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Abstract
Background: Stathmin (STMN1) protein functions to regulate assembly of the microtubule
cytoskeleton by destabilizing microtubule polymers. Stathmin over-expression has been correlated
with cancer stage progression, while stathmin depletion leads to death of some cancer cell lines in
culture. In contrast, stathmin-null mice are viable with minor axonopathies and loss of innate fear
response. Several stathmin binding partners, in addition to tubulin, have been shown to affect cell
motility in culture. To expand our understanding of stathmin function in normal cells, we compared
gene expression profiles, measured by microarray and qRT-PCR, of mouse embryo fibroblasts
isolated from STMN1+/+ and STMN1-/- mice to determine the transcriptome level changes present
in the genetic knock-out of stathmin.

Results: Microarray analysis of STMN1 loss at a fold change threshold of ≥ 2.0 revealed expression
changes for 437 genes, of which 269 were up-regulated and 168 were down-regulated. Microarray
data and qRT-PCR analysis of mRNA expression demonstrated changes in the message levels for
STMN4, encoding RB3, a protein related to stathmin, and in alterations to many tubulin isotype
mRNAs. KEGG Pathway analysis of the microarray data indicated changes to cell motility-related
genes, and qRT-PCR plates specific for focal adhesion and ECM proteins generally confirmed the
microarray data. Several microtubule assembly regulators and motors were also differentially
regulated in STMN1-/- cells, but these changes should not compensate for loss of stathmin.

Conclusion: Approximately 50% of genes up or down regulated (at a fold change of ≥ 2) in
STMN1-/- mouse embryo fibroblasts function broadly in cell adhesion and motility. These results
support models indicating a role for stathmin in regulating cell locomotion, but also suggest that
this functional activity may involve changes to the cohort of proteins expressed in the cell, rather
than as a direct consequence of stathmin-dependent regulation of the microtubule cytoskeleton.

Background
Stathmin (STMN1) is a ubiquitous microtubule (MT)
destabilizing protein linked to cancer and cell health:

Stathmin is highly over-expressed in leukemias and a
number of other cancers, where its expression level often
correlates with cancer stage progression and prognosis for
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survival [1-3]. Stathmin is the founding member of a fam-
ily of MT destabilizers known as the stathmin family of
proteins, which includes SCG10 (STMN2), SCLIP
(STMN3), and RB3 (STMN4) [4-7], each expressed from
separate genes. Each of the four stathmin family proteins
shares a homologous tubulin binding site that functions
as both a MT destabilizer and tubulin heterodimer seques-
tering protein. Stathmin is expressed in a wide range of tis-
sues and is present as a soluble cytosolic protein [8], while
SCG10 (Superior cervical ganglion-10 protein; [6,7,9],
SCLIP (SCG10 like protein, [5]), and RB3 (with splice var-
iants RB3'/RB3", stathmin-like protein B3; [4,7]) are neu-
ron-specific homologues of stathmin localized to
membranes in developing (SCG10 and SCLIP) and
mature (RB3/RB3'/RB3") nerve cells.

Though it is well established that stathmin regulates MTs,
many have suggested alternative functions for stathmin.
Stathmin has been called a cell survival factor because its
level of overexpression correlates with cancer stage pro-
gression, invasion, and metastasis for many cancer types
(reviewed by [1]). For example, knockdown of stathmin
protein by siRNA [10], shRNA [11-13], or ribozymes [14]
leads to apoptosis of several cancer cell lines in culture.

Stathmin has also been linked to cell motility and metas-
tasis. Overexpression of stathmin stimulates motility of
both GN-11 neurons [15] and HT-1080 fibrosarcoma
cells [16,17]. In fibrosarcoma cells, stathmin activity is
regulated by p27kip1 [16]. Ng and coauthors [18] have also
proposed a role for stathmin in mouse embryonic fibrob-
last (MEF) cell migration, although their results indicate
that stathmin inhibits, rather than promotes, cell migra-
tion. In this study, stathmin activity was regulated by the
transcription factor STAT3 [18]. The ability of stathmin to
positively or negatively regulate motility may be context-
specific, where stathmin promotes motility in 3D matri-
ces, but not in 2D [17].

Although stathmin has a significant function in regulating
the MT cytoskeleton, surprisingly STMN1 knockout
(STMN1-/-) mice develop normally except for some minor
age-onset axonopathies associated with STMN1-/- [19] and
a lack of learned or innate fear response [20]. It is not
known why stathmin is dispensable for normal develop-
ment but required for survival of many cancer cell lines.
For example, it is not known whether compensatory
changes occur in mice lacking STMN1 to permit normal
development.

Here we performed an unbiased screen for transcriptome
level changes associated with genetic knockout of STMN1.
Microarray studies of MEFs, genetically designated
STMN1+/+ or STMN1-/-, were used to compare global tran-
scriptome level changes due to deletion of the STMN1

gene. Examination of genes encoding proteins either
related to stathmin, or regulated by stathmin, revealed dif-
ferential expression of the stathmin family proteins and
tubulin isotypes. Additional classification of differential
regulation was performed using Gene Ontology (GO) and
KEGG pathway analyses, and demonstrated that expres-
sion of genes functioning in cell adhesion and extracellu-
lar matrix make up the majority of up and down regulated
genes, supporting a role for STMN1 in cell motility.

Methods
Isolation of MEFs
C57BL/6 STMN1+/- male and female mice (gift of G.
Shumyatsky, Rutgers University) were mated. 13.5 days to
14.5 days post coitus, pregnant females were sacrificed by
cervical dislocation, and fibroblasts were isolated as
described by Tessarollo [21]. Fibroblast cells from individ-
ual embryos were plated and allowed to grow for 1–3 days
prior to storage of aliquots in liquid nitrogen.

Genotyping of MEFs was performed as described by
Liedtke [19]. Briefly, DNA was isolated from embryonic
tissue using isoamyl alcohol/phenol extraction methods.
Samples were amplified using PCR to identify embryos
with intact STMN1 intron III or the neomycin cassette
used to disrupt the STMN1 gene [22]. The PCR Jump Start®

REDTaq Kit (Sigma-Aldrich) was used for amplification;
each sample contained 1.5 mM MgCl2, deoxynucleotide
triphosphates (200 μM each), primers (0.5 μM each), and
Taq polymerase (0.05 U/μL). For the wild-type amplifica-
tion, 35 temperature cycles were performed (95°C, 35 sec-
onds; 66°C, 45 seconds; 72°C, 45 seconds). The
following primer set was used as a probe for wild-type
alleles: forward sense primer 5'-3' (GAGAATCCATGATT-
GCCAGC), corresponding to a region of intron III deleted
in the mutant allele; and a reverse anti-sense primer 5'-3'
(AGAAACCAGTAGAGGGCATCA) also missing in the
mutant, corresponding to a region of intron III of the
STMN1 gene that yields an amplification product 317 bp
long. A second set of reactions were performed using
mutant-allele specific primers that anneal to the neomy-
cin insert [22]; forward sense primer 5'-3' (CTTGGGT-
GGAGAGGCTATTC) and a reverse anti-sense primer 5'-3'
(AGGTGAGATGACAGGAGATC), corresponding to a
region of the inserted neomycin cassette of the mutant
allele that yields an amplification product 280 bp long.

Cell Culture
All cells were cultured at 37°C in a humidified atmos-
phere of 5% carbon dioxide. Cells were grown in DMEM
(pH 7.4) supplemented with 4.5 g/L D-glucose, L-
glutamine (GIBCO-Invitrogen), 44 mM sodium bicarbo-
nate, 1× antibiotic/antimycotic (Sigma-Aldrich, St. Louis,
MO), 1 mM sodium pyruvate (Sigma-Aldrich), and 10%
fetal bovine serum (FBS) (Invitrogen). Cell cultures were
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passaged at ~80% confluency, about every 3–4 days. Cul-
tures were discarded after passage 7.

RNA Isolation
Total RNA was isolated from cultured MEF cell lines using
TRIzol® Reagent (Invitrogen, Carlsbad, CA) following
manufacturer's instructions, followed by DNase treat-
ment. RNA quality was assessed by A260/A280 ratio
(Nanodrop) and further validated by the Agilent 2100
Bioanalyzer. The same mRNA was used in both microar-
ray and qRT-PCR experiments.

Microarray
STMN+/+ and STMN1-/- mRNA were fluorescently labeled
with either Cy3 or Cy5 using the Agilent Low RNA Input
Fluorescent Linear Amplification Kit (Agilent). Hybrid-
ized two-color samples were prepared using Agilent
Whole Mouse Genome 4 × 44 k Oligo Microarray Kit for-
mat (G4122F) according to Agilent instructions and using
Agilent reagents. Each array includes 43,379 biological
features with a total of 45,018 probes of 60-mer controls
and gene probes. Arrays were run as color-swap duplicates
and scanned with an Agilent Microarray Scanner System,
which generated the TIFF images of low and high intensity
scans utilized by Agilent Feature Extraction Software
(v9.5). Feature Extraction processing of fluorescent data
corrected signals for background noise, foreground inten-
sities, positive and negative spot controls, background
subtraction, and signal normalization. Results were col-
lected into tab delimited text files for each of the four
experimental arrays for analysis with Agilent Technologies
software GeneSpring GX (v10.0.1). Data were processed
in GeneSpring GX (v10.0.1) by first filtering on flags for
features either present or marginal in any 1 of 4 arrays, fol-
lowed by error filtering to a coefficient of variance < 50%,
then statistical analysis using the T-test against zero with a
false discovery rate of < 0.05. The resultant list comprised
7090 genes, 3510 of which were up-regulated and 3580
down-regulated. Further analyses were done using fold
change cut-offs.

qRT-PCR
RNA was used to synthesize cDNA with SuperScript™ III
First-Strand Synthesis System for quantitative RT-PCR
(qRT-PCR; Invitrogen). RNA was isolated from at least
two cell lines from each genotype for cDNA preparation
and qRT-PCR. All stathmin family proteins and isotypes
of mouse α- and β-tubulin were probed using primers
listed in [Additional file 1]. Oligonucleotide probes were
designed using Primer Express® Software (Applied Biosys-
tems, Foster City, CA) [see Additional file 1] and cDNA
sequences from the mouse genome [23]. For each probe,
we used at least three dilutions of cDNA, each dilution run
in triplicate. Commercial 96-well plate arrays for the focal
adhesion and extracellular matrix pathways were also

assayed for each MEF genotype (SABiosciences, Frederick,
MD). Two plates were run for each genotype. Message lev-
els were quantified for each genotype using oligonucle-
otide probes designed to amplify cDNA fragments
containing target gene exons. Results were normalized to
the signal from GAPDH for designed probes, or to the sig-
nal from five internal standards (Gusb, Hprt1, Hsp90ab1,
Gapdh, and Actb) for the SABiosciences arrays.

Amplification was achieved using Power SYBR® Green
PCR Master Mix (Applied Biosystems) and Applied Bio-
systems 7300 Real Time PCR System with SDS v1.4 Soft-
ware. RT-PCR amplicon specificity was checked by
electrophoresis of RT-PCR products on 2% agarose gels
(data not shown). Following manufacturer instructions
(Applied Biosystems), the threshold for determining CT
values was set to Log scale 0.2 and internal normalization
of genotype results to GAPDH was first calculated (i.e., CT
Target mRNA-CT GAPDH mRNA = ΔCT). The CT values for
GAPDH were stable and consistent across genotypes. One
measure of the consistent GAPDH amplification is the
small standard deviations for the GAPDH CT among rep-
licates. The standard deviation for GAPDH was ≤ 0.1 –
0.4% of the mean CT value. ΔCT values were not calculated
for target mRNA samples that exceeded 35 cycles prior to
crossing the threshold. The relative abundance of target
mRNA between genotypes was calculated as 2 raised to
the negative of the difference in ΔCT values

All statistical analyses were done using EXCEL (Microsoft
Corporation 2007). RT-PCR data are presented as fold
changes relative to MEF STMN1+/+ samples. Standard
errors (SE) were computed using ΔCT values transformed
to SE values of fold change using the formula:

Significance was determined by ANOVA of ΔCT values
[24,25]. Amplification efficiency was determined to be
100% for GAPDH for each genotype per manufacturer's
instructions (data not shown), and it was assumed that
efficiency of all target genes was also 100% for our statis-
tical analysis.

Results
Microarray Analysis of Gene Regulation in STMN1-/- MEFs
Changes to stathmin protein levels regulate microtubule
polymer in MEFs [18,26] and cancer cell metastatic poten-
tial and invasiveness [15-18]. To probe whether STMN1
gene knockout resulted in a change to the MEF gene
expression profile, we identified the transcriptome differ-
ences between STMN1+/+ and STMN1-/- MEFs using Agi-
lent 2-color microarrays run in quadruplicate with Cy3/

( ., )(( / / / )i.e CT  target mRNA CT  or  target mRNA2− + + − + − − −Δ Δ AApplied Biosystems).

2− + + − + − − − ±[( / / / )Δ Δ ΔCT  target mRNA CT  or  target mRNA   SE CCT].
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Cy5 dye color-swap. The initial 7090 statistically signifi-
cant probes were further parsed for differential gene
expression fold change of ≥ 1.2 to encompass as many
potentially relevant gene-level alterations as possible. The
inclusive list of genes totaled 5991 probes, of which 3011
were up-regulated and 2980 were down-regulated in
STMN1-/- compared to the STMN1+/+ controls. Of the
5991 probes, 3953 have known functions. Of these, 1997
were up-regulated and 1956 were down-regulated as
shown in the heatmap of Figure 1A. More stringent anal-
ysis was performed on the list of 3953 genes at a fold
change threshold of ≥ 2.0. At this level, comparison of
STMN1+/+ and STMN1-/- cell lines resulted in expression
changes for 437 genes [see Additional file 2], of which 269
were up-regulated and 168 were down-regulated (Figure
1B).

Expression of stathmin family and tubulin isotypes 
measured by microarray
Stathmin is the founding member of a family of proteins,
all of which contain a homologous tubulin binding site
[27,28]. The microarray did not show complete loss of
STMN1 in the STMN-/- MEFs because the probe design for
STMN1 is flawed. The Agilent 60-mer was found to match
both STMN1 on chromosome 4 and a region of chromo-
some 9, a source of immunodominant MHC-associated
peptides (SIMP) [29,30]. However, by both qRT-PCR and
western blotting, STMN1 mRNA and protein are absent in
STMN-/- MEFs [26]. We next looked for changes to stath-
min family mRNAs as a consequence of STMN1 knockout
and found that STMN2 decreased by 2.4 fold and STMN4
increased by 2.3 fold (Table 1). STMN3 was not found to
be differentially regulated on the microarray. Tubulins are

STMN1-/- differentially expressed genes on 2-color microarrays illustrated in heatmapsFigure 1
STMN1-/- differentially expressed genes on 2-color microarrays illustrated in heatmaps. (A) Heatmap showing 
3953 transcripts filtered with a fold change threshold ≥ 1.2, showing 1997 up-regulated and 1956 down-regulated genes rela-
tive to stmn1+/+. (B) 437 transcripts filtered to a fold change level ≥ 2, showing 269 up-regulated and 168 down-regulated 
genes. Numbers 1 – 4 refer to replicates. Color scale bar indicates up-regulation in yellow and down-regulation in blue.
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expressed from 8 α-tubulin genes and 8 β-tubulin genes.
The cohort of tubulin isotypes present can assemble into
MTs with different dynamic properties in vitro [31].
Therefore, we examined whether STMN1 genotype influ-
ences the tubulin isotype expression profile of each cell
line. No significant changes in expression of α-tubulin
isotypes were detected. In contrast, small, but significant
(FDR < 0.05) changes in the expression levels of β-tubulin
isotypes were observed in the microarray (Table 1), with
β-tubulin isotype Classes IIa/b increased 1.4/1.5 fold,
Class-III increased 1.2 fold, Class IVb decreased 1.4 fold,
and Class-V decreased 1.3 fold.

Confirmation of stathmin family and tubulin isotype 
expression by qRT-PCR
Changes to stathmin family mRNA and tubulin isotype
levels were verified by qRT-PCR using designed primers
[see Additional file 1]. For STMN1-/- cells relative to
STMN+/+ cells, upregulation of STMN4 (RB3) was seen by
both microarray and qRT-PCR. In contrast, STMN2
(SCG10) showed down regulation by microarray, but
upregulation by qRT-PCR (Table 1). The reason for the
difference in expression pattern by the two methods is not
known but suggests that changes in STMN2 expression are
either not significant or not consistently altered compared
to the level in WT cells. We also used qRT-PCR to examine
the message levels for stathmin and related proteins in
MEFs heterozygous for stathmin (STMN+/-). The STMN1+/

- cells showed a 1.8 fold increase in STMN2, similar to the
increased expression in STMN-/- MEFs measured by qRT-
PCR. For STMN4, mRNA was increased 3 fold in STMN+/-

MEFs compared to that in wild-type cells, consistent with
the up regulation observed in STMN-/- cells. The STMN3
mRNA was not present at quantifiable levels in RT-PCR
for any of the three genotypes, consistent with the micro-
array for wild-type and knockout genotypes. Similar

changes in stathmin family expression were also observed
in an additional cell line for each genotype. Protein prod-
ucts other than stathmin were undetectable with available
antibodies, suggesting that protein products of STMN2
and STMN4 are present at low levels.

qRT-PCR was also used to confirm expression of tubulin
isotypes for each mouse tubulin isotype. MEFs expressed
five α- and seven β-tubulin isotypes at quantifiable levels
by qRT-PCR (Figure 2). For the α-tubulin isotypes, STMN-

/- MEFs expressed slightly higher levels of Tuba1c and
Tuba8 mRNAs compared to wild-type MEFs (Figure 2A)
[see Additional file 3 for isotype nomenclature]. By micro-
array, the probes for Tuba1c and Tuba8 did not pass the
stringency filters applied to the raw data set and were not
flagged as significantly changed in expression. Examina-
tion of the unfiltered microarray data showed opposite
regulation to that measured by RT-PCR for Tuba1c and
Tuba8. The discrepancies between RT-PCR and microarray
may reflect difficulty detecting small changes in expres-
sion level. As shown in Table 1, microarray and RT-PCR
detected similar changes in expression of five β tubulins
isotypes. STMN-/- MEFs showed higher expression of iso-
type classes IIa, IIb and III, while isotype classes IVb and V
were reduced in STMN1-/- MEFs relative to wild-type cells
(Figure 2B, Table 1). By RT-PCR, we also detected upregu-
lation of β-tubulin class I and down regulation of class IVa
in STMN-/- MEFs compared to wild-type cells (Figure 2B).
The microarray data for class I and IVa β-tubulins did not
pass the applied data filters. Although they did not pass
the data filters, class IVa tubulin showed reduced expres-
sion by both RT-PCR and microarray, but changes to class
I tubulin were in opposite directions by microarray and
RT-PCR. Therefore, with a few exceptions, the data from
RT-PCR for tubulin isotypes generally confirmed the
microarray results. Microarray results for STMN 3 and
STMN4 were also confirmed by qRT-PCR, and in general,
both STMN family and tubulin isotype expression con-
firmed the microarray results (Table 1). Correlation
between microarray and qRT-PCR can depend on a large
number of factors [32]. Qualitatively, the correlations we
found between microarray and qRT-PCR are consistent
with those described by others [32].

In addition, we also examined tubulin isotype expression
in the heterozygous STMN1+/- cell line and observed
changes in β-tubulin mRNA levels similar to that meas-
ured in knockout MEFs. We also found that the STMN1+/-

cell lines expressed lower mRNA levels of most α-isotypes,
but showed higher expression of Tuba4a mRNA com-
pared to wild-type cells.

Tubulin mRNA levels do not always correlate with meas-
ured protein levels [33,34]. Therefore, we used Western
blots to estimate relative protein levels for those isotypes

Table 1: Microarray and qRT-PCR comparison

Microarray Results qRT-PCR Results

MEF STMN1-/-

STMN2 -2.44 1.27
STMN3 N/A N/A
STMN4 2.26 8.06 *

Tubb2a/Class IIa 1.40 1.80 *
Tubb2b/Class IIb 1.54 2.64 *
Tubb2c/Class IVb -1.35 -0.57 *
Tubb3/Class III 1.22 1.78 *
Tubb6/Class V -1.31 -0.57 *

Magnitude and direction of gene expression changes found using 
microarray analysis compared to qRT-PCR with designed primers. 
Only those tubulin isotypes whose expression was significantly 
changed, as measured by microarray with FDR < 0.05, are shown 
compared to qRT-PCR (*, p-value < 0.005). Data are given as fold 
change in STMN-/- MEFs relative to STMN+/+ MEF.
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where specific antibodies are available [see Additional file
3]. The anti-α tubulin antibody DM1A recognizes the C-
terminal amino acid sequence found in Tuba1a and
Tuba1b. Immunoblots probed with DM1A indicated that
the combined protein level of Tuba1a and Tuba1b was
reduced in heterozygous cells, which is consistent with the
decreased mRNA level for each isotype relative to wild-
type cells. The combined protein level of Tuba1a and b
was higher in STMN1-/- cells compared to wild-type cells,
while the corresponding mRNA levels were slightly
reduced in the STMN1-/- cells (Figure 2C). The protein lev-
els for β-tubulin isotype classes II and III decreased with
loss of STMN1, while class IV β-tubulin increased in the
STMN1-/- line. For each MEF cell line, the protein levels of
β-tubulin isotypes were inversely related to their corre-
sponding mRNA level. For example, in STMN1-/- cells,
both β-tubulin classes II and III showed increased mRNA

levels and decreased protein levels relative to wild-type
cells. For class IV β-tubulins, mRNAs decreased while pro-
tein level increased in STMN1-/- cells relative to wild-type
cells.

STMN1 genotype and expression of MT regulators and 
motors
The microarray data were then examined for expression of
MT regulators and motor proteins, the kinesin family and
dyneins, which transport cargo along MTs. As shown in
Table 2, we found that STMN1 knockout resulted in small
fold-change differences to a number of MT stabilizing and
destabilizing proteins, without a clear pattern of up-regu-
lation of expression for proteins that might compensate
for stathmin or for down-regulation of proteins that nor-
mally work in opposition to stathmin. Most notably, we
did not see a change in the expression of MAP4, a protein

Tubulin isotypes are differentially regulated with STMN1 knock-outFigure 2
Tubulin isotypes are differentially regulated with STMN1 knock-out. Tubulin isotypes for α- and β-tubulin mRNAs 
were measured by qRT-PCR (Methods). (A) α-tubulins and (B) β-tubulins. (C) Protein levels were measure by immunoblots of 
whole cell lysates from each genotype, loading control is GAPDH.
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Table 2: MT Regulators and Associated Protein Profiles

Functional Class Common Name Gene Name Fold Change

MT Polymerization Regulators

EB2 mapre2 1.20
MAP1A mtap1 1.47
MAP1B mtap1b 1.27
MAP2 mtap2 -1.63

Stabilizers/Assembly Promoters MAP4 mtap4 1.24
CLASP1 Clasp1 -1.19

MACF2/BPAG1 Dst -1.29
STOP mtap6 -1.16
YB-1 Ybx1 -1.24
Dia2 Diap2 -1.19

RHAMM Hmmr -1.57
Mitosis-specific stabilizers TACC3 Tacc3 -1.17

TPX2 Tpx2 -1.29

SCG10 stmn2 -2.44
Destabilizers/Disassembly Promoters RB3 stmn4 2.26

Kif2A Kif2a -1.22
Kif18A Kif18a -1.62

MT Severing Proteins

Katanin p60 katnal2 -1.37
Fidgetin Fign -1.92

MT Nucleators

gamma-tubulin 2 Tubg2 1.27
GCP3 Tubgcp3 -1.18

MT-based Motors

Kif11 Kif11 -1.24
Kif15 Kif15 -1.45
Kif18a Kif18a -1.62
Kif1a Kif1a 1.77
Kif20a Kif20a -1.15
Kif21a Kif21a -1.74

Kinesins Kif21b Kif21b 4.60
Kif22 Kif22 -1.19
Kif26a Kif26a 2.32
Kif26b Kif26b 3.24
Kif2a Kif2a -1.22
Kif4 Kif4 -1.27
Kif9 Kif9 1.15

dynein axonemal LC4 Dnalc4 1.26
cytoplasmic dynein 1 IC1 Dync1i1 -1.29

Dyneins cytoplasmic dynein 1 LIC1 Dync1li1 -1.18
cytoplasmic dynein 1 LIC2 Dync1li2 1.20

dynein LC8-type2 Dynll2 -1.18

Magnitude and direction of gene expression changes found using microarray analysis. Gene names are in M. musculus format, fold changes are from 
microarray data.
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previously shown to function antagonistically to stathmin
[35-37]. In general, expression of genes for other proteins
that destabilize MTs, including MT severing proteins, were
down-regulated in STMN-/- MEFs relative to STMN1+/+

cells, making it unlikely that these MT destabilizers substi-
tute for STMN1. Surprisingly, the largest group of genes
whose expression in STMN1-/- MEFs differed from that in
WT MEFs was the group encoding motor proteins. We
found differential expression of 13 kinesin genes and 5
genes encoding dynein light or intermediate chains. Two
kinesins, Kif 21b and Kif26b showed > 3 fold up-regula-
tion in STMN1-/- MEFs. These two kinesins have not been
well studied and it is unclear what the consequences of
their up regulation may be.

STMN1 loss impact categorized by KEGG Pathways and 
Gene Ontology
The analyses described above involved directed searches
for genes encoding proteins functioning as part of the MT
cytoskeleton. To expand our analysis and take advantage
of the non-biased nature of microarrays, we performed
pathway analysis on those genes showing a ≥ 2.0 fold
change using the online resource KEGG Pathways (KEGG,
Kyoto Encyclopedia of Genes & Genomes online resource,
http://www.genome.ad.jp/kegg/pathway.html)[38] for
Mus musculus. Top pathway hits include Focal Adhesion
(18 genes), Extra-Cellular Matrix (ECM) Receptor Interac-
tions (15 genes), Cell Communication (15 genes), and
Regulation of Actin Cytoskeleton (12 genes) [see Addi-
tional file 4].

An alternate tool to KEGG Pathway analysis is the newly
developed KEGG Spider http://mips.gsf.de/proj/keggspi
der/[39]. KEGG Spider was used to better characterize the
interconnectedness of the differentially expressed genes.
The output from KEGG Spider includes enriched Gene
Ontology (GO) categories based on an interconnection
network algorithm that also provides p-value significance
measures. GO characterization of 437 genes with fold
changes ≥ 2.0 was performed within KEGG Spider with a
p-value cutoff of 0.5, yielding 27 individual categories [see
Additional file 5]. The most highly represented GO terms
included cell adhesion and extracellular matrix, and the
sum of all cell motility-related genes comprised about
50% of all GO terms represented (Figure 3).

Given the changes to genes implicated in cell adhesion
and cell motility, we used a pathway specific (Mouse
Extracellular Matrix and Adhesion Molecules PCR Array)
RT-PCR kit to further confirm the microarray results. Rel-
ative transcript levels in STMN1+/+ and STMN1-/- MEFs
were measured for 84 focal adhesion and ECM mRNAs.
Data that met a fold change threshold of ≥ 1.2 and p-value
of < 0.5 in the PCR array were considered significant for
comparison to microarray data (Figure 4). There were 15

differentially regulated genes that matched in the direc-
tion (up or down) of fold change, while 6 genes were
oppositely regulated compared to the microarray (Table
3). The majority (71%) of mRNAs for cell adhesion and
ECM were up or down regulated in the same direction (up
or down) for both microarray and qRT-PCR, providing
general support for the microarray results. The most
extreme differentially expressed entities in STMN1-/- com-
pared to STMN1+/+ measured by the qRT-PCR array were
catenin β 1 (Ctnnb1) which was down-regulated 4.6 fold
in support of enhanced migration, and P-Selectin (Selp)
which was up-regulated by 7.3 fold.

Discussion
Stathmin is an integral protein involved in control of MT
polymer level during interphase of the cell cycle
[26,37,40]. Many cancers express high levels of stathmin
(e.g. [1]) and increased stathmin level is correlated with
reduced patient survival [2,3,10,41,42]. Cancer cells over-
expressing stathmin protein display invasive and meta-
static behaviors [17], and alternative stathmin binding
partners have recently been revealed [16,18]. These roles
for stathmin in regulation of the MT cytoskeleton and cell
motility, and stathmin's as yet undefined role(s) in can-
cer, led us to use microarray technologies as an unbiased
screen for transcriptome level changes due to genetic
knockout of the STMN1 gene to provide clues to stathmin
function beyond the MT cytoskeleton.

Loss of STMN1 is Correlated with Expression Changes to 
Genes Encoding Proteins Functioning in Cell Motility 
Pathways
Several recent studies have indicated a role for stathmin in
regulation of cell motility [15-18]. Here, we show that
genetic knockout of STMN1 has transcriptome level
impact on genes broadly classified in cell motility path-
ways, including integrins, ECM components, and cell
adhesion (Figure 3), which comprised 50% of all GO cat-
egories derived from our microarray data. Additionally,
qRT-PCR using a pathway specific array gave strong sup-
porting evidence of cell adhesion and ECM protein tran-
script changes as a result of STMN1 loss (Table 3). Of the
15 differentially regulated genes that match results from
the 4 microarray replicates, 4 integrins are represented,
thus linking changes in STMN1 expression to change in
focal adhesion proteins that also link to the actin cytoskel-
eton. Although we cannot predict whether the measured
changes in gene expression would promote or inhibit cell
migration, our data point to a role for stathmin in regulat-
ing the expression level of a wide range of proteins
required for cell adhesion and locomotion. These data
indicate that STMN1 knockout has consequences beyond
simply regulating assembly of the MT cytoskeleton by reg-
ulating the expression level of a cohort of proteins
required for cell motility. Whether these expression
Page 8 of 12
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changes are a downstream consequence of altered MT
assembly dynamics is not known.

Loss of STMN1 impacts the MT system
Cells differing in STMN1 genotype expressed different
mRNA levels for the stathmin related protein STMN4
(RB3), with STMN-/- MEFs showing upregulation of
STMN4, by either microarray or RT-PCR analysis. We can-
not detect STMN4 expression in MEFs with antibodies
currently available, indicating that STMN4 protein is
likely present at a low level in these cells. We note that the
expression of other MT destabilizers are reduced in
STMN1-/- MEFs, making it unlikely that cells compensate
for loss of STMN1 through expression of STMN4 or other
MT destabilizers (Table 2).

Several previous reports have also noted that stathmin
family proteins are upregulated in STMN1 knockout mice.

Liedtke et al. [19] demonstrated that STMN3 expression is
higher in the brains of aged knock-out mice and Yoshie et
al. [43] showed increased expression of STMN3 in the
peri-implantation uteri of knockout mice. It is possible
that STMN3 may compensate for loss of STMN1 in these
tissues. We did not detect changes in STMN3 expression in
STMN1-/- MEFs, either by microarray or qRT-PCR, indicat-
ing that STMN3 does not compensate for STMN1 in these
cells.

In addition to changing expression levels of STMN4,
STMN1-/- MEFs also expressed different levels of tubulin
isotypes compared to wild-type cells (Figure 2). Tubulin
isotype mRNA levels do not necessarily correspond to
protein levels [33,34], as we also found in MEFs. For
example, STMN1-/- MEFs expressed higher levels of β-
tubulin class III mRNA but lower levels of the correspond-
ing protein (Figure 2). Alterations to β-tubulin protein

GO terms of microarray genes differentially regulated by ≥ 2-fold with p-values < 0.5 using KEGG SpiderFigure 3
GO terms of microarray genes differentially regulated by ≥ 2-fold with p-values < 0.5 using KEGG Spider. 
Expression data are from microarray analysis of transcripts showing ≥ 2-fold expression change with p-values < 0.5 and 
grouped into GO terms using KEGG Spider. The pie chart illustrates the ECM-related proteins in shades of blue, adhesion-
related proteins in shades of red, signaling-factors in shades of green, and others in shades of gray. 50% of all GO terms identi-
fied can be broadly grouped into cell motility-related genes. For a list of differentially expressed genes and corresponding GO 
Terms, see [Additional file 5].
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isotype ratio, specifically the levels of classes II, III, and IV
proteins, can impact rates of MT growth and shortening in
vitro [31,44] although this is not always observed in cells
[45]. Changes to β-tubulin isotype protein expression
have also been linked to paclitaxel resistance in cancers
[45,46] via increased MT dynamic instability. In MEFs, the
amount of β-tubulin class II and III proteins fell dramati-
cally with loss of STMN1 while class IV protein increased.
Class II and IV form more stable MTs, while class III forms
more dynamic MTs in vitro [31], and therefore, MEFs do
not display a clear pattern of tubulin isotype up or down
regulation to compensate for loss of stathmin.

Conclusion
Our microarray and qRT-PCR results showed that deletion
of both copies of the STMN1 gene resulted in changes to
the expression level of many genes, including a large
cohort of genes related to cell adhesion and motility. It is
possible that stathmin depletion has additional, or differ-
ent, consequences in those cells where it is expressed at
higher levels than that in embryonic fibroblasts. Overall,
our data support a role for STMN1 in cell migration and
cross-talk between the MT and actin components of the
cytoskeleton [47], as suggested by Baldassarre et al. [16]
and Belletti et al. [17].
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Additional file 1
Primers designed for stathmin family and tubulin isotype qRT-PCR. 
All primers were designed as described in Methods. Bold nucleotides rep-
resent exon junctions in mRNAs.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-343-S1.pdf]

Expression changes in STMN-/- MEFs for genes encoding focal adhesion and ECM related pathways measured by qRT-PCRFigure 4
Expression changes in STMN-/- MEFs for genes encod-
ing focal adhesion and ECM related pathways meas-
ured by qRT-PCR. The fold change threshold of mRNAs 
representing focal adhesion & ECM related genes in STMN-/- 

versus STMN1+/+ was set to ≥1.2 (vertical pink lines) with p-
value of 0.5 (horizontal blue line). All genes falling into either 
the upper left (significantly down regulated) or upper right 
(significantly up regulated) quadrants were used for compari-
son to microarray data.

Table 3: Comparison of microarray and qRT-PCR 
measurements for genes encoding focal adhesion and ECM 
components

Symbol Microarray RT-PCR Array

Ctnnb1 -0.90 -4.59
Itgb2 -1.10 -4.32

Spock1 -0.89 -3.61
Adamts1 -0.47 -3.21
Mmp10 -1.27 -2.80

Itgav -1.33 -1.85
Entpd1 -1.45 -1.77
Itga3 -2.05 -1.47
Itgb4 -1.69 -1.20

Ctnna1 1.96 1.78
Mmp11 1.95 2.04
Col6a1 1.92 2.21

Adamts2 3.34 2.67
Cdh3 1.62 4.34
Selp 1.65 7.29

Thbs1 1.26 -2.05
Postn 3.61 -1.43

Mmp14 -0.66 1.56
Sgce -0.92 1.80
Cdh4 -1.36 2.42

Adamts5 -1.33 4.61

The qRT-PCR measurements were made from a commercial 96-well 
plate format. Data for qRT-PCR is shown as the mean of duplicate 
assays. The top 15 entries show mRNAs with matching directionality 
of expression fold change between RT-PCR and microarray. The last 
6 entries list MRNAs in which expression fold change measured by 
RT-PCR is in the opposite direction of the microarray data.
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Additional file 2
Genes differentially expressed in STMN1-/- MEFs compared to 
STMN1+/+ MEFs. Differentially expressed genes listed with accession 
numbers, gene symbols, and average fold change over quadruplicate 
microarrays with color-swap.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-343-S2.txt]

Additional file 3
Tubulin isotype mouse versus human nomenclature and antibody spe-
cificities. Tubulin isotypes for α- and β-tubulins are listed with accession 
numbers, current gene name, old gene name, new classification scheme 
(Group for α-tubulin, Class for β-tubulins), C-terminal sequences of 
each, and antibodies that recognize those sequences if known.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-343-S3.xls]

Additional file 4
KEGG Pathways represented by genes in Additional Table 1. Data 
entered into the KEGG Pathways website http://www.genome.ad.jp/kegg/
pathway.html yielded a number of pathway hits. Shown here are the top 
4 pathways and the genes represented in each.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-343-S4.pdf]

Additional file 5
GO Terms represented by genes in Additional file 2. Data entered into 
KEGG Spider http://mips.gsf.de/proj/keggspider/ used to generate the pie 
chart in Figure 3.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-343-S5.xls]
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