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Abstract

Background: Custom solid phase oligonucleotide synthesis is an important foundation supporting
nearly every aspect of current genomics. In spite of the demand for oligonucleotide primers, their
synthesis remains relatively expensive, time consuming and in many circumstances a wasteful
process. In this methodology, described as polymerase mediated oligonucleotide synthesis (PMOS),
a DNA polymerase is used to increase the hybridization affinity of one oligonucleotide by using
another as a template for DNA synthesis. This self-assembly process provides an opportunity to
instantly generate a very large number of useful gene-specific primers from a small library of simple
precursors. PMOS can be used to generate primers directly in the end-users laboratory within the
context of any DNA polymerase chemistry such as in PCR or sequencing reactions

Results: To demonstrate the utility of PMOS, a universal 768-member oligonucleotide library
(UniSeq) was designed, fabricated and its performance optimized and evaluated in a range of PCR
and DNA sequencing reactions. This methodology used to derive specific | | -mers, performed well
in each of these activities and produced the desired amplification or sequencing analysis with results
comparable to primers made by time consuming and expensive custom synthesis.

Conclusion: On the basis of these experiments, we believe this novel system would be broadly
applicable and could in many circumstances replace the need for conventional oligonucleotide
synthesis.

Background relatively inefficient, expensive and wasteful process,
In the last twenty years there has been an explosion in the =~ where the scale of synthesis may be many thousands of
demand for custom oligonucleotide synthesis to support  times the minute quantities required for a single PCR or
a vast array of genomics applications. Despite improve-  sequencing reaction. Cost considerations have led to most
ments and automation in standard solid phase phospho-  oligonucleotides being synthesized at dedicated off-site
ramidite chemistry, oligonucleotide synthesis remains a  facilities or large core facilities. The extra transportation
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time has hindered the development of applications
requiring rapid turn around times.

These undesirable aspects of custom oligonucleotide syn-
thesis, can be avoided by employing a pre-synthesized
shortmer library in which each oligonucleotide is imme-
diately available with little waste as only the primer
needed is used[1,2]. Existing approaches, however, have
proven of little utility as the primers from shortmer librar-
ies are compromised by the necessity of constraining the
library size to a manageable level. For example, while
complete libraries of 5-mers and 6-mers (containing 1024
and 4096 oligonucleotides respectively), can be produced
and used without difficulty, they lack the specificity and
hybridization stability to work reliably as DNA polymer-
ase primers[1]. Since each additional base increases the
library size four fold, the shortest reliable primer length
(10 or 11 bases) requires impossibly large libraries of 1 to
2 million primers.

In a compromise, partial libraries consisting of primers of
8 or 9 base length, have been designed for application in
DNA sequencing [2-4]. These libraries have achieved little
practical utility largely due to their poor priming effi-
ciency on DNA templates containing significant second-
ary structure at the low hybridization temperatures
required to anneal shortmers|1,5].

A number of refinements to this approach have attempted
to overcome this deficiency by combining multiple prim-
ers to fabricate longer oligonucleotides with a defined
sequence. In one method strings of two, three or more
hexamers are assembled and ligated side by side on tem-
plate DNA to form a primer[3,5-7]. More recently this has
been accomplished with chemically ligated octamers [8].
Alternatively, unligated strings of 23 hexamers hybridize
side by side to form a modular sequencing primer stabi-
lized by base stacking interactions alone [9-13]. In
another variation, the selected hexamers are ligated into
defined strings by complimentary hexamers that overlap
the junction in the opposite strand of a double helix [14].
While these developments of the shortmer strategy are
appealing, their utility remains limited by poor hybridiza-
tion and ligation efficiency, particularly on highly struc-
tured DNA templates that exist at the low temperatures
required for hybridization and ligation of short modules

[5].

In the methodology described here, we have developed an
efficient composite primer strategy that uses DNA
polymerase rather than DNA ligase to increase the hybrid-
ization affinity of library oligonucleotides. The priming
specificity encoded by the unique pentamer sequence in
each library member is more than doubled in a combina-
torial process that uses one oligonucleotide as a template
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for polymerase extension. After careful consideration and
optimization of this concept, a library consisting of 768
oligonucleotides was produced that can generate over
131,000 sequence optimized 11-mers. We have demon-
strated that this DNA polymerase dependent assembly
process can be seamlessly integrated into existing DNA
sequencing reactions and provides all the advantages of
using a preexisting primer library while maintain the
hybridization specificity of chemical synthesis. While this
approach was developed to facilitate the primer walking
strategy for large scale DNA sequencing projects[15], this
instant primer assembly system could have a plethora of
applications in genomics and molecular biology.

Results

Polymerase mediated oligonucleotide synthesis (PMOS)
The PMOS system provides an efficient means to generate
a large number of specific oligonucleotides from a small-
prefabricated library of precursors. This is achieved by
using one oligo from the library as a template for exten-
sion (in the presence of DNA polymerase) from the 3' end
of another oligo in the library, such that the specificity
encoded by each precursor is combined in the extended
oligo.

The precursor oligonucleotides that constitute the library
are divided into template oligos (TO's) and extendable
oligos (EQO'S). The TO's contain a 3'-amine blocking
group to prevent extension, whereas the extendable oligos
(EO's) retain the capacity for extension by DNA polymer-
ase and are in effect mini-primers (Fig. 1). Hybridization
between the TO and EO occurs at a 10 bp overlap consist-
ing of a 5 bp region of generic complementarity known as
the "clamp" region and a 5 bp section termed the "catch"
region. While the sequence in the catch region of each EO
is unique, the corresponding region in the TO is degener-
ate to enable each one to hybridise with any EO (Fig. 1).
This capacity for universal association between EO's and
TO's enables the oligonucleotide library to mix in differ-
ent combinations and produce a total number of different
primers equal to the product of EQ's and TO's (£S = ZEO
x XTO). The strength and alignment of the EO/TO inter-
action is supported by a defined GC rich clamp sequence
(GGCTG with respect to the EO). This sequence is
retained in the 5' end of each primer generated but does
not affect their function in DNA sequencing and amplifi-
cation.

PCR using PMOS

The application of PMOS in PCR was shown in two sepa-
rate reactions carried out using the forward primer pairs
E128/T128 and E382/T382 (Fig. 2A). In each reaction the
conventional M13 reverse primer was used on a 4.6 kilo-
base plasmid (pFC1) containing the ftsZ gene insert from
E. coli template DNA (Fig. 2B). Amplification was carried
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PMOS primer assembly scheme. The PMOS system
consists of 256 extendable oligonucleotides (EO's) and 512
template oligonucleotides (TO's) distributed into two 384
well microtitre plates. In each case defined sequence posi-
tions for the individual library members are designated X;
and in the TO degenerate positions are designated N. To
generate each composite | |-mer, the required EO and TO is
selected from the library and transferred to a reaction vessel.
When combined the EO and TO associate via their comple-
mentary clamp (blue) and catch (green) regions. In the pres-
ence of DNA polymerase and nucleotides (orange), such as
in sequencing chemistry, the EO is extended along the over-
lapping template (TO). Extension culminates with a single
base extension (dA) beyond the limit of the template. In sub-
sequent thermal cycles the sequence specific | I-mer derived
from the extended EO can function as a template specific
primer in sequencing and other applications. At the bottom
of the diagram the composite | |-mer primer is shown
annealed to template (yellow) as it finds deployment in the
initiation of an extension reaction such as in DNA sequenc-

ing.

out over 32 cycles and the products resolved on a 1% aga-
rose gel. PCRs containing EO's 128 or 382 and M13
reverse alone were incapable of generating PCR products
(Fig. 2C, lanes 4 and 6). However, when E128, T128, and
E382, T382 were all present, the expected PCR amplicons
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E382: 5’ ACTGGGTTGCtgtcg
(1111

T382: 3’ TGACCNNNSSACAGC 5°

E128: 5’ GGACGATACCgatgc
L1111

T128: 3’ CCTGCNNNSSCTACG 5

TCGCGGTARATACCGATGCACAAGCGCTGCGTAAAACAGCGGTTGGACAGACGATTCAA
ATCGGTAGCGGTATCACCARAGGACTGGGCGCTGGCGCTAATCCAGAAGTTGGCCGCAR
TGCGGCTGATGAGGATCGCGATGCATTGCGTGCGGCGCTGGAAGGTGCAGACATGGTCT
TTATTGCTGCGGGTATGGGTGGTGGTACCGGTACAGGTGCGGCACCAGTCGTCGCTGAA
GTGGCAAAAGATTTGGGTATCCTGACCGTTGCTGTCGTCACTAAGCCTTTCAACTTTGA
AGGCAAGAAGCGTATGGCATTCGCGGAGCAGGGGATCACTGAACTGTCCAAGCATGTGA
ACTCTCTGATCACTATCCCGAACG/ /TCGGTACCAAGCTTGATGCATAGCTTGAGTATT
CTATAGTGTCACCTAARATAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTG

Figure 2

DNA amplification using PMOS. Panel A contains the
design of EO's and TO's that combine to form the forward
primers for amplification of the ftsZ gene. Vertical bars indi-
cate clamp regions of hybridisation between the EO and TO.
Capital letters show actual sequence of the oligonucleotides
and small, underlined letters indicate the extended region of
the EO. N represents a position with either A, T, Gor C. S
represents a position with either G or C nucleotide. Panel B
contains the DNA template sequence of E. coli ftsZ and
includes the recognition sequence for the M13 reverse
primer (double underlined) within the plasmid pFCI. The
position of the forward primers (formed by extended EO's)
is indicated by the dotted and solid underlining. Panel C con-
tains a photograph of a 1% agarose gel produced after ampli-
fication of the ftsZ sequence. Lane | contained a DNA
molecular weight marker with corresponding sizes shown on
the left. Lane 2 contains an amplification reaction with oligo-
nucleotides EC10 and M1 3 reverse (positive control). Lane 3
contains an amplification reaction with oligonucleotides
EI28, T128 and M13 reverse. Lane 4 contains an amplifica-
tion reaction with oligonucleotides EI128 and M3 reverse
(negative control). Lane 5 contains an amplification reaction
with oligonucleotides E382, T382 and M13 reverse. Lane 6
contains an amplification reaction with oligonucleotides E382
and M13 reverse (negative control).
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of length 1165 and 911 respectively were obtained (Fig.
2C, lanes 3 and 5). A positive control reaction was per-
formed using EC10, a full-length synthetic primer equiva-
lent to the extended E382 (Fig. 2C, lanes 2).

While both composite forward primers generated their
respective amplicons with M13 reverse, we found that the
E128/T128 pair displayed greater specificity and efficiency
than that provided by E382/T382. We hypothesised that
this was due to the non-template dependent addition of a
single adenosine to the 3' end of the EO beyond the
extremity of its TO. In the case of E128/T128 pair, this A
addition provides an extra nucleotide that assists in
hybridization with a corresponding T in the target
sequence, thus bringing its annealing length to 11 bases.
This would enhance both the affinity and specificity of the
extended primer. By contrast, the addition of an A at the
end of the extended E382/T382 pair produces an 11-mer
that is terminally mismatched with respect to the target
template sequence.

DNA cycle sequencing using PMOS

To examine the potential of PMOS for DNA sequencing,
oligonucleotide E827 and template oligonucleotide
T827N3 (Fig. 3A) were mixed with a linear DNA fragment
from the streptomycin operon in E. coli, 4 pl of BigDye
sequencing chemistry, 1 ul of 17.5 mM MgCl, and 1 pl of
300 uM dGTP. After 40 thermocycles, the sequencing frag-
ments were resolved on an ABI 377 DNA sequencer and
analysed by ABI PRISM™ sequence analysis software. The
electropherogram from this reaction displayed strong sig-
nal strength and the expected sequence (Fig. 3B). A nega-
tive control reaction primed by the non-extended E827
primer was performed but no sequence signal was gener-
ated.

Optimisation of sequencing chemistry for PMOS

The previous experiment demonstrated that a combina-
tion of extendable oligonucleotides and template oligo-
nucleotides with a degenerate catch region could be used
directly to prime DNA sequencing reactions. During this
investigation we found that reactions in commercial
sequencing chemistries were enhanced by supplementing
with MgCl, and dGTP. The optimal magnesium chloride
concentration was determined through a series of
sequencing reactions performed with the addition of 1 pl
of 0, 7.5, 12.5, 17.5, 22.5, 25, 30, 40 and 50 mM MgCl,
solution. The best result was achieved after adding the
17.5 mM solution. At lower concentrations there was a
reduction of sequence signal, while at higher concentra-
tions there was no further improvement (data not
shown).

We also found that additional dGTP improved sequenc-
ing signal strength using the PMOS primers in ABI BigDye
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sequencing chemistry version 2. After testing a range of
dGTP concentrations between 0 and 50 uM, 30 uM sup-
plement was found to be optimal. At higher concentra-
tions there was an increase in sequencing errors, while
lower concentrations reduced the sequencing signal. We
also looked at other commercial sequencing chemistries
such as ABI BigDye sequencing chemistry version 3 and
DYEnamic ET Terminator (GE Bioscience). Both of these
chemistries were compatible with direct PMOS primer
assembly and yielded good sequencing results without
any further modification of the PMOS method (data not
shown).

The optimal EO:TO molar ratio was determined by vary-
ing the concentration of T827N3 from 0.25 to 8 uM, while
keeping the E827 concentration constant at 1 uM. An EO
to TO molar ratio of between 1:1 and 2:1 was found to
give the highest quality sequencing results. Higher EO:TO
ratios were found to result in less signal intensity, presum-
ably due to inefficient extension of the EO primer in the
presence of limiting amounts of the TO primer. Lower
ratios (i.e. excess TO) gave mixed sequence signal.

The optimal concentrations of EO and TO primers in the
sequencing reaction were also determined. The E827 and
T827N3 concentration (at a 1:1 ratio) were varied
between 0.25 and 8 uM. The optimum concentration was
found to be 1 uM. Lower concentrations produced high
quality sequence at the expense of reduced signal inten-
sity. Higher primer concentrations produced more
sequencing signal, but at the expense of an increased error
rate (data not shown).

Optimisation of PMOS oligonucleotides

A key feature of the PMOS library system (UniSeq) is the
ability of the unique 5 base sequences in the catch region
of each EO primer to hybridise with the corresponding
generic region in every TO primer (Figure 1). This is
accomplished with a degenerate or mixed base composi-
tion in the catch region of the TO. To determine the influ-
ence of catch region hybridisation strength on sequencing
quality, three sequencing reactions were performed using
three different EO/TO pairs with ascending levels of G+C
content (Fig. 4). As predicted the EO primer with the high-
est 5'-G+C content (E827) produced the most sequencing
signal, followed by intermediate (E686), and no G+C con-
tent (E915) respectively (data not shown).

In order to accommodate the observed preference for high
G+C content in this part of the catch region we restricted
the EO library to oligonucleotides that contained G or C
bases at positions 9 & 10. This also allowed for the reduc-
tion in degeneracy at the corresponding position in TOs.
An experiment was performed to investigate the impact of
this change by comparing sequencing efficiency of com-
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A
E827: 5’ GGACGATTGGtgctg 3’

T827N3: 3’ CCTGCNNNSSACGAC 57

E826 5’ GGACGGATTGgtgct 3’

T826 3’ CCTGCNNNNNCACGA 5’

B

AGAGNDGAANTNGNTI GTGCTTTINC GITGNAGT ARAGCTACAIC TTAAMOGACAE TEC CAGGGCGIRAC CT TOGAATAOGA G ATRTC CCGATAGACATG GI TGARC TGGC TAZC GAATG GCAC CAGARCCY
40 50 60 70 80 90 100 110 120 130

ool b

[GATC GAATC CGCAGC TGAAGC TTCT GA AG AGCTGATGGAAAAATAC CTGGGIGGI GAAGA AC TGACTGAAGCAGAAATCAARG GIGC TCT A& GTCAGCGCGT TCTGAACARCGAAATCAT
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Pt PO Pt o g

[CCTGGIA AC CTGTGGT TCTGC GI TCA AG AACAAIG GTGT TCAGGCGATGC TGGATGC GGIA AT TGATTAC CTGC CATCCCUGGITGAC GTAC CT G2 GATCAACGGTA TC CTGGAC GACGGTAAA(
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TCTGGIGATACCG ACTGAACTCCGTGAA AGC TEAC GTGAGCGTTTCGETCGA TCGI' TCAAATG CACN TTACAAAOGTGA AGA GATCAAAGAAG TCGOGC GGCGACATCE TGCTGCTATNG!
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Figure 3

DNA cycle sequencing using an extendable primer. Panel A contains the design of an EOs and TOs for the sequencing
of a region of the Escherichia coli streptomycin operon. Vertical bars indicate regions of clamp region of hybridisation between
the EO and TO. Capital letters show actual sequence of the oligonucleotides and small, underlined letters indicate the
extended region of the EO. N indicates a position with either A, T, G or C and S indicates a position with either G or C nucle-
otide. Panel B shows an electropherogram of a DNA sequencing reaction using E827 and T827N3. The sequencing reaction
was separated and analyzed on an ABI PRISM 377 DNA sequencer and ABI PRISM sequence analysis software.
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Target region 2:

E827: 5’ GGACGATTGGtgctg 3’

T827N5: 3’ CCTGCNNNNNACGAC 5’

Target region 3:

E686: 5’ GGACGGTATGgcgtc 3’

T686N5: 3’ CCTGCNNNNNCGCAG 5'

Target region 4:

E915: 5’ GGACGTCGAAtacga 3’

T815N5 3’ CCTGCNNNNNATGCT 5’

Figure 4

Design of EOs and TOs for sequencing a region of the
E. coli streptomycin operon. Region 2, 3 and 4 primers
have decreasing levels GC content in the 3' terminal of the
EO catch.

plete TO catch degeneracy (NNNNN) with TOs having
reduced degeneracy at one position (SNNNN) and two
positions (SSNNN) where S is an equal mixture of G and
C (Fig. 5). As expected, T827N3 and T827N4 resulted in
greater DNA sequencing signals than the completely
degenerate version T827N5 (data not shown).

Target region 2:

E827: 5’ GGACGATTGGtgctg 3'

1]

CCTGCNNNSSACGAC 5
CCTGCNNNNSACGAC 5
CCTGCNNNNNACGAC 5

T827N3: 3¥
T827N4: g ¥
TE27H5: 3 ¥
Figure 5

Design of E827 and cognate TOs with escalating lev-

els of catch region degeneracy. These primers were
used to sequence a region of the E. coli streptomycin operon.
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To further maximise catch region hybridisation efficiency,
the adenosine bases (when they appear in the first 3 posi-
tions) of the EO were substituted for the high affinity ana-
logue 2,6-diaminopurine (D) [16]. This substitution was
found to further improve DNA sequencing signal and effi-
ciency.

Effect of non-template addition of adenosine in PMOS
DNA sequencing protocols typically employ DNA
polymerases lacking 3'-5' exonuclease and have a ten-
dency to add non-template directed adenine residue at the
3' end of extension product[17]. As a consequence an EO
primer extended with a DNA sequencing polymerase will
usually have an additional 3' adenine. Primers with this
additional 3' adenine are not expected to function effec-
tively in sequencing reaction unless there is a correspond-
ing thymine on the template sequence. To test this
hypothesis, EO and TO primers were designed for a target
site that did not contain a complementary thymine down-
stream of the target site (one base upstream of E827). A
cycle sequencing reaction was performed as described pre-
viously with 10 pmol of E826 and 10 pmol of T626 (Fig
3A). Only very poor sequencing data was obtained, which
indicates that an additional 3'A on an extended EO with-
out a complementary position in the sequencing template
prevents efficient extension during the sequencing reac-
tion.

DNA cycle sequencing using PMOS library primers

A biologically optimised library consisting of 256 extend-
able oligonucleotides and 512 compatible template oligo-
nucleotides was synthesised for the purpose of testing
PMOS in sequencing projects (Additional file 1 and 2).
The PMOS library, distributed across two 384 well plates,
has been used successfully in our laboratory in thousands
of DNA sequencing reactions. This is exemplified here in
two reactions on pUC19 template DNA carried out using
EO/TO pairs E154/T422 and E167/T14, respectively,
according to conditions described earlier. The electrophe-
rograms from both reactions were strong and gave an
unambiguous signal corresponding to the expected
sequence in each case (Fig. 6). To validate the utility for
PMOS in cycle sequencing, we carried out 1344 sequenc-
ing reaction of a BAC library without any specific optimi-
sation and achieved a success rate of 65% (Q20>100 bp).
While this success rate was lower than that produced for
an equivalent shotgun project, possibly due in part to the
failure of some PMOS primers, the overall coverage
achieved by this approach was superior and required sub-
stantially fewer sequencing reactions. Gaps produced by
as a consequence of failed reaction were closed using adja-
cent PMOS primers targeting upstream and downstream
segments of the template DNA.
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Figure 6

DNA sequencing reactions using PMOS primers. Panels A and B contain an electropherograms of a DNA sequencing
reactions using library derived EI54/T422 and E167/T 14 respectively. The sequencing reaction was separated and analyzed on
an ABI PRISM 377 DNA sequencer and ABI PRISM sequence analysis software.

Page 7 of 10

(page number not for citation purposes)



BMC Genomics 2009, 10:344

Discussion

The wuniversal primer fabrication system (PMOS)
described here provides a simple and efficient means to
generate specific 11-mer from a 768-member library of
pre-synthesised oligonucleotides. In the PMOS approach,
the oligonucleotide of interest is generated by hybridising
two precursors, such that in the presence of a DNA
polymerase (such as in DNA sequencing and amplifica-
tion reactions), the desired primer is generated by an
extension reaction (Fig. 1). To maximize the utility of
PMOS, we examined the influence of a number of param-
eters in order to generate the optimal library of EO and TO
precursors molecules.

Optimisation of PMOS oligonucleotide design

The versatility of PMOS is derived from its ability to
achieve both high specificity and high coverage in a very
small library. To find the ideal balance between the con-
flicting demands of specificity and simplicity, the hybrid-
isation kinetics of the EO/TO pair and S-primer/target pair
was finely tuned while managing the library complexity.
The key strategy employed to reduce the library size was to
introduce degeneracy into the catch region of the TO such
that it will have complementarity and hybridise with each
and every EO. This meant that with only 256 EOs and 512
TOs the library could generate 131,072 (256 x 512) differ-
ent extended EOs. Rather than introduce complete
sequence redundancy at all five catch positions, we
restricted the 5' dinucleotide of the catch region TOs to an
equal mixture of guanine and cytosine (Fig. 3A). The cor-
responding variable region at the 3' terminus of the EOs
was also restricted to the four different combinations of
guanine and cytosine to enforce high affinity interaction
with each TO at the point of extension.

The use of the generic bases 5-nitroindole and 3-nitropy-
role was investigated as an alternative to degenerate posi-
tions in the TO catch region. While these universal
nucleotide analogues are reported to be capable of bind-
ing with all four conventional bases, we found their per-
formance inferior to degeneracy. A modification of the
catch region that we did find effective, was the replace-
ment of adenosine with its high affinity analogue 2,6-
diaminopurine [16,18]. This base analogue has the ability
to form tridentate hydrogen bonds with thymine, increas-
ing both the hybridisation strength between EO/TO and
the S-primer to its target sequence (data not shown).

A number of different designs for the clamp region were
also considered and tested to maximise the hybridisation
strength while minimising interaction with motifs com-
monly found in cloning vectors and genomes. The clamp
region sequence that was used (GGACG) fulfilling these
requirements with a low free energy of hybridisation and
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no sequence similarity to plasmid backbones of the com-
mon pUC plasmid family.

Library rationalisation

To reduce the size of the library, sequence motifs that are
not found, or that are very rare in biological systems, were
omitted. The library was also screened for sequences with
difficult motifs characterised by extreme GC content;
monotony such as polynucleotide runs; form primer dim-
ers or hairpin formation. Removal of these EOs and TOs
resulted in a substantial reduction in library complexity
without significantly lowering its utility for hybridizing to
biologically derived nucleic acid templates.

To further enhance the utility of the library we developed
companion software (UniSelect) to facilitate the primer
selection process. This software scans within the target
range of input sequences and identifies the best TO and
EO pair(s) from the library for the purpose of amplifying
the target or sequencing the upstream or downstream
template. The output of UniSelect can be used directly as
an input for liquid handling robots to complete the cycle
from sequence data collection back to reaction setup,
without the need for human intervention.

Non-template directed extension

The DNA polymerases commonly used for PCR and
sequencing such as Taq DNA polymerase and Thermose-
quenase catalyse non-template directed addition of a sin-
gle nucleotide. While the extent of this activity is
influenced to some degree by the terminal sequence
[19,20], the extended nucleotide is almost always adeno-
sine because of its higher affinity for the active site in the
absence of template [17,21]. In our experience extendable
primers designed without regard to this affect were
severely impaired in their ability to prime sequencing and
amplification reactions. This was likely due to the termi-
nal mismatch between these primers and their template
sequence. By contrast extendable primers selected to take
advantage of this effect by pairing this extra base with a
corresponding thymine in the template were far superior
and behaved as 11-mers. However, in circumstances
where terminal addition of adenosine is unwanted, a
proofreading polymerase can be used to ensure strict tem-
plate directed extension [17]. We achieve this routinely by
performing PMOS in the presence of Klenow fragment.

Applications

While solid phase chemical synthesis methods can pro-
vide oligonucleotides for a myriad of biomolecular and
nanotechnology applications, the process is relatively
slow and wasteful where only small quantities are
required. PMOS is an efficient primer construction system
that is capable of generating a large number of high affin-

Page 8 of 10

(page number not for citation purposes)



BMC Genomics 2009, 10:344

ity oligonucleotides from a small library of prefabricated
precursors. The system features a library consisting of 768
oligonucleotides that generates more than 131,000 differ-
ent biologically optimized 11-mers via an efficient primer
extension reaction. This contrasts with the hexamer and
octamer libraries, which are both complex (4096 and
65,536 primers respectively) and inefficient.

While we have focussed primarily cycle sequencing,
PMOS can potentially be used in any application requir-
ing oligonucleotides including, ligation chain reaction
(LCR) [22], reverse-transcriptase PCR (RT-PCR) [23],
primer extension reaction for mRNA-transcript analy-
sis[24], self-sustaining sequence replication [25], rolling
circle amplification|26], strand displacement amplifica-
tion [27], isothermal DNA amplification[28] and DNA-
sequencing by the original Sanger method [29]. For appli-
cations that do not require DNA polymerase activity,
extension of EOs can be performed prior to use in a pre-
parative reaction.

Conclusion

The PMOS library system coupled with extension medi-
ated primer synthesis provides the ability to efficiently
obtain primers in minutes without waste and at a fraction
of the cost of custom solid phase synthesis. This has many
applications including the potential to replace shotgun
DNA sequencing with a more rational primer walking
strategy, with up to 80% savings in resources, time and
cost.

Methods

The PMOS oligonucleotide library was organized into two
384 well microtitre plates consisting of 256 extendible oli-
gonucleotides and 512 template oligonucleotides. These
oligonucleotides were manufactured according to the
sequences list in Additional files 1 and 2 by Sigma Geno-
sys (The Woodlands, TX).

Primer extension and target amplification

S-primer synthesis was carried out directly within the PCR
as follows. Plasmid template pFC1 (1 ng) was combined
with 1 pl of the E128 or 382 (10 pmol/ul), one pl of the
T128 or 382 (20 pmol/ul), 1 pl of M13 reverse primer (5'-
CAGGAAACAGCTATGAC-3"; 5 pmol/ul), 2 pl of 25 mM
MgCl,, 4 pul of 1 mM dNTPs (MBI Fermentas, Vilnius,
Lithuania), 2 pl of 10 x buffer [100 mM Tris-HCI (pH 9 at
25°C), 500 mM potassium chloride (KCl), 1% (v/v) Tri-
ton X-100 (Promega)], and water to final volume of 16 pl.
For the negative control reaction the TO primer was omit-
ted. For the positive control the EO and TO were replaced
by the control primer EC10 (5' GTTGCTGTCG 3') target-
ing the same region (10 pmol). The mixture was heated
for one min at 95°C and then cooled to 80°C before addi-
tion of 4 pl of Tag DNA polymerase (0.25 units/pl;
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Promega). The reactions were then cycled 32 times at
95°C for 10 sec, at 51°C for 20 sec and at 72°C for 1.5
min. After a final incubation at 72°C for 5 min the reac-
tions were stored at 4°C before electrophoresis on a 1%
(w/v) agarose gel. Amplicons were visualised by staining
in ethidium bromide.

DNA cycle sequencing with PMOS primers

Sequencing reactions were performed using BigDye
sequencing system version 2 (Applera Corporation, Nor-
walk, CT USA) supplemented with additional magnesium
chloride and dGTP. The optimal conditions contained 10
pmol of EO, 10 pmol of TO, 100300 ng of template DNA,
1 ul of 17.5 mM MgCl,, 1 pl of 300 uM dGTP, 4 ul of
BigDye sequencing reagent, and water to a final volume of
10 pl. The reaction was then cycled 40 times at 96°C for
10 sec, at 45°C for 30 sec and at 60°C for 4 min before
purification by butanol extraction [30]. The cleaned
sequencing reaction were analyzed on an ABI PRISM 377
DNA sequencer using the ABI PRISM sequence analysis
software (Applera Corp., Norwalk, CT, USA) according to
the manufacturer's instructions.

Abbreviations

PMOS: polymerase mediated oligonucleotide synthesis;
TO: template oligonucleotide; EO: extendable oligonucle-
otide; PCR: polymerase chain reaction.
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