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Abstract

Background: Malaria is a tropical disease caused by protozoan parasite, Plasmodium, which is
transmitted to humans by various species of female anopheline mosquitoes. Anopheles stephensi is
one such major malaria vector in urban parts of the Indian subcontinent. Unlike Anopheles gambiae,
an African malaria vector, transcriptome of A. stephensi midgut tissue is less explored. We have
therefore carried out generation, annotation, and analysis of expressed sequence tags from sugar-
fed and Plasmodium yoelii infected blood-fed (post 24 h) adult female A. stephensi midgut tissue.

Results: We obtained 7061 and 8306 ESTs from the sugar-fed and P. yoelii infected mosquito
midgut tissue libraries, respectively. ESTs from the combined dataset formed 1319 contigs and 2627
singlets, totaling to 3946 unique transcripts. Putative functions were assigned to 1615 (40.9%)
transcripts using BLASTX against UniProtKB database. Amongst unannotated transcripts, we
identified 1513 putative novel transcripts and 818 potential untranslated regions (UTRs). Statistical
comparison of annotated and unannotated ESTs from the two libraries identified | 19 differentially
regulated genes. Out of 3946 unique transcripts, only 1387 transcripts were mapped on the A.
gambiae genome. These also included 189 novel transcripts, which were mapped to the
unannotated regions of the genome. The EST data is available as ESTDB at http://

mycompdb.bioinfo-portal.cdac.in/cgi-bin/est/index.cgi.
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Conclusion: 3946 unique transcripts were successfully identified from the adult female A. stephensi
midgut tissue. These data can be used for microarray development for better understanding of
vector-parasite relationship and to study differences or similarities with other malaria vectors.
Mapping of putative novel transcripts from A. stephensi on the A. gambiae genome proved fruitful in
identification and annotation of several genes. Failure of some novel transcripts to map on the A.
gambiae genome indicates existence of substantial genomic dissimilarities between these two

potent malaria vectors.

Background

Anopheles stephensi is a major malaria vector in the Indian
subcontinent [1]. Rapid urbanization and development in
the region has stimulated a corresponding increase in
their population resulting in frequent malaria outbreaks
[2]. Although, recent malaria epidemics occurred at
higher frequencies, mortality was considerably low. For
example during 2003, of the reported 1.78 million cases,
only 1006 deaths were recorded in India [3].

Absence of an efficient vaccine [4], evolution of drug-
resistance in the parasites [5], and insecticide-resistance in
the mosquitoes [2] accentuate the need of an effective
malaria control strategy. Human immunization against
parasite proteins through transmission blocking vaccines
(TBVs) [6] is one such strategy. Bacterial and fungal-based
mosquito control methods are other alternatives but these
suffer from major difficulties in practical application
[7,8]. Transgenic mosquitoes could provide another con-
trol method [9], but successful application in field will
require designing of appropriate vector-parasite study
model [10]. Ito et al. [9], showed transgenic expression of
an antiparasitic peptide SM1 in mosquitoes leading to
impairment in Plasmodium berghei development. How-
ever, the peptide failed to show such activity against Plas-
modium falciparum [10,11], the human malaria parasite.
Study of naturally occurring P. falciparum-resistant A. gam-
biae mosquitoes revealed a Plasmodium-responsive gene,
Anopheles Plasmodium-responsive leucine-rich repeat 1
(APL1) [12], which could form a potent target for the
transgenic approach against P. falciparum. Many other
antiparasitic and/or immunologically active genes like
SRPNG [13] from A. gambiae and A. stephensi, TEP1 [14]
and leucine-rich repeat protein (LRIM1) [15] from A. gam-
biae have also been identified recently. Moreover, availa-
bility of A. gambiae genome sequence [16] has improved
the chances of discovery of more such potential genes in
this insect.

In the pre-genomic era, EST (Expressed Sequence Tag)
based studies were adopted to understand A. gambiae [17-
20] and its role in malaria transmission [21]. However,
despite its importance as a malaria vector, A. stephensi has
not been intensively investigated. Although EST [22-24]
and microarray-based [25] studies on A. stephensi and

Plasmodium exist, no major transcriptome based contribu-
tions have been reported so far. Here, we report the first
large-scale effort in construction and analysis of EST
libraries from midgut tissue of sugar-fed (SF) and P. yoelii
infected blood-fed (post 24 h) (BF) female A. stephensi. In
light of limited genomic and transcriptomic information
for A. stephensi, these data would significantly enrich the
molecular aspects of this insect and its role in malaria
transmission.

Results

Generation of ESTs and Pre-processing

Two cDNA libraries, SF and BF were prepared from sugar-
fed and P. yoelii infected blood-fed (post 24 h) adult
female A. stephensi mosquito midgut tissues, respectively.
Single-pass sequencing yielded 15367 ESTs from both, SF
(7061 ESTs) and BF (8306 ESTs) libraries as analyzed by
phred [26,27] (quality > 20) with minimum length
greater than 100 bases. Vector, adapter, and primer
sequences were removed using cross_match [28]. Mouse
and Plasmodium sequences were filtered using stand-alone
BLAST. Average length of ESTs from both the libraries was
approximately 380 bases and approximately 61% of the
sequences were above 300 nucleotides. Table 1 shows the
summary of EST data obtained in this study. All the ESTs
are deposited in GenBank with continuous accession
numbers [GenBank: EX212289 - EX227655].

EST assembly

CAP3 |29] based EST assembly and clustering of the com-
bined dataset (15367 ESTs) resulted in 1319 contigs and
2627 singlets, forming 3946 unique transcripts (UTs).
Similarly, independent assemblies were also performed
for SF and BF libraries. Details are given in Table 1.

Assignment of putative functions to ESTs and UTs

To assign putative function to ESTs and UTs, we per-
formed BLASTX search against the UniProtKB database.
Summary of BLASTX results for SF, BF, and combined UTs
are shown in Table 2. BLASTX results for combined UTs
are given in Additional file 1. Figure 1 shows BLAST hit
distribution across various species of organisms for all
UTs from the combined dataset. Putative functions were
assigned only to 8946 ESTs (58.2%) and 1615 UTs
(40.9%) (E-value < 1e-5). Non-coding EST sequences usu-
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Table I: Summary of ESTs generated from adult female A. stephensi midgut tissue.

Library feature SF library BF library Combined
Total ESTs Sequenced (High quality)t 7061 8306 15367
Number of Contigs 822 591 1319%
Number of ESTs in Contigs 5243 6951 12740
Number of Singlets 1818 1355 2627
Number of UTs$ 2640 1946 3946
Average length of ESTs 310.69 448.90 380~
Average length of Contigs 492.78 651.26 678.96%
Average %GC 45.70 52.06 48.88

TA high quality sequence is obtained by phred using quality value > 20 for a stretch 100 bases. ¥Obtained on assembling ESTs from SF and BF
libraries. § UTs are calculated as sum of number of contigs and singlets. *Obtained using all the ESTs together. $Calculated using contigs obtained in

common assembly of ESTs from both the libraries.

ally fail to find a homolog in the protein databases during
BLASTX search [30]. We therefore, screened unannotated
(with no BLAST hits) UTs (2331) for the presence of puta-
tive coding region using ESTScan program [31]. 1513 UTs
were predicted to contain a coding region, thereby sug-
gesting these as novel genes. The remaining sequences
could be potential untranslated regions (UTRs). Table 3
shows ESTScan results of both the libraries and combined
dataset.

A. stephensi UTs were also compared with the EST
sequences of A. gambiae, Aedes aegypti, and Drosophila
melanogaster using TBLASTX (E-value < 1e-5). As com-
pared to ESTs from Ae. aegypti and D. melanogaster, a
higher number of UTs (45%) were homologous to A.
gambiae ESTs. Only 39% and 34% UTs were identified
homologous to ESTs from Ae. aegypti and D. mela-
nogaster, respectively (Table 4).

Assignment of GO terms & Statistical Comparison
Gene Ontology (GO) categories were assigned only to
505, 601, and 629 UTs from the SF, BF, and combined

Table 2: BLAST (BLASTX, E-value < le-5) hit summary for UTs
against UniprotKB database.

Library/dataset UTs No. of UTs showing BLAST hit

SF 2640 897
BF 1946 1039
Combined 3946 1615

datasets, respectively using Blast2 GO program [32]. Addi-
tional file 2: Figure S2 illustrates percent similarity and E-
value distribution obtained for all the UTs. Table 5 shows
percent distribution of UTs among various assigned GO
terms (2nd level) according to the GO consortium [33]
for SF and BF libraries. Details of assigned GO terms to
each UT from combined dataset are given in Additional
file 1. Statistical comparison of GO terms between the two
libraries revealed an overrepresentation of metabolic
process-related genes in BF library, whereas cellular proc-
ess-related house keeping genes were dominant in SF
library (Figure 2). For details refer Additional file 3.

Statistical comparison of gene expression

IDEG6 analysis [34] for BLASTX-annotated ESTs identi-
fied 114 differentially expressed genes (P < 0.05) between
the two libraries. In brief, 58 genes (20 overexpressed and
38 exclusively expressed) in SF and 56 genes (23 overex-
pressed and 33 exclusively expressed) in BF library were
found to be differentially regulated. Few unannotated
genes (unannotated ESTs) were also found to be signifi-
cantly altered in expression. Two unannotated genes
(PU_Contigl36 (P = 0) and PU_Contig398 (P = 0)) were
exclusively expressed in SF library, while only one such
exclusive gene (PI_Contig553 (P = 0)) was found signifi-
cantly expressed in BF library. Moreover, PU_Contig33
and PI_Contigd78 (P < 0.05), PU_Contig9 and
PI_Contig24 (P < 0.05) pairs of unannotated genes were
observed in both the libraries with significant changes in
gene expression. Many genes were also exclusive to each
library but showed no statistical significance. Details are
given in Additional file 4.
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Table 3: ESTScan based prediction of potential coding regions in unannotated UTs.

Number of UTs SF library BF library Combined
No. of UTs with no BLAST hit 1743 907 2331

No. of UTs as potential UTRs 620 309 818

No. of UTs showing a putative coding region 1123 598 1513

UTs with no significant hit in UniProtKB database (BLASTX, E-value < |e-5).

Identification of insect-specific transcripts

To identify insect-specific genes in our UTs, we used data
from Zhang et al. [35]. Only 20 transcripts encoding
insect-specific proteins were observed in our data and
most of them were related to metabolic processes such as
reductases and deaminases. A few receptor proteins, sen-
sory and immunity-related proteins were also observed
(Additional file 1).

others

Danio rerio
Phlebotomus papatasi
Branchiostoma fioridae
Aedes albopictus
Culex tarsalis
Anopheles stephensi
Bombyx mori
Acyrthosiphon pisum
Anopheles darlingi
Pediculus humanus
unknown

Apis mellifera

Nasonia vitripennis
Drosophila simulans
Drosophila persimilis
Tribolium castaneum
Drosophila sechellia
Drosophila erecta
Drosophila pseudoobscura
Drosophila yakuba
Drosophila grimshawi
Drosophila ananassae
Drosophila virilis
Drosophila mojavensis
Drosophila willistoni
Drosophila melanogaster
Culex quinquefasciatus
Aedes aegypti
Anopheles gambiae

Species

Figure |

Mapping of ESTs on the Anopheles gambiae genome
Genome mapping and alignment of A. stephensi UTs on A.
gambiae genome revealed many homologous genes
between them (Additional file 1). 1387 UTs were success-
fully mapped on the A. gambiae genome, which also
included 189 novel UTs. Remaining UTs (2812) failed to
show any alignment with the A. gambige genome. Table 6
illustrates the details of mapping study.

1000
No. of BLAST hits

1500 2500

BLASTX based species distribution of UTs. Graph generated using Blast2GO program shows species distribution of UTs
from combined dataset using BLASTX against non-redundant protein database. Top 10 BLAST hits were considered for each

transcript.
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Table 5: Percent distribution of UTs among the assigned GO
terms based on (A) Biological processes, (B) Molecular function,
and (C) Cellular component.

Library/dataset Organism GO terms SF library BF library
A. gambiae Ae. aegypti D. melanogaster A) Biological Process
SF 1073 863 735 Behavior 0.1 0.0
BF 1149 1026 909 Biological Adhesion 0.4 0.5
Combined 1806 1544 1339 Biological Regulation 4.9 4.9
Database Development Cellular Process 394 39.1
ESTDB http://mycompdb.bioinfo-portal.cdac.in/cgi-bin/
X N N N Developmental Process 5.7 47
est/index.cgi, a database housing the entire EST dataset
along with its annotations has also been developed. The Growth 08 05
database supports text- and sequence-based queries
through a user-friendly interface. It also provides graphi- Immune System Process 0.6 0.3
cal display of contigs along with assembled ESTs.
Localization 78 7.8
Discussion
A. stephensi is a predominant malaria vector in urban parts Metabolic Process 27.4 30.0
of the Indian subcontinent. In spite of its importance as a
malaria vector, no in-depth transcriptomic information is Multicellular Organismal Process 6.7 6.8
available on the midgut tissue of A. stephensi during sugar
feeding and parasite infection. We herein report genera- Reproduction 2.1 .8
tion, annotation, and analysis of ESTs from sugar-fed and .
P. yoelii infected adult female A. stephensi midgut tissues. Response To Stimulus 40 3.5
7061 high quality ESTs were obtained from the sugar-fed Rhythmic Process 03 0l
c¢DNA library and 8306 ESTs from the 24 h post blood-fed .
. . . B) Molecular Functions
infected cDNA library. With 15367 ESTs, our study repre-
sents the ﬁrst intensive effoFt in con?plementmg gene Antioxidant activity 09 15
sequence information for this mosquito. Although the
genome of the closely related anopheline species, A. gam- Binding 354 321
biae is available, discovery of novel transcripts (1513) in
A. stephensi suggests a significant interspecies variation. In Catalytic activity 330 39.6
addition, mapping of novel transcripts (189) to the A.
gambiae genome testifies the usefulness of our data in gene Enzyme regulator activity 2.3 1.4
discovery process.
Metallochaperone activity 0.1 0.1
Like other insects, mosquitoes are also equipped with
genes responsible for adaptation to environment changes. Molecular transducer activity 0.0 1
Identification of insect-specific genes could prove useful
in understanding the molecular basis of their success in Motor activity 0.4 0.5
various ecological niches. Recently, Zhang et al. [35] iden- -~
tified stress and immune-response related proteins as a Structural molecule activity 14.5 124
major fraction of insect-specific proteins. We have identi- o N
. . . . Transcription regulator activity 22 1.4
fied 20 such insect-specific genes like reductases, deami-
Hansf re.ce;;’;lo‘r ptrodtelns, sensory- and immunity-related Translation regulator activity 23 Ll
proteins in this study.
. . . Transporter activity 8.8 8.9
Comparative analysis of GO terms demonstrated striking
differences between the two stages of the vector examined.
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Based on molecular function, gene ontologies, peptidase
activity (GO:0008233, P = 0.00247923), catalytic activity
(GO:0003824, P = 0.00488696), and endopeptidase
activity (GO:0004175, P = 0.00597939) were found sig-
nificantly upregulated in blood-fed infected condition
(Figure 2). In biological process ontologies such as diges-
tion (GO:0007586), proteolysis (GO:0006508), cellular
lipid metabolic process (GO:0044255), electron transport
(GO:0006118), and acyl-CoA metabolic process
(GO:0006637) were found overrepresented upon blood
feeding (details in Additional file 3). We also identified
many dominant and differentially expressed transcripts in
the two cDNA libraries indicating their prominent role in
the stage specific physiological and/or biochemical proc-
esses in the mosquito vector. Based on IDEG6 analysis of
EST data, 114 BLASTX-annotated genes were differentially
regulated upon sugar feeding and parasite infection with
blood ingestion. Sugar-fed condition exhibited a signifi-
cant upregulation in the expression of many ribosomal
proteins, mitochondrial proteins and other housekeeping
genes (P < 0.05, Additional file 4). Dominance of pro-
teases like various isoforms of trypsin, chymotrypsin pre-
cursors, carboxypeptidases, and other proteases (P < 0.05)
characterized the blood-fed infected female mosquitoes as
reported earlier [17,36,37]. However, some isoforms of
serine proteases were also significantly overexpressed in
the sugar-fed tissue. We also identified 5 unannotated
genes (PU_Contigl36 (P < 0.05), PU_Contig398 (P <
0.05), PU_Contig398 (P < 0.05), PU_Contig33 &
PI_Contigd78 (P <0.05), and PU_Contig9 & PI_Contig24
(P £ 0.05)), which were significantly altered during the
two conditions. These require further characterization
(Additional file 4).

Encountering antimicrobial peptides like cecropin-A pre-
cursor (P = 0.014491) and cecropin-B precursor (P = 0)
with a prominent dominance in sugar-fed condition is a
unique observation. It is noteworthy that cecropins are
the first reported antimicrobial peptides from insects [38],
also known to have antiparasitic activity in mosquitoes
[39]. However, the other well known antimicrobial pep-
tide, defensins, with characteristic six cysteine/three
disulfide bridge pattern [40,41], showed no differential
expression (P > 0.05) between the two conditions.
Defensins are primarily active against gram-positive bacte-
ria and are induced by Plasmodium or other microbial
infections in mosquitoes [42]. Another transcript encod-
ing an uncharacterized immune response-related protein
[GenBank: EX221808] (P = 0.044556) was overexpressed
upon sugar feeding. Lysozyme C-7 and salivary lysozyme
(homologous to Lysozyme C-1 from A. gambiae) tran-
scripts were also expressed in the sugar-fed tissue (P >
0.05). These molecules participate in innate immunity
[43] by catalyzing hydrolysis of the peptidoglycan layer of
bacterial cell wall.

http://www.biomedcentral.com/1471-2164/10/386

Table 5: Percent distribution of UTs among the assigned GO
terms based on (A) Biological processes, (B) Molecular function,
and (C) Cellular component. (Continued)

C) Cellular Component

Apical part of cell 0.1 0.3
Extracellular space 0.1 0.1
Intercellular bridge 0.2 0.2
Intracellular 30.8 22,6
Intracellular organelle 21.5 19.3
Membrane 10.7 9.4
Membrane-bound organelle 8.7 13.3
Non-membrane-bound organelle 5.7 79
Organelle lumen 1.4 29
Organelle membrane 59 59
Protein complex 9.8 1.1
Ribonucleoprotein complex 4.6 6.6
Vesicle 0.3 0.3
Viral 0.1 0.0

Blood feeding causes excess protein and iron overload in
mosquitoes [44]. Blood-induced expression of protease
transcripts would therefore be expected [17,36,37]. These
proteolytic enzymes not only help in protein digestion
but also facilitate establishment of parasite infection
through proteolytic activation of enzymes, e.g., conver-
sion of pro-chitinase to chitinase in Plasmodium gall-
inaceum, which digests the peritrophic matrix [45]. Post-
iron overdose caused by blood feeding also induces syn-
thesis and secretion of iron storing molecules like ferritin,
which defend mosquito cells from iron toxicity [46]. In
our study, increased expression of putative ferritin tran-
scripts in the blood-fed tissue, e.g., ferritin subunit 1 and
secreted ferritin G subunit (P < 0.05, Additional file 4)
substantiated this fact. Transcripts encoding Protein G12
precursor were exclusively (n = 335, P = 0) seen in the
blood-fed tissue as reported earlier [23]. This protein
shows homology with Bla g1 and Per al, allergens from
cockroaches, which are shed in the insect feces and upon
inhalation these cause asthma in human beings [47]. The
other protein G12 counterparts, ANG12 from A. gambiae
[23] and AEG12 from Ae. aegypti [48] are both induced
upon blood feeding. Interestingly, AEG12 is postulated to
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have a function in digestion and it maps to a genomic
region affecting susceptibility to parasite infection [49].

Serpins are serine protease inhibitors, deriving their name
from their activity [50]. Many studies have identified dif-
ferent genes and isoforms of serpins in A. gambiae
[17,51,52]. In A. gambiae, Serpin 2 (SRPN2) is reported to
negatively regulate ookinete killing and melanization
thereby assisting midgut invasion by malaria parasites
[52]. Encountering this transcript [GenBank: EX215382]
(P > 0.05) in blood-fed infected tissue corroborates this
fact.

Mosquito and Plasmodium chitinases are shown to pro-
mote successful establishment of the parasite by digesting

Cell part
Cell
Intracellular
Intracellular part
Catalytic activity
Binding
Biosynthetic process
Oxidoreductase activity
Cellular biosynthetic process
Macromolecule biosynthetic process
Translation
Peptidase activity
Nucleic acid binding
Electron transport
Proteolysis
Biopolymer metabolic process
Nucleobase, nucleoside, nucleotide and nucleic acid metabolic process
Endopeptidase activity
Serine hydrolase activity
Serine-type peptidase activity
Nucleus
Serine-type endopeptidase activity
Organelle organization and biogenesis
Digestion
Cellular lipid metabolic process
Regulation of metabolic process

Post. lational protein i
Post-embryonic development
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Translation factor activity, nucleic acid binding
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Metal ion transport
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Vesicle targeting
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Response to bacterium

http://www.biomedcentral.com/1471-2164/10/386

the midgut peritrophic matrix [53-55]. Chitinase expres-
sion is reported to increase upon bacterial and pathogen
infection [45]. A similar increase in chitinase expression
(P = 0.008282) in the ookinete-infected tissue substanti-
ates the fact.

As reported earlier, parasite invasion in mosquito midgut
epithelia induces a cascade of changes leading to cell
death by apoptosis [56]. In the blood-fed infected tissue,
we also observed expression of apoptotic transcripts like
caspase-6 and ancaspase-7 [23]. Transcripts encoding
anti-apoptotic proteins, which modulate caspase activity
were found to be expressed in sugar-fed mosquito tissues,
e.g., defender against programmed cell death. In blood-
fed infected tissue, we also observed an increase in the

% of sequences
30 40 50 60 70 80

®BF
uSF

Figure 2

Statistical comparison of GO terms assigned to UTs from SF and BF libraries. The figure shows comparison of GO
terms assigned to annotated UTs from SF and BF libraries based on Fisher's exact test. Only significantly altered (P < 0.05) GO
terms are shown here. Other details are provided in Additional file 3. Note that individual GO terms can be assigned to multi-

ple UTs and one UT can have multiple GO terms.
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Table 6: Summary of A. stephensi UTs mapped on A. gambiae
chromosomes using Gmap program with default parameters.

A. gambiae chromosome Combined
Singlets Contigs

2L 137 154
2R 237 177

3L 121 121

3R 163 I51

X 44 44

Unknown 17 21

Y unplaced - -
Total 719 668

number of several enzymes participating in redox metab-
olism and detoxification, such as superoxide dismutase,
peroxidase, isoforms of metallothionein, cytochrome
P450, and glutathione-S-transferase (Additional file 4).
Some of the oxidoreductases were found in both the
libraries but an overall upregulation is evident upon
blood feeding and parasite infection, as reported earlier
[57,58].

Cytoskeletal remodeling in host cells is a hallmark of
pathogen attachment and invasion during infection [59-
61]. We also found many transcripts encoding cytoskele-
tal and its associated proteins during both the conditions.
As the regulation of formation of the actin network in cell
cytoskeleton is centered at Arp2/3 complex (ARP) [62], its
overexpression is necessary during infection. A significant
increase in ARPs, o and P tubulins are reported to be
upregulated during parasite invasion in A. gambiae midgut
[63]. However, we did not find such difference. Pathogen
establishment is a stress to the host cell [64] accompanied
with oxidative burst leading to misfolding of proteins
[65,66]. A vast variety of stress induced proteins, espe-
cially, heat shock proteins and chaperonins are produced
by the cell to carry out proper protein folding during
stress. Many such transcripts were also observed in our
data (Additional file 1).

Tetraspanins are conserved membrane proteins traversing
cell membrane four times [67]. These are found associated
with many other proteins, especially integrins. They are
involved in intracellular signaling, cellular motility, and
metastasis. We found tetraspanin transcripts (Additional
file 1) in both conditions. In Drosophila [67], the tet-

http://www.biomedcentral.com/1471-2164/10/386

raspanin family comprises more than 30 members sug-
gesting a possibility of many such proteins in mosquitoes.
Interestingly, in Manduca sexta, tetraspanin-integrin inter-
actions have been reported necessary for transition of
hemocytes during cell-mediated immune responses [68].

Proteins containing leucine-rich repeats (LRRs) like APL1
[12], LRIM1, and LRIM2 [69] demonstrate inhibitory
activity against Plasmodium infection in A. gambige and
Anopheles quadriannulatus [70]. Many other LRR domain
containing proteins like toll receptors are reported in
insects and other organisms, which primarily participate
in protein-protein interactions [53]. They exhibit diverse
functionality but a definitive role has not been established
in insects. We also found a few transcripts encoding pro-
teins with LRR domains in our study (Additional file 1).

ICHIT protein contains mucin domains, which participate
in the formation of extracellular matrix [71], and in trap-
ping microbial pathogens through their lectin-liking char-
acteristics [72]. It possesses two putative chitin-binding
domains flanking a mucin domain, and is observed to
increase upon bacterial and malaria challenge in A. gam-
biae [73]. However, we observed an increase in ICHIT (P =
0.000019) transcripts in sugar-fed condition. This protein
is also believed to be associated with the peritrophic
matrix, which separates the blood meal from the midgut
membrane. Found across many other organisms, a possi-
ble role of ICHIT in immune response is predicted against
pathogens [71].

Septins are GTPases thought to be associated with cell
division especially nuclear division, membrane traffick-
ing, and organizing the cytoskeleton [74]. As in other
studies [37], we also observed septins and smt3 transcripts
in the sugar-fed tissue. These together play a role in toll
signaling [37]. We found many other insignificantly
expressed transcripts in both the conditions (Additional
file 4), which might bear an indispensable role in mos-
quito life cycle, e.g., vitellogenin, which is an abundant
yolk precursor protein participating in egg maturation
[75].

In summary, our study identifies numerous transcripts
from A. stephensi midgut tissue with known and unknown
functions (Additional file 1). However, despite of massive
sequencing, loss of rare transcripts is possible. This could
be due to the overexpression of certain stage specific
genes, e.g., blood-induced genes like trypsin. In addition,
our study differs with respect to the use of incubation tem-
perature (28°C) for parasite development in mosquitoes
from work reported earlier (24°C) [76]. However, we
observed reasonable number of oocyst formation (aver-
age 65.3, n = 20). Blood feeding by these parasite-carrying
mosquitoes also induced a significant parasitemia in

Page 8 of 12

(page number not for citation purposes)



BMC Genomics 2009, 10:386

uninfected mice, confirming completion of parasite life
cycle in the vector at 28°C. Furthermore, in the view of
low genomic and proteomic resemblance between P. yoelii
and the human malaria parasites [77], observations from
rodent models like ours, need an essential analysis and
assessment before extrapolation. Nevertheless, the infor-
mation generated in the form of transcriptome could cer-
tainly prove a boon in investigating other malaria
parasites.

Conclusion

We have successfully obtained 3946 transcripts from the
adult female A. stephensi mosquito midgut, which would
be of considerable use in future research on this malaria
vector. Mapping of transcripts onto the A. gambiae
genome was beneficial in the gene discovery process.

Methods

In vivo maintenance of parasites

Plasmodium parasites (P. yoelii) were obtained from the
Malaria Research Center (Delhi, India). The parasite was
first inoculated in adult BALB/c mice (UK/AIIMS strains)
by intraperitoneal route. Time for effective parasitemia
was determined on various post inoculation days (PID).
Parasites were maintained in vivo throughout the study.

Mosquito rearing and Parasite infection

A. stephensi (NIV strain) mosquitoes were maintained on
10% glucose until blood feeding. Adult females (4 days
old) were allowed to blood feed on P. yoelii infected-
BALB/c mice. Prior to blood feeding, blood parasitemia
levels in the infected mice were determined using Giemsa
stain. Mice showing gametocyte percentages above 0.5
were used for blood feeding experiments as reported ear-
lier [78]. Fully engorged females were separated using an
aspirator and maintained in the insectory with controlled
temperature (28 + 2°C) and humidity (80 + 5%) under 12
h alternating dark/light cycles. At 24 h post blood feeding,
mosquito midguts were dissected, stained with 0.5% mer-
curochrome, and oocyst numbers per midgut were deter-
mined using a light-contrast microscope (Olympus) at
100x magnification. Dissected midguts were stored in lig-
uid nitrogen until cDNA library preparation. To confirm
completion of Plasmodium sporogony cycle in mosquitoes
at 28°C, after every 4th or 5t passage, the natural route of
infection was confirmed i.e. parasite-infected mosquitoes
(14-15 days post blood feeding) were allowed to feed on
uninfected BALB/c mice and parasitemia was recorded. To
determine ookinete infection in the infected tissue, we
additionally performed a qualitative assay based on
reverse transcriptase PCR (RT-PCR) for P. yoelii ookinete
specific genes, pyCTRP [79] and pyECP1 [80] (for details
refer Additional file 2).
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RNA extraction, cDNA library preparation and DNA
sequencing

A set of 20-40 blood-fed infected and sugar-fed adult
female midgut tissues were used for cDNA library prepa-
ration. The tissues were crushed in trizol (Invitrogen)
using RNase-free glass dounce homogenizer. RNA was
subsequently extracted, following the manufacturer's pro-
tocol. Quantification of RNA was performed using ND-
1000 Nanodrop (Thermo Scientific). RNA integrity was
checked using denaturing agarose gel electrophoresis.
cDNA libraries were constructed using the Creator™
SMART™ ¢DNA construction kit (Clontech, Takara Bio
Inc.) according to the manufacturer's protocol using 1 pg
of total RNA. After digestion with Sfi I, cDNA fragments
were size fractionated using CHROMA SPIN-400 columns
according to the instructions provided. Fractions were
checked on 1.5% agarose/EtBr gels. cDNA fragments rang-
ing from 300 bp to 3 kb were pooled. All further steps
including ligation to pDNR-LIB, precipitation, and elec-
troporation (Biorad GenePulser) in DH10B E. coli (Invit-
rogen) were carried out following the supplier's
instructions. Libraries were screened for inserts by colony
PCR. Thereafter, primary libraries were amplified and
stored in 25% glycerol stocks at -80°C. When required,
clones were plated using LB (Luria-Bertani) agar contain-
ing 30 pg/ml chloramphenicol and incubated overnight
at 37°C. Colonies were manually inoculated in 1 ml 2x
LB broth containing chloramphenicol in a 96-well inocu-
lation plate. Plasmid isolation was done using Montage
Plasmid Miniprepy kit (LSKP09624, Millipore Corpora-
tion) following the manufacturer's instructions. Plasmid
concentrations were determined for a random set of
clones from each 96-well plate using nanodrop and qual-
ity was checked on 1% agarose/EtBr gels. Approximately,
300-500 ng of plasmids containing cDNA insert were
sequenced from their 5' end using BigDye Terminator ver-
sion 3.1 chemistry (Applied Biosystems, Foster City, CA)
and M13 primer (5'-GTAAAACGACGGCCAGTAGATCT-
3') on an ABI 3730 Genetic analyzer (Applied Biosystems)
following the manufacturer's protocol.

Bioinformatics Analysis

The EST analysis was performed using an in-house devel-
oped EST pipeline (Additional file 2). Base-calling of the
trace files was performed using phred [25,26] (quality
value > 20). The vector, primer and adapter sequences
were masked using cross_match. PolyA tails were
removed using a program in PERL script. Trimmed ESTs
less than 100 bases in length were discarded. An addi-
tional round of filtering was performed to remove vector
sequence, adapter sequence, and polyA tail using seqclean
[81]. EST sequences representing mouse and Plasmodium
genes were identified and removed using BLAST analysis.
ESTs from BF and SF libraries were assembled separately
and together using CAP3 program [29]. The UTs (contigs
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plus singlets) obtained from both libraries were com-
bined and assembled using CAP3. These were searched
against the UniProtKB database using BLASTX and EST
data of A. gambiae, Ae. aegypti, and D. melanogaster, using
TBLASTX. UTs showing no significant hits with the Uni-
ProtKB database were scanned using ESTScan [31] to ver-
ify the presence of putative coding region. GO terms were
assigned to all the UTs using Blast2GO program [32].
Classifications were based on molecular function, biolog-
ical processes, and cellular components. To identify over-
represented GO terms between the libraries, enrichment
analysis (using Fisher's exact test at a significance thresh-
old value of 0.05) was carried out in Blast2GO program.

Differential gene expression-IDEG6 Analysis

Statistical comparison of gene expression in both the
libraries was performed using the online version of IDEG6
[34] implementing pairwise Fisher exact test (significance
threshold of 0.05). The analysis was performed for
BLASTX-annotated and unannotated ESTs separately. For
unannotated ESTs, only ESTs containing a putative coding
region were considered.

Genome mapping

Files representing the 2L, 2R, 3R, 3L, X, unknown, and
unplaced Y chromosomal sequences were downloaded
from Ensembl [82]. UTs were mapped onto the A. gambiae
genome using Gmap version 2007-09-28 [83] using
default parameters. Information comprising number of
exons, chromosome name, and locus, was parsed using
PERL script.

Development of ESTDB

MySQL relational database management system was used
as the back-end and the front-end was designed using var-
ious modules of PERL (CGI, DBI and GD). The database
is hosted on the web using Apache web-server.

Accession numbers
All the ESTs were deposited in the GenBank database with
accession numbers from EX212289 to EX227655.

List of abbreviations used (if any)

ESTs: Expressed Sequence Tags; BF: Plasmodium yoelii
infected blood-fed; SF: Sugar-fed; UTRs: untranslated
regions; PERL: Practical Extraction and Reporting Lan-
guage; and UTs: Unique transcripts (refers to singlets and
contigs together).
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Additional material

Additional file 1

Detailed report of EST analysis. Contains detailed information obtained
for all transcripts by various analyses. The worksheet includes user ID,
GenBank accession, library-specificity (SF/BF/Both), insect-specific
(YES/NO), insect-specific protein ID (if present), genome mapping to A.
gambiae ('YES', if mapped and 'No', if not mapped), BLAST results
(e.g., sequence description, length of query sequence, no. of BLAST hits
obtained (maximum 10), maximum E-value, mean similarity (average
similarity of top 10 BLAST hits)), no. of GO IDs, GO IDs, EC No., and
other genome mapping details.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-386-S1.xls]

Additional file 2

Assessment of Plasmodium infection in mosquito midgut and addi-
tional figures. Contains protocol for PCR based assessment of Plasmo-
dium yeolii ookinete infection in the female A. stephensi mosquito
midgut and results (Additional file 2: Figure S1). E-value-, percent-, and
similarity-distribution for SF, BF, and combined UTs (Additional file 2:
Figure S2). Flow chart depicting flow of analysis for EST pre-processing
and functional annotation (Additional file 2: Figure S3).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-386-S2.pdf]

Additional file 3

Statistical comparison of GO terms. The file contains detailed output of
Blast2GO's Enrichment analysis based on Fisher's exact test (only signif-
icantly (P < 0.05) altered GO term representations are shown).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-386-53 xls]

Additional file 4

Statistical comparison for differential gene expression (IDEGG6 analy-
sis). The file contains statistical comparison of the genes expressed in both
the libraries using IDEGG6 tool. Comparison of annotated and unanno-
tated genes is given in "Annotated" and "Unannotated" worksheets,
respectively. Different degrees of blue shades in the normalized tag values
represent the extent of gene expression. Significant P-values are shaded
yellow.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-386-S4 xls]
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