling, cell cycle, and cell prolifera-
tion [19]. Moreover, C-MYC is a direct target of E2F/DP, a
complex essential for cell proliferation [36]. Additionally,
E2F/DP directly binds to ORCI1L (Origin recognition
complex subunit 1-like), another member of the network
which encodes for a chromatin binding protein that plays
arole in DNA replication initiation and mitotic cell cycle,
induces caspase activation, cell surface exposure of phos-
phatidylserine, and DNA fragmentation during apoptosis
[19]. A motif similar to the binding site of E2F-1 was
obtained by the de novo motif discovery. Based on an anal-
ogous de novo motif discovery performed on the sub-
sequences of validated peak regions taken from the pro-
moter regions of the 33 core OCT4 target genes only, a
motif similar to the binding site of E2F was obtained
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OCT4 core regulatory network. Core OCT4 transcriptional regulatory network identified by the integrative analysis of
the re-analysed ChlIP-on-Chip data, the OCT4 RNAi knock-down and the sequence-based octamer and sox-oct motif mapping.
Green boxes represent genes associated with differentiation and red boxes indicate genes being specific for hESCs as anno-
tated by several further public sources [16-18,26]. For white boxed genes no detailed annotation about differentiation or stem-
ness characteristics was found by literature research. The network also incorporates the information on direct target genes
from the re-analyzed SOX2 (red lines) and NANOG (blue lines) ChIP-on-chip experiments.
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1D Motif Complexity | Bits |Genes containing motif in promoter sequence (-8kb to |Similar to known motifs in
TSS) TRANSFAC and Jaspar (selected
from Additional File 7 and 8)
1| 2 1.6479 | 25.03 |RABSA, TGIF2 HNF4alpha, Pax-5, STATSA,
BJTCA AAHCA TA HNF6, POUGF1, NR2F1,
T Pax6,
2| 15123 | 17.72 | C90rf97, CDX2, EOMES, EPHAL, EXOSC9, FGF2, Oct-4, Oct-1, Octamer,
2 FOXD3, FRAT2, GSC, KDR, LEFTY2, MAGED2, )
"jTch.% AT C%A NAALAD2, NANOG, ORCIL, PAX6, PHF17, pipskic, | TMGLY, STATL
o SFRP2, SOX2, SSBP2, TCF4, TDGF1, TGIF2, TNC,
TSC22D1
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o b e E2F
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B 116 S I PR | NFKBI1
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Figure 6

De novo motif discovery. |2 motifs (second column) identified by a de novo motif discovery approach, sorted by their com-
plexity value derived from the di-mer distribution (third column). The second and tenth motifs have a high similarity with
known OCT4 related motifs. The fifth column lists the genes from the network that contain the motif within their promoter
regions. Genes being suppressed by OCT4 are stated italic, genes being activated by OCT4 are stated bold. The last column
shows selected similarity matched motifs from TRANSFAC (stated italic, [19]) and Jaspar (stated underlined, [31]) as received
by STAMP [32] (see Additional files 8 and 9 for the full results).
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(consensus sequence GSmkGs) and could be mapped to
the promoter regions of ORC1L and further OCT4 target
genes (data not shown).

Discussion

We have performed an integrative study of complemen-
tary experimental techniques in order to identify the core
gene regulatory network of OCT4 in the context of main-
taining pluripotency and preventing differentiation along
the trophoblast lineage. This network represents a rather
conservative selection since we have chosen only genes
with high evidence that showed significant results in
ChIP-on-chip analysis, RNAi analysis and promoter
sequence analysis.

Figure 2 illustrates the limited overlap between the differ-
ent technologies. For example, only 40 genes intersect
between the ChIP-on-chip (12%) and the RNAi experi-
ments (4%). This observation is in line with the results of
a similar approach comparing the overlap of altered gene
expression after Oct4 silencing and TF binding in mouse
ESCs (<9% overlap) [20]. Genes that show altered gene
expression but no binding site may be regulated by an
inter-dependent network, where loss of expression of one
factor ultimately leads to the suppression of the others
[16]. Additionally, the RNAi targets relate also to down-
stream effects independent of direct protein-DNA binding
of OCT4 which explains the higher number of RNAi tar-
gets (1,104) compared to ChIP-on-chip targets (308).
Alternatively, TF binding may not be limited to the pro-
moter region interrogated by the tiling arrays. On the
other hand, genes having OCT4 binding sites but do not
show altered expression may be regulated by a more com-
plex system of OCT4 co-factors, epigenetic modifications
like de-/methylation of CpG di-nucleotides within pro-
moter regions or simply at later time points during differ-
entiation into one of the three germ layers or into the
trophectoderm lineage. Hence, independent validations
such as the accessed knockdown experiment are critical in
distinguishing functional from non-functional circuitries
[20].

Although the presented network is rather conservative and
potentially neglects genes regulated by OCT4 together
with unknown interaction partners, it represents the func-
tional regulatory circuitry of direct OCT4 target genes in
hESCs as deduced by the available data. It is a well-known
problem of both ChIP-on-chip experiments and motif
prediction analyses to generate a large number of false
positives. Additionally, RNAi experiments do not only
reveal direct but - to a much higher extent — indirect tar-
gets. Thus, having a rather conservative process for identi-
fying OCT4 target genes has the benefit of narrowing
down this large number of false positives. An indicator of
this is the fact that the integration of the different experi-

http://www.biomedcentral.com/1471-2164/10/314

ments purifies and enriches functional content of the
resulting targets in all investigated functional classes by
factors of 1.5 - 4 as is shown in Figure 4.

Recent studies report OCT4/Oct4 expression in the adult,
most frequently in the bone marrow of both humans and
mice, particularly in hematopoietic and mesenchymal
stem cells as well as in various sub-populations of
multipotent progenitors [37]. It has been suggested that
Oct4 may not only be crucial for the maintenance of
pluripotency in embryonic cells but may also play an
important role for the self-renewal of somatic stem cells
[37]. However, Lengner et al. [37] have shown that Oct4,
even if expressed at low levels in somatic cells, is dispen-
sable for the self-renewal of somatic stem cells, and for the
regeneration of tissue in the adult, and is only rarely acti-
vated in somatic tumors. Based on these observations, we
do not consider OCT4/Oct4 to be a key player for tran-
scriptional regulation of pluripotency in either mesenchy-
mal stem cells and other adult stem cells. The identified
core regulatory network of OCT4 was created in the con-
text of human embryonic stem cells for maintaining
pluripotency and preventing differentiation along the tro-
phoblast lineage.

Our de novo motif discovery approach did not only reveal
known OCT4 binding sites but also motifs similar to
binding sites recognized by regulators that are known to
interact with components of the OCT4 regulatory network
as well as genes that may have important functions as
downstream effectors of OCT4 but not yet described.
Besides the co-factors presented above, a predominantly
occurring motif is similar to a binding site recognized by
Sp1 (Specificity protein 1), a transcription regulator that
plays a role in TGF beta induced cell migration and mes-
enchymal transition, regulates angiogenesis, heart con-
traction, and aberrant expression is associated with several
types of cancer. Yang et al. proposed that Sp1 or Sp3 play
a critical role in controlling the transcriptional activity of
OCT4 by direct binding and an overexpression study
showed that Spl positively regulates OCT4 promoter
activity [38]. The Sp1 motif was identified within the pro-
moter regions of OCT4 and of other OCT4 target genes
(see Figure 6). Sp1 is closely connected to the network as
it binds to FGF2, C-MYC, HOXB7, Spp1 (the latter two
genes are upregulated by Sp1), and interacts with Egr-1.
Moreover, Spl interacts with CP2A, a TF which in turn
regulates PAX6 [19] (not indicated in the extended net-
work), a transcription factor which is a member of the dif-
ferentiation related OCT4 target genes. From the mouse
model it is known that Sp1 binds to Foxal and Cdx2. Egr-
1 (Early growth response 1) is a transcription factor that
acts in apoptosis, angiogenesis, cell differentiation, regu-
lates TNF production, cell proliferation and adhesion and
aberrant expression of the gene is associated with several
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types of cancer. HOXB7 (Homeo box B7) is a transcrip-
tional activator and functions in DNA double strand
break repair by nonhomologous end joining. Both, Egr-1
and HOXB7 bind to the promoter region of FGF2 and a
motif similar to the binding site of Egr-1 was obtained
(see Figure 6).

As another example, the de novo motif discovery identified
a binding site similar to a motif recognized by STAT1 (Sig-
nal transducer and activator of transcription 1), a gene
that mediates DNA replication, cell proliferation, apopto-
sis, and cell cycle regulation. It is known that STAT1 binds
to C-MYC and is upregulated by Sp1. Several of the OCT4
target genes show a putative STAT1 binding site within
their promoter region (see Figure 6).

HNF4A (Hepatocyte nuclear factor 4 alpha) has a known
binding site similar to one of the obtained motifs. It is a
transcription factor that inhibits GH1 induced STAT5 and
JAK2 phosphorylation and functions in hepatocyte differ-
entiation and blood coagulation. HNF4A expression is
upregulated by Sp1 and is a target of GATAG, a transcrip-
tion factor which is a member of the differentiation
related OCT4 target genes. RAB5A and TGIF2 show a puta-
tive HNF4A binding site within their promoter region (see
Figure 6).

PAX4 (Paired box gene 4) is a putative RNA polymerase I1
transcription factor that acts in positive regulation of cell
proliferation and motifs similar to the known binding site
for PAX4 were obtained. PAX4 itself has a binding site for
HNF4A which is a downstream target of GATAG [19].
There are putative PAX4 binding sites within the promoter
regions of several OCT4 target genes (see Figure 6).

The computed OCT4 core regulatory network can be uti-
lized in multiple ways. Well-characterized OCT4 target
genes will help in extending the OCT4 network by sug-
gesting further experimental work. The relatively high pro-
portion of TFs in the OCT4 target set can be used for
further inhibition studies or protein-DNA binding experi-
ments. This leads to an extended radius of the network.
For example, Additional file 4 shows that OCT4 has a pos-
itive regulatory effect on FGF2. FGF2 re-stimulation exper-
iments performed by Greber et al. in hESCs revealed
BMP4 as a downstream target of FGF2 signaling [27].
BMP4 expression was activated upon OCT4 knockdown
in the original experiment as well, so both experiments
consistently confirm that BMP4 is a negatively regulated
downtream target of OCT4. Such an extended network
and even the constructed core regulatory network will ulti-
mately help in the study of stemness and early embryo-
genesis. Figure 4 shows functional enrichment for
"embryonic development" that is increasing from 8%-
30% with the integrative approach.
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Finally, the identification of targets and co-factors of
OCT4 might help in the design of iPS reprogramming pro-
tocols that use different TFs in order to generate and mon-
itor cell status. C-MYC has already been successfully
applied within a set of TFs for generating iPS cells through
reprogramming. Figure 6 gives a guided hint for testing a
variety of these co-factors.

Conclusion

The OCT4 dependent functional transcriptional regula-
tory network important in the analysis of human stem cell
characteristics and cellular differentiation was recon-
structed using an integrative approach. Functional infor-
mation is largely enriched using an overlay of different
experimental results. The de novo motif discovery points
out several well known regulators closely connected to the
network as well as less described potential downstream
regulators of pluripotency and differentiation.

Methods

ChIP-on-chip data re-analysis

For identifying DNA regions occupied by OCT4, SOX2
and NANOG, Boyer et al. [12] performed two ChIP-on-
chip experiments for each of the three transcription fac-
tors. They utilized a set of ten promoter arrays containing
in total 399,309 60 mer oligonucleotides, and the design
of the oligonucleotides was based on the NCBI build 35
of the human genome. As an update, the oligonucleotides
were mapped [39] to the NCBI build 36.1 (hgl8, Mar.
2006) and the updated allocation of 373,181 uniquely
matched oligonucleotides to their genomic positions
served as reference for the subsequent peak-finding. For
all uniquely mapped oligonucleotides, the available raw
expression data was background corrected, array-wise
quantile normalized and replicates were normalized
between arrays by applying Bioconductor's limma pack-
age [40]. For each oligonucleotide, a fold-enrichment was
calculated by dividing the averaged signal intensities of
the immunoprecipitated replicates by the averaged signal
intensities of the whole-genome replicates. A histogram of
the ratios from the OCT4 replicates is given in Figure 1.
Potential binding events were defined as A) one oligonu-
cleotide having a ratio within the upper 0.001 quantile of
the total ratio distribution or B) two neighbouring oligo-
nucleotides within a window of 1 kb where one oligonu-
cleotide has a ratio within the upper 0.01 quantile and the
other one has a ratio within the upper 0.05 quantile of the
total ratio distribution. These two filters were defined by
considering possible binding events between sonicated
DNA fragments of an estimated averaged length of 550 bp
and the oligonucleotides on the arrays with respect to the
density of the newly assigned oligonucleotides relative to
the genomic promoter regions. All identified peaks were
connected to the closest TSS, if one exists within a distance
of 10 kb. Genomic positions of TSSs were based on
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Ensembl [41] and were downloaded via Biomart [42]. By
this procedure, 308 genes of the original 623 identified
OCT4 targets could be identified.

Motif mapping of promoter sequences

The promoter regions of the combined targets taken from
the validated ChIP-on-chip and from the RNAi experi-
ments were tested for the occurrence of the octamer and
the SOX-OCT joint motifs. Position-specific count matri-
ces were retrieved from TRANSFAC database v12.1 [19]
for the octamer (TRANSFAC id V$OCT_Q6) and the SOX-
OCT joined motifs (TRANSFAC ids V$OCT4_02 and
V$OCT4_01). These were converted to regularized and
scaled position-specific scoring matrices (PSSMs) using an
in-house implementation of the method of Rahmann et
al. [43]. For each of the genes, -8 Kb to +2 Kb of the TSS
were retrieved from the ENSEMBL (version 47) database
and scanned with the PSSMs for the maximum scoring hit
on each sequence. To focus on the upstream promoter
region and have motifs of reasonable quality, only the
subset of maximum scoring hits which lay in the upstream
region of -8 Kb and scored above 70% of the maximum
attainable score for a given PSSM were recorded.

Enrichment analysis

Enrichment analysis was conducted with the DAVID plat-
form [25]. Official gene symbols were used as input, the
Homo Sapiens species was selected as background and
DAVID was executed with default parameter settings.

De novo motif discovery

In order to test for further regulatory co-factors of OCT4,
we performed a de novo motif discovery analysis based on
specific promoter regions of the 308 direct OCT4 target
genes derived from the re-analysis of the ChIP-on-Chip
data. By taking the genomic positions of the identified
peaks as a reference (that is the position of an oligonucle-
otide or the centre of oligonucleotides detecting a peak,
respectively), we assembled the sub-sequences of length
200 bp around the peaks (bandwidth of length 100 bp, as
an example see arrows in Figure 3). The selected sub-
sequences were repeat masked [30] and used as input for
the TAMO package, a de novo motif discovery framework
[44] that incorporates AlignACE [45], MDScan [46] and
MEME [47]. The motif discovery was performed following
the given sample code except the clustering module. Addi-
tionally, we used the Gibbs Motif Sampler [48] imple-
mentation of the CisGenome [49] framework with default
parameter settings. All obtained motifs were compared to
each other by applying the minaligndiff function of the
TAMO distribution and when motifs occur with an align-
ment difference < 0.2, only the motif with the highest Bit
score is further considered. Motifs with Bit score < 15 were
discarded. Secondly, we computed entropy of the di-mer
distribution of the motif sequence as a measure for the
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motif complexity. Motifs with complexity score < 0.6 were
discarded. The remaining 12 unique motifs were sorted by
their complexity value and are shown in Figure 6.

Database matching of discovered motifs

The discovered motifs were compared against two data-
bases of known motifs using the STAMP tool [32]. Motifs
were compared against the TRANSFAC (v11.3) [19] and
JASPAR (v3) [31] databases using the recommended
default parameter settings.

Abbreviations

iPS: induced pluripotent stem cells; TF: transcription fac-
tor; ESCs: embryonic stem cells; TSSs: transcription start
sites; TFBS: transcription factor binding sites; PSSMs: posi-
tion-specific scoring matrices.
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Additional material

Additional file 1

Summary of the results of the individual studies. The table includes all
genes identified by the OCT4, SOX2, and NANOG ChIP-on-chip exper-
iments [12] and by the RNAi mediated silencing of OCT4 function with
subsequent microarray analysis [16]. The yellow column shows the influ-
ence of OCT4 to the transcription rate of its target genes (0 = no influ-
ence, 1 = OCT4 enhances transcription, -1 = OCT4 suppresses
transcription). The green columns indicate OCT4 binding to its target
genes as published by Boyer et al. and as identified via the presented data
validation; the numbers indicate the distance between the TSS of the
appropriate gene and the closest peak. The red and blue columns are con-
structed analogue but show the results for the SOX2 and NANOG exper-
iments. The light brown columns represent the results of the octamer and
SOX-OCT joint motif mapping (0 = promoter region contains the motif,
1 = promoter region does not contain the motif, n.a. = promoter region
was not tested; we tested only the promoter regions of OCT4 target genes
as identified by the re-analyzed ChIP-on-chip and by the RNAi experi-
ments).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-314-S1.xls]
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Additional file 2

Functional Annotation and Enrichment Analysis. The table includes a
list of the 33 OCT4 target genes together with their full gene names, a list
of enriched functional groups and the results of the functional annotation
clustering as received by Dennis et al. [25].

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-314-S2 xls]

Additional file 3

Glossary of target genes. A glossary for the 33 core OCT4 target genes
that summarizes further independent published experimental validations
on the regulatory influence of OCTA4 to its presented target genes.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-314-S3.doc]

Additional file 4

Extended network. An additional level of gene regulation has been added
to the core OCT4 target network (Figure 5) by further literature and data-
base mining. This additional figure shows the core network extended by
known up- and downstream target genes of the respective TFs as given by
TRANSFAC [19] and by another published work [27].

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-314-S4.png]

Additional file 5

CDX2 subnetwork from ConsensusPathDB. The image illustrates the
CDX2 centred sub-network as received from the ConsensusPathDB [28]
and points out several known downstream target genes as well as a physi-
cal interaction between CDX2 and PAXG, another important differentia-
tion associated TF included in the presented set of OCT4 target genes.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-314-S5.png|

Additional file 6

OCT4 network as SBML. The text file contains the core OCT4 network
in SBML format.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-314-S6.txt]

Additional file 7

Discovered motifs as probability matrices. The text file includes the 12
identified motifs as probability matrices as received from the TAMO pack-
age [44].

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-314-S7.txt]

Additional file 8

Motif database matching results- TRANSFAC. The pdf file contains the
results from comparing the 12 discovered motifs to the TRANSFAC data-
base (v11.3, [19]) using the STAMP tool [32].

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-314-88.pdf]

Additional file 9

Motif database matching results- JASPAR. The pdf file contains the
results from comparing the 12 discovered motifs to the JASPAR database
(v3, [31]) using the STAMP tool [32].

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-314-89.pdf]
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