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Abstract

Background: Mast cells (MCs) play pivotal roles in allergy and innate immunity and consist of heterogenous
subclasses. However, the molecular basis determining the different characteristics of these multiple MC
subclasses remains unclear.

Results: To approach this, we developed a method of RNA extraction/amplification for intact in vivo MCs pooled
from frozen tissue sections, which enabled us to obtain the global gene expression pattern of pooled MCs
belonging to the same subclass. MCs were isolated from the submucosa (sMCs) and mucosa (mMCs) of mouse
stomach sections, respectively, 15 cells were pooled, and their RNA was extracted, amplified and subjected to
microarray analysis. Known marker genes specific for mMCs and sMCs showed expected expression trends,
indicating accuracy of the analysis.

We identified 1,272 genes showing significantly different expression levels between sMCs and mMCs, and
classified them into clusters on the basis of similarity of their expression profiles compared with bone marrow-
derived MCs, which are the cultured MCs with so-called 'immature' properties. Among them, we found that
several key genes such as Notch4 had sMC-biased expression and Ptgrl had mMC-biased expression.
Furthermore, there is a difference in the expression of several genes including extracellular matrix protein
components, adhesion molecules, and cytoskeletal proteins between the two MC subclasses, which may reflect
functional adaptation of each MC to the mucosal or submucosal environment in the stomach.

Conclusion: By using the method of RNA amplification from pooled intact MCs, we characterized the distinct
gene expression profiles of sSMCs and mMCs in the mouse stomach. Our findings offer insight into possible
unidentified properties specific for each MC subclass.
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Background

Mast cells (MCs) are derived from hematopoietic stem
cells and play important roles in allergic responses, innate
immunity and defense against parasite infection. Unlike
other blood cells, MCs migrate into peripheral tissues as
immature progenitors and differentiate into mature mast
cells. One of the unique features of MCs is that they show
a variety of phenotypes depending on the different tissue
microenvironment of their maturation [1]. In MCs, vari-
ous MC-specific serine proteases are stored in the secre-
tory granules, and their gene and protein expressions are
dramatically altered when their cell environment is
altered. For example, Reynolds et al. have shown that at
least six distinct members of mouse MC-specific serine
proteases are expressed in different combinations in dif-
ferent mast cell populations [2]. In addition, recent stud-
ies have shown that mature MCs vary in terms of what
surface receptors and lipid mediators they express [3,4].
Because each mast cell population in vivo must play a spe-
cific role in the body, it is important to determine the
character of each population of MCs.

Comprehensive gene expression analysis is a powerful
approach to understand the characterization of various
MC subpopulations. To date, several studies on microar-
ray analysis of MCs have been conducted [5-7], but most
of them dealt with MCs cultured in wvitro. Alternatively,
gene expression profiles of MCs isolated from skin and
lung have been analyzed [3,8-10]. However, the numbers
of MCs analyzed as one sample were relatively high and
they were exposed to physical forces, enzymes and the
anti-Kit antibody for purification, during which the origi-
nal properties of the MCs may have been affected.

In the gastrointestinal tract, there are MCs that are mainly
classified into two subclasses; mucosal MCs (mMCs) and
submucosal MCs (sMCs) on the basis of their location,
morphology (size and shape) and granule contents
[11,12]. mMCs are mainly found in the mucosa of the gas-
trointestinal system, having chondroitin sulfate-contain-
ing granules, which are stained with toluidine blue but
not safranin, and their activation occurs during parasite
infection [13], while sMCs are localized in the submucosa
of the gastrointestinal tract and their granules are rich in
heparin and stained with both toluidine blue and safranin
[1,11]. However, the molecular basis determining the dif-
ferences in biochemical properties of these two MC sub-
classes remains uncertain, partially due to the difficulty of
their isolation.

To overcome these problems, here we established a
method of RNA amplification from intact MCs isolated
from frozen tissue sections, which enables us to conven-
iently obtain the global gene expression pattern of MCs in
various tissues. To validate this method, we first deter-
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mined the minimum cell number required to achieve
reproducible RNA amplification. We then compared the
gene expression profiles obtained from small numbers of
mMCs and sMCs in the mouse stomach, and found sev-
eral key genes to be specifically expressed in one subclass
of MCs, which may reflect some aspects of the distinct
properties between the two MC subclasses in the gastroin-
testinal tract.

Results and discussion

Development of an RNA amplification protocol to obtain

gene expression profiles from a small amount of RNA

To gain insight into the functional differences between the
different subclasses of MCs, we employed three rounds of
the T7-based RNA amplification method. Based on the
preliminary experiments using peritoneal MCs and bone
marrow-derived MCs (BMMCs), we estimated that a sin-
gle MC yields 2 pg of RNA. Before we performed compar-
ative analysis of MCs from different tissues, we first
evaluated the accuracy and reproducibility of three rounds
of the T7-based RNA amplification method, starting with
the amount of RNA that can be obtained from a single
MC. To assess this, we first compared the microarray
results obtained from 5 pg of BMMC RNA prepared by the
standard protocol with those obtained from the same
RNA diluted 105- or 10¢-fold (30 pg, 10 pg and 2 pg) and
subjected to three rounds of T7-based amplification (Fig-
ure 1a-c). Although three rounds of amplification yielded
enough quantity of RNA for microarray analysis (>20 ug)
even in the case of 2 pg RNA, scatter plot analysis revealed
that the qualities of the obtained results were quite differ-
ent between the samples from 5 pg and 2 pg RNA. The
genes judged as 'Presence' in both 30 pg and 5 ug of RNA
were 8,149 genes, which corresponded to 72% of genes
judged as 'Presence’ in the 5 ug of RNA (11,344 genes; Fig-
ure 1a), while only 4,116 genes were judged as 'Presence’
in both 2 pg and 5 pg of RNA, which corresponded to only
36% of genes judged as 'Presence' in the 5 pg RNA (Figure
1c). The decrease in the number of genes judged as 'Pres-
ence' in the diluted samples (30 pg, 10 pg and 2 pg) may
be due to the loss of low copy number RNA species during
amplification.

We next examined the reproducibility of the microarray
results obtained from two sets of 30 pg BMMC RNA sam-
ples (30 pg-1 and 30 pg-2) or two sets of 2 pg samples (2
pg-1 and 2 pg-2) (Figure 1d and 1le). In the 30 pg RNA
samples, 7,537 (30 pg-1) and 8,777 (30 pg-2) genes were
judged as 'Presence'. However, only 4,324 (2 pg-1) and
4,460 (2 pg-2) genes were judged as 'Presence' in each 2
pg RNA sample, again suggesting the loss of low copy
number RNAs during amplification from a small amount
of RNA. As to the reproducibility, 86% of the 'Presence’
genes in the 30 pg-1 and 74% of 'Presence’ genes in the 30
pg-2 sample were judged as 'Presence' in both 30 pg RNA
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Comparisons of three round-amplified products starting with very small quantities of RNA. (a-c) Amplification
biases in the products starting from a small quantity of RNA. Scatter plots of signal intensity obtained from 5 pg of BMMC RNA
prepared by the standard protocol and from 30 pg (a), 10 pg (b) and 2 pg (c) of BMMC RNA prepared by three rounds of
amplification are shown. (d, e) Reproducibility of the three-round amplification of a small quantity of RNA. Scatter plots of sig-
nal intensity between two independent products from 30 pg of BMMC RNA (BMMC 30 pg-1 and BMMC 30 pg-2) (d) or from
2 pg of BMMC RNA (BMMC 2 pg-1 and BMMC 2 pg-2) (e), are shown. Red dots show probe sets judged as "Presence", and
yellow dots represent probe sets judged as "Absence" in both arrays. Blue dots show probe sets judged as "Presence” only in
either array. The correlation coefficients (r) are presented. The same, four-fold induction and suppression thresholds are indi-
cated as diagonal lines. Genes judged as "Presence" are placed in groups corresponding to pairwise overlaps shown in the
accompanying Venn diagrams.

samples, while only 57% of 'Presence’ genes in the 2 pg-1
and 55% of 'Presence’ genes in the 2 pg-2 sample were
judged as 'Presence' in both 2 pg RNA samples. These
results suggested that the amplified products from the
RNA from a single MC (about 2 pg) by the current method
may include considerable amplification artifacts causing

problems in accuracy and reproducibility. On the other
hand, because of the higher reproducibility (>74%), we
concluded that amplification from 30 pg RNA collected
from 15 MCs would be suitable for the practical analysis
of tissue MCs. Based on these results, we set our goal in
this study to acquire gene expression profiles of MCs
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pooled from different regions. To minimize the influence
of cell-to-cell variations within the same class and poten-
tial amplification artifacts, we prepared three sets of 15
MCs for each region and compared genes with signifi-
cantly different expression between MCs from the differ-
ent regions (Figure 2b). We chose stomach as the source
organ, since we can isolate two kinds of MCs from the
mucosa (mMC) and the submucosa (sMC) regions of the
same sections, and mMCs and sMCs have been suspected
to be different in several MC properties such as protease
expression profile and sensitivity to safranin staining
[1,11].

Gene expression profiles of submucosal and mucosal MCs
from the stomach

To visualize two kinds of MCs in the stomach without
causing RNA degradation, the sections were fixed with car-
noy's fixative and metachromatically stained with toluid-
ine blue for a few seconds. sMCs and mMCs were
microdissected using a patch pipette (Figure 2a and 2b).
We prepared three sets of 15 MCs for each region,
extracted their RNA and individually amplified them
(sMC;, sMC,, sMC;, and mMC;, mMC,, mMGC;). To
improve the recovery of the extraction of as little as 30 pg
of RNA, we used 'poly G' as a carrier, which does not inter-
fere with the following RNA amplification or hybridiza-
tion of the amplified product to the array (data not
shown). To examine the effects of nonspecifically ampli-
fied artifact products, we performed the RNA extraction/
amplification procedure without adding microdissected
cells ("no cell") as a negative control (described in "Mate-
rials and methods"). The amplified RNAs of sMCs, mMCs
and the "no cell" control were separately hybridized to a
murine microarray. The signal values in the "no cell" sam-
ple were low in general and similar to the background lev-
els (Figure 2c). The scatter plots of the samples
independently prepared within the same group (e.g. sMC,
vs sSMC,) showed a similar expression pattern; the average
correlation coefficient for all probe-sets was 0.945 + 0.004
and 0.893 + 0.019 in sMCs and mMGCs, respectively (n =
3). In contrast, the average correlation coefficient between
sMCs and mMCs was 0.752 + 0.034 (n = 3), which was
much lower than those within the same group, suggesting
that their gene expression patterns are different.

We further evaluated the accuracy and reproducibility of
our method by other comprehensive analyses (hierarchi-
cal clustering analysis and principal component analysis
[PCA]) using all probe sets. Microarray data obtained
from sMCs, mMCs, skin-derived MCs, peritoneal MCs,
BMMCs and non-MCs (macrophages and fibroblasts)
were applied to these analyses. We first checked whether
the amplification process in our method affects the global
expression profile due to non-linear amplification. The
results from the BMMC samples using RNA prepared by
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the standard protocol (BMMC-std) or the amplification
method (BMMC-amp) were subjected to these analyses.
Both hierarchical clustering analysis and PCA revealed
that microarray data from BMMC-std and BMMC-amp
were clustered in the same group (Figure 3a and 3b), sug-
gesting that the global similarity in gene expression pro-
files is maintained during the amplification process. We
next examined the similarity of expression patterns in
three independent sMC or mMC samples. Upon cluster-
ing analysis and PCA, sMC,_; and mMC, _; were clustered
in the same group, respectively. PCA also showed that the
expression profiles of sMCs, mMCs and BMMCs are
mutually different (Figure 3b).

We then compared the stomach-derived MCs (sMCs and
mMCs) with skin-derived MCs, peritoneal MCs, BMMCs
and non-MCs (macrophages and fibroblasts) by cluster-
ing analysis. The tissue-derived MCs (stomach MCs and
skin MCs) were clustered separately from peritoneal MCs
and BMMGCs. These results may reflect different properties
between tissue-derived MCs with firm adhesion to the
neighboring cells and floating MCs without a tight con-
tact. As to the similarity of MCs with fibroblasts and mac-
rophages, it is reasonable that fibroblasts are most distant
from MCs and macrophages are closer to MCs as a leuko-
cyte family.

Validation of microarray results by real time RT-PCR
analysis

We next investigated whether the hybridization signals of
known marker genes specific for sMCs and mMCs showed
the expected expression trends [12,14]. The mMC-specific
genes, mast cell protease 1 (Mcpt1) and 2 (Mcpt2) showed
higher values in mMCs, while the sMC-specific marker
genes, mast cell protease 4 (Mcpt4) and chymase 2
(Cma2), showed higher signal values in sMCs (Table 1
and Figure 4a) [15-29]. On the other hand, MC-common
markers such as kit oncogene (Kit) and Fce receptor
(Fcerla) showed significant signal values with no bias
between mMCs and sMCs. To further evaluate the results,
we measured the expression levels of these marker genes
by real-time RT-PCR using RNA from the independently
isolated MCs (Figure 4b). Moreover, we randomly
selected three genes showing 'mMC-biased' expression
and another three genes showing 'sMC-biased' expression;
expression of these genes in MCs has not been reported
previously (Figure 4a). There were no significant differ-
ences in the expression levels of Kit and Fcerla between
mMCs and sMCs. In contrast, the mMC-specific markers
Mcptl and Mcpt2 and the 'mMC-biased' genes, Anxal0,
Ctse, and Fos showed higher expression in mMCs, and the
sMC-specific markers Mcpt4 and Cma2 and the 'sMC-
biased' genes, Cnnl, Ces3, and Cpe showed higher expres-
sion in sMCs. These results indicate that the microarray
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Gene expression profiles of sMCs and mMCs from stomach tissue. (a) Isolation of toluidine blue-stained MCs in the
submucosa (sMC; upper panels) and the mucosa (mMC; lower panels) of stomach sections. A sMC (arrow) and mMC (arrowhead)
that was metachromatically stained with toluidine blue before microdissection (left panels) disappeared after microdissection
with a patch pipette (right panels). Bars, 10 um. (b) Outline of the experimental strategy. (c) Labeled and fragmented antisense
RNAs of three individual SMC samples, three individual mMMC samples and the 'no cell' samples were hybridized to a Murine
Array. Scatter plots for 'no cell' (x axis) and sMC, (y axis) (upper left), 'no cell' (x axis) and mMC, (y axis) (lower left), SMC, (x
axis) and sMGC, (y axis) (upper center), mMC, (x axis) and mMGC, (y axis) (lower center), sMC, (x axis) and mMC, (y axis) (upper
right) are shown. The correlation coefficients (r) for comparison within sMC,_;, within mMC,_; and between sMCs and mMCs
are presented as means % S.D. Red dots show probe sets judged as "Presence"”, and yellow dots represent probe sets judged as
"Absence" in both arrays. Blue dots show probe sets judged as "Presence” only in either array. The same, two-fold induction
and suppression thresholds are indicated as diagonal lines.
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Global gene expression analysis of sSMC,_; and mMC/_;. (a) Hierarchical clustering of global gene expression of various
preparations of MCs and non-MCs. Three-round amplified products of sMC,_;, mMC,_;, skin MCs and BMMCs, and the stand-
ard products of BMMCs, peritoneal MCs, macrophages and fibroblasts were analyzed. (b) The principal component analysis
(PCA\) reveals different gene expression profiles of sMC,_3, mMC,_;, and two preparations of BMMCs. The blue dotted square
indicates mMCs, the red dotted square indicates sMCs, and the black dotted square indicates BMMCs.

results are reliable and reflect the gene expression profiles
of intact sMCs and mMCs in the stomach.

Clustering analysis of the gene expression profiles and
functional categorization between sMCs and mMCs

Of the ~12,000 genes represented on the oligonucleotide
array, we selected 1,272 genes whose expression levels
between sMC,_; and mMC,_; were significantly different
(p < 0.05, Limma's ¢ test). The expression level of each
gene was normalized by its level in BMMCs, which are cul-
tured MCs with so-called 'immature' properties, and the
selected genes were classified into seven clusters using the
k-means clustering algorithm (CL1-7; Figure 5a and Addi-
tional file 1). We also classified the genes into functional
categories, and the representative genes are listed (Figure
5b). Among them, 666 genes (52.4%) showed sMC-
biased expression (CL1-3); in 78% (519 genes) of sMC-
rich genes, the expression levels were relatively low in
BMMCs and augmented in sMC (CL1&2). For example,
the expression level of Mcpt4d was relatively low in
BMMCs, and if the expression profile of BMMCs reflects
the immature properties of MC progenitors, Mcpt4 can be
concluded to be induced during the final maturation into
sMCs. Interestingly, the sMC marker genes Mcpt5 and

Mcpt6 were classified into CL2/3, suggesting that these
genes were expressed to some extent in 'immature'
BMMGs, but their expression was suppressed during mat-
uration into mMCs. On the other hand, 606 genes
(47.6%) showed mMC-biased expression (CL4-7); in
51% (334 genes) of mMC-rich genes, their expression lev-
els in BMMCs were low but were augmented in mMCs
(CL4&5). For example, expression of Mcptl was low in
'immature’ BMMCs but was drastically induced during
maturation into mMCs.

Protein expression of Notch4 in sMCs and Ptgrl in mMCs
in stomach tissue

Among the genes showing differential expression (Figure
5b), we further focused on the expression of Notch4 in
sMCs and Ptgr1 in mMCs, both of which have never been
previously characterized in MCs. The Notch4 gene product
is a member of the Notch family, consisting of transmem-
brane receptors which are activated by cell surface ligands
on adjacent cells. Recent studies have suggested that
Notch signaling is involved in lymphocyte and mast cell
differentiation [30,31]. We first confirmed that Notch4
expression is significantly higher in the separately pooled
sMCs than mMCs by real-time RT-PCR (data not shown).
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Table I: Summary of genes examined by real-time PCR analysis.

http://www.biomedcentral.com/1471-2164/10/35

Gene Symbol Gene Name RefSeq Transcript ID Reference
Kit kit oncogene NM_021099 15

Fcerla Fc fragment of IgE, high affinity |, receptor for o polypeptide NM_0l0184 16

Mcpt | mast cell protease | NM_008570 17,18
Mcpt2 mast cell protease 2 NM_008571 19

Mcpt4 mast cell protease 4 NM_010779 2,20

Cma2 chymase 2, mast cell (mast cell protease 10) NM_001024714 | 4*
Anxal0 annexin AlO NM_011922 21

Ctse cathepsin E NM_007799 22

Fos FBJ osteosarcoma oncogene NM_010234 23

Ptgrl Prostaglandin reductase | (leukotriene B, |2-hydroxydehydrogenase) NM_025968 24 (porcine)
Cnnl calponin | NM_009922 25

Ces3 carboxylesterase 3 NM_053200 26

Cpe carboxypeptidase E NM_01349%4 27 (bovine)
Notch4 Notch gene homolog 4 NM_010929 28

28S rRNA 28S ribosomal RNA NR_003279 29

*, The coding sequence presented in this paper is the N-terminus truncated-form of Cma2, while the RefSeq "NM_001024714" is the complete

sequence of Cma2.

We next investigated whether the Notch4 protein is exclu-
sively present in sMCs by immunostaining of stomach tis-
sue (Figure 6a). Notch4 signals were detected in the
nucleus-like structures of sMCs but not in those of mMCs.
Furthermore, Notch4 signals were also found in the skin
MCs, which were adjacently clustered with sMCs (Figure
3a). These results show that Notch4 is present in sMCs but
not in mMCs, and suggest that Notch4 participates in
sMC-specific transcription of Notch-target genes, which
may be required for some sMC functions. In hematopoi-
etic cells, it has been reported that constitutively active
Notch4 promotes the expansion of progenitor cells and
inhibits myeloid differentiation [32]. Since Notch ligands
have been shown to exist in connective tissues such as skin
dermis [33], it will be interesting to explore whether
Notch4 plays a role in the differentiation of sMCs and the
maintenance of sMC functions.

The Ptgr1 product, 15-oxo-prostaglandin 13-reductase/
leukotriene (LT) B, 12-hydroxydehydrogenase is an essen-
tial enzyme for inactivation of eicosanoids such as pros-
taglandin E, (PGE,) and LTB, [34]. Although it has been
reported that the pathways of eicosanoid synthesis differ
among the different MC subclasses [1,4], our results sug-
gest that the inactivation system of eicosanoids also varies
among the MC subclasses. Ptgr1 expression was found to
be significantly higher in the separately pooled mMCs by
real-time RT-PCR (data not shown). We also examined
Ptgrl expression in stomach sections by immunostaining.
Signals for the Ptgrl protein were found in granule-like
structures of mMCs in the stomach mucosa but not in
sMCs (Figure 6b), suggesting that the Ptgrl enzyme may
be released from mMCs upon degranulation. Since PGE,
plays critical roles in the maintenance of gut homeostasis
through mucosal protection and inhibition of acid secre-

tion, it is possible that when activated, mMCs negatively
regulate the cytoprotective actions of PGE, through rapid
inactivation by Ptgrl.

Gene expression pattern of extracellular matrix
components, adhesion molecules, and cytoskeletal
proteins in sMCs and mMCs

MC phenotypes have been shown to depend on their
interactions with the surrounding extracellular matrices
(ECMs) and neighboring cells [1]. One of the most
remarkable findings in this study is the difference in gene
expression of ECM protein components, adhesion mole-
cules, and cytoskeletal proteins, which may reflect func-
tional adaptation of each type of MC to the mucosal or
submucosal environment in the stomach (Figure 5b).
mMCs express genes for mucosa-specific ECM proteins
such as Mucl (Mucin) and Tff1 (Trefoil factor), while
sMCs express genes for conventional ECM proteins such
as Col4a (procollagen) and Lama2 (laminin). Moreover,
sMCs express genes for adhesion molecules such as Alcam
and Vcam1, and genes for ordinary cytoskeletal proteins
such as Acta2 (actin), while mMCs express desmosome-
component genes such as Dsc2 (desmocollin) and Dsg2
(desmoglein), and genes for keratin intermediate fila-
ments such as Krt8 and Krt19. Desmosomes were reported
to be present in the stomach epithelia [35], and it was
found that desmosome-like structures are detected in a
particular type of MC [36]. It is thus possible that mMCs
interact with adjacent epithelia through desmosomal
adhesion in the stomach. In contrast, sMCs appear to
interact with neighboring cells via adhesion molecules
such as VCAM-1, ALCAM and VE-cadherin (Vcaml,
Alcam1 and Cdh5). Since these adhesion molecules have
been shown to be involved in dynamic regulation of the
actin cytoskeleton [37,38], such molecule-mediated inter-

Page 8 of 13

(page number not for citation purposes)



BMC Genomics 2009, 10:35

http://www.biomedcentral.com/1471-2164/10/35

a (&) Signal log ratio
E sMC mMC 321012 3
mi1 2 3 1 2 3 (vs BMMC)

sMC-rich

Differentially expressed genes
between sMCs and mMCs

Notch4, Mcpt4,
Acta2, Actg2, Myh11, Myl9
Col4a1, Lama2, Lamb2

|l Mcpt6, H2-Q10

| Mcpt5, H2-D1, H2-Q7, H2-K

Ptgr1, Mcpt1, Mcpt2, Dsc2, Ds
Krt8, Krt17, Krt18, Krt19

:E H2-Aa, H2-Eb1, Muc1, Tff1, Tff2
= I
g I Ctse, Fos
E
b
Functional Category sMC-rich (CL71-3) mMC-rich (CL4-7)
MHC Class | H2-D1, H2-K, H2-Q7, H2-Q10
MHC Class Il H2-Aa, H2-Eb1
Protease Mpt4, Mcpt5, Mcpt6, Cma2, Cpe, Cts/ Mcpt1, Mcpt2, Ctse
Eicosanoid-related Ptgr1, Pla2g12
Transcription-Associated Factor | Notch4, Notch1, Barx1, Bcl6, Etv1, Madh1, Sox18 Foxa1, Fos, Sox2
Signal Transduction 1
Adhesion Molecule \lcam, Cdh sc2, Dsg
Receptor-related C1qr1, Eng, ll6st, Nptxr, Pdgfra, Tnfrsf1b
Cytoskeleton Acta2, Actg2, Cnn1, Des, Dstn, Myh11, Myl9, Pdlim3, Prph1, Stmn2, Tagin| Krt 8, Krt17, Krt18, Krt19
Secretion Muc1, TF1, Tff2
Extracellular Matrix Bgn, Coi4at, Dcn, Fbin2, Lama2, Lamb2, Lum, Mglap, Pmp22, Sparcl
Miscellaneous Ces3, Hdc Anxa10

Figure 5
Clustering analysis of the

gene expression profiles between sMCs and mMCs. (a) Representation of mMRNA expres-

sion levels of sMC,_; and mMC,_; compared with BMMCs. The color of the bars represents the ratio of signal intensity
between independent samples and BMMC:s, according to the scale shown on the top right. Genes with significantly different
expression between sMCs and mMCs (p < 0.05, Limma's t test) were selected (1,272 genes) and classified into 7 clusters using
the k-means algorithm (CL/-7). (b) Functional categorization of representative genes from (a).
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Toluidine blue

sMCs

Immunohistochemical analysis of Notch4 and Ptgrl in sMCs and mMCs in stomach tissue. (a) Stomach submu-
cosa (sMCs; left panels), stomach mucosa (mMCs; middle panels) and skin (skin MCs; right panels) sections were stained with an
anti-Notch4 antibody (lower panels) and with toluidine blue (upper panels). sMCs stained with the anti-Notch4 antibody in the
gastric submucosa and skin dermis are indicated by arrows. No staining was observed in mMCs (arrowheads) localized in the
gastric mucosa. sMCs and mMCs were metachromatically stained with toluidine blue. (b) Stomach submucosa (sMCs; left pan-
els) and stomach mucosa (mMC:s; right panels) sections were stained with an anti-Ptgr| antibody (lower panels) and with toluid-
ine blue (upper panels). No staining with the anti-Ptgr| antibody was found in the sMCs (arrow). Small signals were observed in
the mMCs (arrowheads). sMCs and mMCs were metachromatically stained with toluidine blue. Bars, 25 um (a, b).

actions with submucosal cells may be critical to maintain
the functional and morphological properties of sMCs.
Indeed, it should be noted that most sMCs are variable in
shape, and are often stretched and winding as compared
with mMGCs [1].

Conclusion

We established a method of RNA amplification from
pooled intact MCs isolated from frozen tissue sections,
which enables us to conveniently obtain the global gene
expression pattern of MCs from various tissues, organs,
and species including humans. By using this method, we
demonstrated for the first time the distinct gene expres-
sion profiles of submucosal and mucosal MCs in the
mouse stomach. Our findings offer insight into possible
unidentified properties specific for each MC subclass.

Methods

Materials

The following materials were obtained from the sources
indicated: HPLC purified T7-(dT),, primer [5'-
GGCCAGTGAATTGTAATACGACTCACTATAGGGAGGC
GG(T),,] from GE Healthcare UK Ltd. (Buckinghamshire,
England), RNase-free water, dNTP, SusperScript II,
Escherichia coli (E. coli) RNase H, E. coli DNA polymerase
I, E. coli DNA ligase, T4 DNA polymerase and random
hexamers from Invitrogen (San Diego, CA), RNase inhib-

itor, glycogen, and MEGAscript T7 kit from Ambion (Aus-
tin, TX). Balb/c mice were obtained from JapanClea
(Hamamatsu, Japan). This study was approved by the
Committee on Animal Research of Kyoto University Grad-
uate School of Pharmaceutical Sciences.

RNA amplification and oligonucleotide microarray
Mouse interleukin-3-dependent BMMCs were prepared as
described previously [39]. Total RNA of BMMCs was
extracted using RNeasy mini kit (Qiagen, Valencia, CA).
Five micrograms of total RNA from BMMCs were labeled
and prepared for hybridization according to the manufac-
turer's instructions (standard protocol). On the other
hand, 30 pg, 10 pg and 2 pg of BMMC total RNA were
amplified and labeled by our original three-round ampli-
fication method, which is described below.

First round

Total RNA was incubated with T7-(dT),, primer and first-
strand cDNA was then synthesized by SuperScript II (Inv-
itrogen). Second-strand synthesis was carried out by add-
ing RNase H, DNA polymerase I and DNA ligase. The
antisense RNA was synthesized using MEGAscript T7 kit.

Second round
The antisense RNA product was annealed with random
hexamers, and cDNA was again synthesized by Super-
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Script II. Then, the RNA-cDNA hybrid was digested with
RNase H and annealed with the T7-(dT),, primer, and
then second-strand synthesis was carried out by adding
DNA polymerase I. The antisense RNA was again synthe-
sized using MEGAscript T7 kit. Quality and size distribu-
tion of the antisense RNA product were confirmed by an
RNA 6000 Nano LabChip on the Agilent Bioanalyzer
(Palo Alto, CA).

Third round

As in the case of the second round, the double-stranded
c¢DNA with a T7-promoter sequence was prepared from
the second-round RNA product. Biotin-labeled antisense
RNA was synthesized by RNA Transcript Labeling Kit
(Enzo, Farmingdale, NY).

These labeled RNAs were hybridized to GeneChip Murine
Expression oligonucleotide arrays (Affymetrix, Santa
Clara, CA). We used microarray suite 5.0 of Affymetrix
GeneChip Operating Software for quantification of the
GeneChip data and decision of "Presence" or "Absence"
of expression of each probe set using the values of 11
paired (perfect-matched and mismatched) probes.

Microdissection of MCs from tissue sections, RNA
extraction, and microarray data analysis

Tissue sections 7 pm in thickness were prepared using a
Jung Frigocut 3000E cryostat (Leica, Nussloch, Germany),
and thaw-mounted onto poly-L-lysine-coated glass slides.
To visualize MCs, the sections were fixed with carnoy's fix-
ative, and immersed in toluidine blue using the following
protocol: carnoy's fixative for 1 min, RNase-free water for
10 sec, toluidine blue (0.5% in 0.12N hydrochloric acid)
for 5 sec, RNase-free water for 10 sec, 70% ethanol for 15
sec, and 100% ethanol for 15 sec three times; the sections
were then vacuumed for 10 min to dry. Each single MC
was microdissected from the sections using a patch
pipette, and 15 cells were collected with an LCM Cap
using the PixCell Ile Laser Capture Microdissection Sys-
tem (Arcturus, Mountain View, CA). As a negative control,
LCM Caps just put on tissue sections without MCs were
subjected to the same protocols (no cell). Fifteen micro-
dissected MCs were homogenized in denaturing buffer of
RNeasy mini kits. Twenty nanograms of poly G (Sigma,
Saint Louis, MO) was added to the lysate as a nucleic acid
carrier, and total RNA was extracted. Fifty picograms of
BMMC total RNA (BMMC-amp) and total RNAs extracted
from sMCs in the stomach submucosa, mMCs in the
stomach mucosa and skin MCs in the ear dermis were
amplified and labeled using the three-round amplifica-
tion method, and were hybridized to U74Av2 Murine
Genome Array (Affymetrix). On the other hand, total RNA
of BMMCs (BMMC-std) and peritoneal MC, which were
collected from mouse peritoneal cavities and purified by
density gradient centrifugation using metrizamide, were

http://www.biomedcentral.com/1471-2164/10/35

labeled and hybridized by the standard protocol. Raw
microarray data of macrophages (E-MEXP-38/
298290452) and fibroblasts (E-GEOD-6697/
1629511747) using the standard protocol were obtained
from ArrayExpress, a public repository for transcriptomics
data. We used either microarray suite 5.0 of Affymetrix
GeneChip Operating Software or the robust multi-array
average (RMA) expression measure for log transformation
(log,) and normalization of the GeneChip data [40,41].
To determine the similarity in the data, hierarchical clus-
tering analysis and PCA using the R statistical environ-
ment http://www.r-project.org were performed as a
visualization technique. For comparison of the expression
profiles of sMCs with that of mMCs, we selected 1,272
genes identified as having significantly different expres-
sion levels by the Limma's t-test (p < 0.05, n = 3). Signal
values of sMCs and mMCs were normalized by the signal
values of BMMCs. Using the k-means clustering algo-
rithm, these genes were classified into seven clusters on
the basis of similarity of their expression profiles.

Real-time reverse-transcription polymerase chain reaction
(RT-PCR)

Total RNA extracted from 60 captured MCs was subjected
to real-time RT-PCR. Real-time PCR was performed in a
LightCycler (Roche, Mannheim, Germany) using Fast
Start DNA Master SYBR Green I. The expression level of
each gene was quantified using external standardized
dilution, and normalized by 28S ribosomal RNA. Primer
sequences are shown in Table 2. The specificity of the
primers was confirmed by checking the product size and
restriction enzyme pattern by gel electrophoresis and the
melting temperature (data not shown).

Immunostaining

For tissue staining, frozen sections were fixed in 4% for-
maldehyde and incubated with a rabbit anti-Notch4 anti-
body (1:20, Santa Cruz Biotechnology, Santa Cruz, CA) or
a rabbit anti-Ptgrl antibody (1:20) which was a kind gift
from Prof. Takao Shimizu (University of Tokyo) [42].

Abbreviations

BMMC: bone marrow-derived mast cell; CL: cluster; sMC:
submucosa mast cell; DEPC: diethylpyrocarbonate; ECM:
extracellular matrix; LCM: laser capture microdissection;
LT: leukotriene; MC: mast cell; mMC: mucosa mast cell;
PCA: principal component analysis; PG: prostaglandin; r:
correlation coefficient; RMA: robust multi-array average;
rRNA: ribosomal RNA; RT-PCR: reverse transcription-
polymerase chain reaction.
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Table 2: List of primers used for real-time PCR analysis.
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Gene Symbol Forward primer (5' -> 3') Reverse primer (5' -> 3)

Kit ATAGACCCGACGCAAC AATAAACGAGTCACGCT
Fcerla GCCCCGTCTCCATTAG CAATAACCCCGTGTCC
Mcpt! AAACAGTCATAAATGGCAAG GGGAACAAACCATCATCAC
Mcpt2 TTCATTGCCTAGTTCCTCT CTTTTCAGCTACTTGCTCT
Mcpt4 CCTTACATGGCCCATCT CTTCCCCGGCTTGATA
Cma2 GCGGAAATGCAAAGCC ACAGGGAACAGTCCATC
Anxal0 TACCCACAACTTCGGC GGCAAGTAGTGCTTTCT
Ctse GCAAGCCTATTGGCAG TGGCATCGTGTCGAGA

Fos TGTGTACTCCCGTGGT ACGAACAGGTAAGGTCC
Ptgrl CATCGTGAATCGGTGG GCTAGGTCAAACGCAT

Cnnl ACGGCCTACGGTACAC GGTACTCCGGGTTCAG

Ces3 AGTGATTGTGTCTCGAAG GTTCCCATTCCGAGCA

Cpe ACCGGAAGAGACTCTCA CCAGTAATCCCCATCCT
Notch4 CCCTTAAACTCGGTTGT GGTGCTTAATAAATAGTTGCC
28S rRNA CAGTACGAATACAGACCG GGCAACAACACATCATCAG

ray data and statistical analysis; ST performed the
research; GT designed the research; ST performed the
research; YS designed the research and wrote the paper.
Conflict-of-interest: The authors declare no competing
financial interests.

Additional material

Additional file 1

Genes with significantly different expression between sMCs and
mMCs. The list represents 1,272 genes significantly altered between
sMCs and mMCs in the order of clustering (Figure 5a). The values repre-
sent expression levels normalized to those of BMMCs.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-35-S1.xls]

Acknowledgements

This work was supported by Grants-in-Aid for Scientific Research on Pri-
ority Areas "Applied Genomics" from the Ministry of Education, Science,
Sports, and Culture of Japan and from the Ministry of Health and Labor of
Japan. We thank Dr. K Nakayama (Kyoto University) for their invaluable
advice on this study. We appreciate Drs. T Shimizu and T Yokomizo for
providing an anti-Ptgr| antibody and generous instructions. We also thank
Dr. HA Popiel and Ms. Y Nakaminami for careful reading and secretary
assistance, respectively.

References

l. Metcalfe DD, Baram D, Mekori YA: Mast cells. Physiol Rev 1997,
77:1033-1079.

2.  Reynolds DS, Stevens RL, Lane WS, Carr MH, Austen KF, Serafin WE:
Different mouse mast cell populations express various com-
binations of at least six distinct mast cell serine proteases.
Proc Natl Acad Sci USA 1990, 87:3230-3234.

3.  Bradding P, Okayama Y, Kambe N, Saito H: lon channel gene
expression in human lung, skin, and cord blood-derived mast
cells. | Leukoc Biol 2003, 73:614-620.

4.  Ogasawara T, Murakami M, Suzuki-Nishimura T, Uchida MK, Kudo I
Mouse bone marrow-derived mast cells undergo exocytosis,
prostanoid generation, and cytokine expression in response

to G protein-activating polybasic compounds after coculture
with fibroblasts in the presence of c-kit ligand. | Immunol 1997,
158:393-404.

Hernandez-Hansen V, Bard |D, Tarleton CA, Wilder JA, Lowell CA,
Wilson BS, Oliver JM: Increased expression of genes linked to
FcepsilonRI Signaling and to cytokine and chemokine pro-
duction in Lyn-deficient mast cells. | Immunol 2005,
175:7880-7888.

lida M, Matsumoto K, Tomita H, Nakajima T, Akasawa A, Ohtani NY,
Yoshida NL, Matsui K, Nakada A, Sugita Y, Shimizu Y, Wakahara S,
Nakao T, Fujii Y, Ra C, Saito H: Selective down-regulation of
high-affinity IgE receptor (FcepsilonRI) alpha-chain messen-
ger RNA among transcriptome in cord blood-derived versus
adult peripheral blood-derived cultured human mast cells.
Blood 2001, 97:1016-1022.

Nakajima T, Matsumoto K, Suto H, Tanaka K, Ebisawa M, Tomita H,
Yuki K, Katsunuma T, Akasawa A, Hashida R, Sugita Y, Ogawa H, Ra
C, Saito H: Gene expression screening of human mast cells
and eosinophils using high-density oligonucleotide probe
arrays: abundant expression of major basic protein in mast
cells. Blood 2001, 98:1127-1134.

Babina M, Schulke Y, Kirchhof L, Guhl S, Franke R, Bohm S, Zuberbier
T, Henz BM, Gombart AF: The transcription factor profile of
human mast cells in comparison with monocytes and granu-
locytes. Cell Mol Life Sci 2005, 62:214-226.

Inomata N, Tomita H, lkezawa Z, Saito H: Differential gene
expression profile between cord blood progenitor-derived
and adult progenitor-derived human mast cells. Immunol Lett
2005, 98:265-271.

Okumura S, Kashiwakura J, Tomita H, Matsumoto K, Nakajima T,
Saito H, Okayama Y: Identification of specific gene expression
profiles in human mast cells mediated by Toll-like receptor
4 and FcepsilonRI. Blood 2003, 102:2547-2554.

Enerback L: Mast cells in rat gastrointestinal mucosa. 2. Dye-
binding and metachromatic properties. Acta Pathol Microbiol
Scand 1966, 66:303-312.

Friend DS, Ghildyal N, Austen KF, Gurish MF, Matsumoto R, Stevens
RL: Mast cells that reside at different locations in the jejunum
of mice infected with Trichinella spiralis exhibit sequential
changes in their granule ultrastructure and chymase pheno-
type. | Cell Biol 1996, 135:279-290.

Knight PA, Wright SH, Lawrence CE, Paterson YY, Miller HR:
Delayed expulsion of the nematode Trichinella spiralis in
mice lacking the mucosal mast cell-specific granule chy-
mase, mouse mast cell protease-l. | Exp Med 2000,
192:1849-1856.

Chu W, Johnson DA, Musich PR: Molecular cloning and charac-
terization of mouse mast cell chymases. Biochim Biophys Acta
1992, 1121:83-87.

Qiu FH, Ray P, Brown K, Barker PE, Jhanwar S, Ruddle FH, Besmer P:
Primary structure of c-kit: relationship with the CSF-1/

Page 12 of 13

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1471-2164-10-35-S1.xls
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9354811
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2326280
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2326280
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12714576
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12714576
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12714576
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8977215
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16339523
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16339523
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16339523
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11159531
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11159531
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11493461
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11493461
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11493461
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15666093
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15666093
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15666093
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15860227
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15860227
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15860227
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12855579
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12855579
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12855579
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4162018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4162018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8858180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8858180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8858180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11120781
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11120781
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11120781
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1376147
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1376147
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2456920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2456920

BMC Genomics 2009, 10:35

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

PDGF receptor kinase family — oncogenic activation of v-kit
involves deletion of extracellular domain and C terminus.
EMBO J 1988, 7:1003-101 I.

Ra C, Jouvin MH, Kinet JP: Complete structure of the mouse
mast cell receptor for IgE (Fc epsilon RI) and surface expres-
sion of chimeric receptors (rat-mouse-human) on trans-
fected cells. | Biol Chem 1989, 264:15323-15327.

Ghildyal N, McNeil HP, Stechschulte S, Austen KF, Silberstein D, Gur-
ish MF, Somerville LL, Stevens RL: IL-10 induces transcription of
the gene for mouse mast cell protease-|, a serine protease
preferentially expressed in mucosal mast cells of Trichinella
spiralis-infected mice. | Immunol 1992, 149:2123-2129.

Trong HL, Newlands GF, Miller HR, Charbonneau H, Neurath H,
Woodbury RG: Amino acid sequence of a mouse mucosal
mast cell protease. Biochemistry 1989, 28:391-395.

Serafin WE, Reynolds DS, Rogelj S, Lane WS, Conder GA, Johnson SS,
Austen KF, Stevens RL: Identification and molecular cloning of
a novel mouse mucosal mast cell serine protease. | Biol Chem
1990, 265:423-429.

Serafin WE, Sullivan TP, Conder GA, Ebrahimi A, Marcham P, Johnson
SS, Austen KF, Reynolds DS: Cloning of the cDNA and gene for
mouse mast cell protease 4. Demonstration of its late tran-
scription in mast cell subclasses and analysis of its homology
to subclass-specific neutral proteases of the mouse and rat.
J Biol Chem 1991, 266:1934-1941.

Morgan RO, Jenkins NA, Gilbert D), Copeland NG, Balsara BR, Testa
JR, Fernandez MP: Novel human and mouse annexin Al0 are
linked to the genome duplications during early chordate
evolution. Genomics 1999, 60:40-49.

Tatnell P}, Lees WE, Kay J: Cloning, expression and characteri-
sation of murine procathepsin E. FEBS Lett 1997, 408:62-66.
Curran T, MacConnell WP, van Straaten F, Verma IM: Structure of
the FB) murine osteosarcoma virus genome: molecular clon-
ing of its associated helper virus and the cellular homolog of
the v-fos gene from mouse and human cells. Mol Cell Biol 1983,
3:914-921.

Yokomizo T, lzumi T, Takahashi T, Kasama T, Kobayashi Y, Sato F,
Taketani Y, Shimizu T: Enzymatic inactivation of leukotriene B4
by a novel enzyme found in the porcine kidney. Purification
and properties of leukotriene B4 12-hydroxydehydrogenase.
J Biol Chem 1993, 268:18128-18135.

Strasser P, Gimona M, Moessler H, Herzog M, Small JV: Mammalian
calponin. Identification and expression of genetic variants.
FEBS Lett 1993, 330:13-18.

Ovnic M, Tepperman K, Medda §, Elliott RW, Stephenson DA, Grant
SG, Ganschow RE: Characterization of a murine cDNA encod-
ing a member of the carboxylesterase multigene family.
Genomics 1991, 9:344-354.

Fricker LD, Evans CJ, Esch FS, Herbert E: Cloning and sequence
analysis of cDNA for bovine carboxypeptidase E. Nature 1986,
323:461-464.

Uyttendaele H, Marazzi G, Wu G, Yan Q, Sassoon D, Kitajewski J:
Notch4/int-3, a mammary proto-oncogene, is an endothelial
cell-specific mammalian Notch gene. Development 1996,
122:2251-2259.

Hassouna N, Michot B, Bachellerie |JP: The complete nucleotide
sequence of mouse 28S rRNA gene. Implications for the
process of size increase of the large subunit rRNA in higher
eukaryotes. Nucleic Acids Res 1984, 12:3563-3583.

Radtke F, Wilson A, Mancini S), MacDonald HR: Notch regulation
of lymphocyte development and function. Nat Immunol 2004,
5:247-253.

Sakata-Yanagimoto M, Nakagami-Yamaguchi E, Saito T, Kumano K,
Yasutomo K, Ogawa S, Kurokawa M, Chiba S: Coordinate regula-
tion of transcription factors through Notch2 is an important
mediator of mast cell fate. Proc Natl Acad Sci USA 2008,
22:7839-7844.

Vercauteren SM, Sutherland HJ: Constitutively active Notch4
promotes early human hematopoietic progenitor cell main-
tenance while inhibiting differentiation and causes lymphoid
abnormalities in vivo. Blood 2004, 104:2315-2322.

Nickoloff B), Qin JZ, Chaturvedi V, Denning MF, Bonish B, Miele L:
Jagged-1 mediated activation of notch signaling induces
complete maturation of human keratinocytes through NF-
kappaB and PPARgamma. Cell Death Differ 2002, 9:842-855.

http://www.biomedcentral.com/1471-2164/10/35

34. Hori T, Yokomizo T, Ago H, Sugahara M, Ueno G, Yamamoto M,
Kumasaka T, Shimizu T, Miyano M: Structural basis of leukotriene
B4 12-hydroxydehydrogenase/l5-Oxo-prostaglandin 13-
reductase catalytic mechanism and a possible Src homology
3 domain binding loop. | Biol Chem 2004, 279:22615-22623.

35. Brennan D, Hu Y, Kljuic A, Choi Y, Joubeh S, Bashkin M, Wabhl , Fer-
tala A, Pulkkinen L, Uitto J, Christiano AM, Panteleyev A, Mahoney
MG: Differential structural properties and expression pat-
terns suggest functional significance for multiple mouse des-
moglein | isoforms. Differentiation 2004, 72:434-449.

36. Vodenicharov A, Chouchkov C: Morphological study of mast cell
localization in the wall of the proximal tubule in the domes-
tic swine kidney. Anat Histol Embryol 1999, 28:85-88.

37. Swart GW, Lunter PC, Kilsdonk JW, Kempen LC: Activated leuko-
cyte cell adhesion molecule (ALCAM/CD66): signaling at
the divide of melanoma cell clustering and cell migration?
Cancer Metastasis Rev 2005, 24:223-236.

38. Cook-Mills ]M: VCAM-I signals during lymphocyte migration:
role of reactive oxygen species. Mol Immunol 2002, 39:499-508.

39. Tanaka S, Takasu Y, Mikura S, Satoh N, Ichikawa A: Antigen-inde-
pendent induction of histamine synthesis by immunoglobulin
E in mouse bone marrow-derived mast cells. | Exp Med 2002,
196:229-235.

40. lIrizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP:
Summaries of Affymetrix GeneChip probe level data. Nucleic
Acids Res 2003, 31:el5.

41. Sugimoto Y, Tsuboi H, Okuno Y, Tamba S, Tsuchiya S, Tsujimoto G,
Ichikawa A: Microarray evaluation of EP4 receptor-mediated
prostaglandin E2 suppression of 3T3-L| adipocyte differenti-
ation. Biochem Biophys Res Commun 2004, 322:911-917.

42. Yamamoto T, Yokomizo T, Nakao A, Izumi T, Shimizu T: Immuno-
histochemical localization of guinea-pig leukotriene B4 |2-
hydroxydehydrogenase/l5-keto prostaglandin |3-reductase.
Eur | Biochem 2001, 268:6105-6113.

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 13 of 13

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2456920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2527850
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2527850
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2527850
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1517575
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1517575
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1517575
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2706264
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2706264
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1688433
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1688433
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1988455
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1988455
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10458909
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10458909
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10458909
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9180269
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9180269
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6306448
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6306448
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6306448
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8394361
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8394361
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8370452
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8370452
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1840565
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1840565
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3020433
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3020433
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8681805
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8681805
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8681805
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6328426
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6328426
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6328426
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14985712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14985712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15231576
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15231576
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15231576
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12107827
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12107827
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12107827
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15007077
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15007077
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15007077
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15606502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15606502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15606502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10386001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10386001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10386001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15986133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15986133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12431382
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12431382
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12119347
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12119347
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12119347
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12582260
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12582260
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15336550
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15336550
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15336550
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11733004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11733004
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and discussion
	Development of an RNA amplification protocol to obtain gene expression profiles from a small amount of RNA
	Gene expression profiles of submucosal and mucosal MCs from the stomach
	Validation of microarray results by real time RT-PCR analysis
	Clustering analysis of the gene expression profiles and functional categorization between sMCs and mMCs
	Protein expression of Notch4 in sMCs and Ptgr1 in mMCs in stomach tissue
	Gene expression pattern of extracellular matrix components, adhesion molecules, and cytoskeletal proteins in sMCs and mMCs

	Conclusion
	Methods
	Materials
	RNA amplification and oligonucleotide microarray
	First round
	Second round
	Third round

	Microdissection of MCs from tissue sections, RNA extraction, and microarray data analysis
	Real-time reverse-transcription polymerase chain reaction (RT-PCR)
	Immunostaining

	Abbreviations
	Authors' contributions
	Additional material
	Acknowledgements
	References

