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Abstract
Background: Bombyx mori, the domesticated silkworm, is a well-studied model insect with great
economic and scientific significance. Although more than 400 mutations have been described in
silkworms, most have not been identified, especially those affecting economically-important traits.
Simple sequence repeats (SSRs) are effective and economical tools for mapping traits and genetic
improvement. The current SSR linkage map is of low density and contains few polymorphisms. The
purpose of this work was to develop a dense and informative linkage map that would assist in the
preliminary mapping and dissection of quantitative trait loci (QTL) in a variety of silkworm strains.

Results: Through an analysis of > 50,000 genotypes across new mapping populations, we
constructed two new linkage maps covering 27 assigned chromosomes and merged the data with
previously reported data sets. The integrated consensus map contains 692 unique SSR sites,
improving the density from 6.3 cM in the previous map to 4.8 cM. We also developed 497
confirmed neighboring markers for corresponding low-polymorphism sites, with 244 having
polymorphisms. Large-scale statistics on the SSR type were suggestive of highly efficient markers,
based upon which we searched 16,462 available genomic scaffolds for SSR loci. With the newly
constructed map, we mapped single-gene traits, the QTL of filaments, and a number of ribosomal
protein genes.

Conclusion: The integrated map produced in this study is a highly efficient genetic tool for the
high-throughput mapping of single genes and QTL. Compared to previous maps, the current map
offers a greater number of markers and polymorphisms; thus, it may be used as a resource for
marker-assisted breeding.
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Background
Silk fibers are derived from the cocoon of the silkworm
Bombyx mori, which was domesticated over the past 5,000
years from the wild progenitor Bombyx mandarina.
Cocoon quality is very important because it can influence
the yield of sericulture and determines whether a silk-
worm line can be used in silk production. Through the
efforts of silkworm breeders over several thousands of
years, many silkworm strains have been collected and
conserved. Moreover, the different properties of these
conserved silkworm strains, such as filament length,
cocoon weight, cocoon shell weight, cocoon shell ratio,
and cocoon color, have distinctive applications. Until
now, crossbreeding was the only method of enriching loci
that control cocoon quality to enhance the yield from a
silkworm cocoon. Modern techniques involving gene
cloning and marker-assisted breeding are now widely con-
sidered to be the most effective way of improving silk
properties.

Genetic linkage map is an essential tool for mapping traits
of interest and are used in positional cloning and marker-
assisted breeding. Some genetic maps for the silkworm
have been reported, including various genetic markers
such as restriction fragment length polymorphisms
(RFLPs; [1,2]), random amplified polymorphic DNA
(RAPD; [3,4]), amplified fragment length polymorphisms
(AFLPs; [5]), simple sequence repeats (SSRs; [6,7]), and
single nucleotide polymorphisms (SNPs; [8,9]). SSRs
(also called microsatellites) are generally accepted to be
ideal markers because of their sound transferability, high
reproducibility, and co-dominant inheritance. SSR mark-
ers are especially suitable for high-throughput genotyp-
ing, allowing rapid analysis of hereditary monogenetic
traits and quantitative trait loci (QTL). Once SSR markers
were established, polymorphisms could be detected
merely by visualizing PCR products on an agarose gel, and
these markers are still important for the meiotic analysis
of livestock and agricultural species [10-15].

In our previous SSR linkage map [7], the 518 robust mark-
ers reported accounted for only 20% of all identified SSRs.
The number of polymorphisms was low due to reliance
on parental combinations between Dazao and C108 and
to the minimal number of polymorphisms that occur
between silkworm strains. Because the genetic distance
between markers can be as large as 6.3 cM, fine mapping
and gene cloning remain difficult.

A general approach for increasing the marker density in
genetic linkage maps involves the identification of more
markers and the integration of several linkage maps. Xia et
al. [16] constructed an integrated, high-density linkage
map of soybean using RFLPs, SSRs, sequence-tagged sites

(STSs), and AFLP markers. Similarly, Vezzulli et al. [17]
constructed an integrated map of grapevine using SSR and
SNP markers. In many cases, the maps from different
parental populations and even species have been inte-
grated [18-20].

The choice of using the parental population of Dazao and
C108 was based mainly on its internationally consistent
use in silkworm genetic research. However, neither strain
is applied widely for economic production of silk-related
products. In China, more than 70% of silkworm breeders
use the Jingsong strain for practical applications. Jingsong
has properties that are advantageous for silk production,
such as an average filament length of 1,200–1,500 m. In
contrast, L10, which has poor silk-producing properties,
possesses high stress resistance. Additional matings
between strains of different origins may increase the map-
ping efficiency of markers due to the increased potential
for genetic diversity.

Herein, we report an improved method for constructing
silkworm SSR genetic maps with more informative loci
based on new mapping populations (Figure 1). Using this
approach, we localized QTL for whole cocoon weight,
cocoon shell weight, cocoon shell ratio, and pupal weight.
This work underpins the further cloning of genes that con-
trol properties advantageous to silk production and will
be utilized further to identify molecular markers to assist
in the breeding of productive silkworm lines.

Results
Markers in the linkage map
Approximately 2,670 SSRs isolated from our genomic
libraries were subjected to polymorphism detection,
including 518 SSRs that had been mapped [7]. In total,
271 markers were found to be polymorphic between Nis-
tari and Fa50B, while 119 were polymorphic between
Lan10 and Jingsong.

Map properties
All polymorphic markers were genotyped in 188 segre-
gants of the backcrosses between Fa50B × Nistari (NF, see
Methods), or 190 of Lan10 × Jingsong (JL, see Methods).
We analyzed the genotyping data from the inheritance
pattern of BC1M populations. As a result, two new SSR
linkage maps were constructed.

The linkage map constructed from the NF data consisted
of 251 SSR markers (Table 1), which covered all silkworm
chromosomes except 1 and 7. All of the maps for 27 LGs
integrated with another fourteen gene-based loci are
shown in additional file 1, 2, 3 and 4. The total map
length spanned 1,859 cM with an average density of about
one marker per 7 cM.
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Whereas the linkage map constructed from the JL data
consisted of 94 markers (Table 1), they were linked to 24
groups and assigned to 23 chromosomes in the JL map.
The number of markers on the linkage groups ranged
from two to eight (see additional file 5 and 6). The genetic
distance ranged from 0.8 to 158 cM in length, and the
total length of the SSR linkage map was 1,181.5 cM.

Information related to the markers mentioned above is
provided in additional file 7.

Map integration
We collected Dazao × C108 (DC, see Methods) genotyp-
ing data for map integration. Markers in the merged data
set were divided into 30 LGs and directly linked to 28
chromosomes according to the known sites. Both Chr. 11
and Chr. 25 corresponded to two LGs, but they only
shared one anchor between the pair of LGs. As determin-

ing the interposal direction corresponding to the frame-
work sequence was difficult, we could not construct
consensus maps for these two chromosomes. Neverthe-
less, we established a relationship for the two pairs of sep-
arated groups via single progeny mapping.

The completely integrated map contained 692 unique SSR
sites, with a total map length of 3,320 cM (Figure 2; addi-
tional file 8, 9, 10, 11 and 12; Table 1). Three markers
(S0604, S0613, and S2115) differed significantly between
the crosses and were therefore excluded during integra-
tion. S2119 and S2601 were placed at the ends, far from
the other loci (≥ 40 cM), because attached Cleaved Ampli-
fied Polymorphic Sequences (CAPS) or gene-based mark-
ers were not included in map integration; two end
markers (S2103 and S1817), however, reserved in the NF
populations were no longer obvious when integrated with
the other data sets. This suggests that gaps present in a sin-
gle map can be filled by integration with other data sets.
The length of the integrated map was even shorter than
that of the map of the DC populations, which contained
548 sites. The mean inter-locus distance of 4.8 cM shows
that the integrated map has a higher density (the greatest
density was ~3 cM per locus on Chr. 11).

Application of the map to locus mapping
The Zebra locus was mapped to Chr. 3, consistent with
previous data [21]; moreover, we found a tightly linked
marker (FL0667) with a map distance of 0.6 cM (Figure
3). We also located a number of silkworm genes in this
new mapping population. Dll was positioned near
FL1556 (Figure 2A), while twelve ribosomal protein genes
(Rp genes) were located in nine linkage groups; the map
distance to their nearest markers ranged from 0 to 14.5 cM
(Table 2). Hence, SSR linkage maps appear to be a useful
and reliable tool for locating functional genes.

Based on the JL data set, we identified twelve candidate
loci involved in whole cocoon weight (CW), cocoon shell
weight (CSW), cocoon shell ratio (CSR), and pupal
weight (PW) (Figure 4, additional file 13). Of these, six
QTL were confirmed by independent analysis (Table 3).
Q1 on Chr. 1 had the most significant contribution for the
three traits, accounting for 29.38, 27.75, and 27.96% of
the phenotypic variation in CW (LOD = 15.49), CSW
(LOD = 14.85), and PW (LOD = 14.64). The other puta-
tive QTL (Q2 and Q3) associated with CW and PW had
relatively weak effects (LOD of about 3), which were
localized in the neighboring region of S2304. Q4 for CSW
was mapped to Chr. 23, which also contributed a rela-
tively small effect (r2 = 5.23%, LOD = 3.30). For CSR, two
QTL (Q5 and Q6) were identified on Chrs. 18 and 19 that
accounted for 6.54 and 8.28% of the phenotypic variance,
respectively.

Outline of the studyFigure 1
Outline of the study. We mapped SSR loci based on the 
mapping population Fa50B × Nistari and Jingsong × Lan10. 
Two new SSR linkage maps (NF and JL) were constructed, 
and the resultant data set was merged with previous data 
sets to generate the integrated linkage map. The mapped SSR 
sites were used to localize silkworm genomic scaffolds and 
SSRs were sought in the extended genomic sequences to 
develop neighboring markers. Thus, informative bins were 
formed by integrating the substitutes with the mapped sites.
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We also tested for epistatic genetic effects in our mapping
population. A total of 20 pairs of loci had significant sta-
tistical power for CW, PW, and CSR (additional file 14).
Most epistatic pairs involved CSR, which lacked major
QTL relative to the other three traits. This suggests that
CSR may possess more complex genetic properties than
the other traits.

Neighboring marker development
Due to the low frequency of polymorphisms, SSR markers
are limited when mapped in other strains [6,7]. The emer-
gence of genomic sequences for the silkworm [22,23]
offered an opportunity to find substitutes in the extended
region adjacent to mapped sites, and the resulting bins
provided informative sites in the map. Specifically, 477
sites were linked to draft sequences for extension, most of

which were typed in only one cross. We designed 857
pairs of primers flanking the SSR regions for 456 sites, and
708 markers were analyzed for amplification efficiency
and polymorphisms in a test panel comprising six repre-
sentative strains (Dazao, C108, Jingsong, Lan10, Fa50B,
and Nistari). Of these, 497 markers yielded reliable and
distinctive bands, and 244 exhibited more than one band
pattern. All of the confirmed neighboring markers that
integrated with their original site are shown in additional
file 8, 9, 10, 11 and 12. Additional file 15 contains the
primer sequences applied in this study.

To verify the reliability of the neighboring markers, we
randomly selected two pairs of polymorphic markers:
NS0206/NS0207 from DC and NS2329/NS2333 from
NF, which were genotyped in NF and DC, respectively. As

Table 1: Summary of each chromosome in the integrated map

Mapped Sites Neighboring Markers

LG Map Length (cM) Source1

Int. DC NF JL Anch.2 Conf.3 Polym.4

1 51.4 8 6 0 4 2 9 4
2 123.6 22 14 11 0 3 18 13
3 178.9 26 18 9 2 3 22 15
4 86.8 22 21 3 4 5 20 10
5 106.5 23 18 13 0 8 14 4
6 92.5 15 11 7 4 5 7 2
7 78.9 12 12 0 0 0 9 4
8 145 26 20 10 6 6 15 11
9 76.8 19 13 8 0 2 16 9
10 129.2 25 22 5 0 2 28 18
11 140.4/32.7 45/8 38 19 7 11 30 17
12 167 24 20 8 2 5 20 9
13 120.6 26 14 11 8 7 10 3
14 108.4 32 25 13 2 8 22 15
15 79.2 19 12 11 0 4 16 7
16 72.9 22 13 10 5 4 8 1
17 99.8 17 9 8 3 2 12 2
18 137.5 28 20 13 4 8 20 10
19 73.2 20 14 7 3 4 17 7
20 131.3 26 20 6 5 5 15 8
21 203 19 17 4 2 4 15 9
22 117.3 25 17 10 3 4 19 10
23 109.5 35 22 16 6 7 32 14
24 167.4 46 32 17 2 5 32 12
25 121.3/41.8 29/6 23 10 6 5 16 9
26 179.9 30 25 9 2 5 19 9
27 133.1 21 18 2 6 3 8 2
28 89 18 16 4 3 5 16 4
X +40.9 - - 5 - - 3 2

Total5 3320.7/3068.1 692 510 244 89 132 485 238

1 Paradoxical markers were removed when integrating; only the consensus data were reserved.
2 Anch.: anchor marker, genotyped in more than one cross
3 Conf.: confirmed neighboring marker
4 Polym.: polymorphic neighboring markers
5 The total does not include information from Chr. X.
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Single progeny and integrated maps for Chr. 2Figure 2
Single progeny and integrated maps for Chr. 2. (A) The most likely NF map was constructed for Chr. 2. The font name 
in red represents gene-based markers. The names of sites beginning with "FL," "S," and "NS" represent unreported markers, 
previously assigned markers, and neighboring markers, respectively. (B) The DC map for Chr. 2 was modified according to the 
likelihood generated by a previous data set [7]. As a result, the order from S0206 to S0209 was different from that in the pre-
vious report. In addition, four pairs of sites aligned by dotted lines reveal a consistency between the mapping results generated 
by original markers and their neighboring markers. (C) The final integrated linkage map for Chr. 2, in which the sites were 
named by a uniform format "S02XX," following the previous mapped sites in this chromosome. The neighboring markers 
(referred to as "NS02XX") are included in the box with their original sites. The NF, JL, and integrated maps for all of the chro-
mosomes are listed in Figures S1, S2, and S3.
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illustrated in Figure 2B, the orders generated by substitu-
tion were consistent with our original results.

Discussion
Mapping efficiency of the population
The backcross of Dazao and C108 has been used to pro-
duce the major mapping population by several groups
[1,4,8,24]. However, the density of genetic markers is gen-
erally low given the chromosome number and genome
content of the silkworm. For consistency, our group has
also selected this mapping population to construct the
first SSR linkage map [7]. Although, we attempted to iden-
tify more markers, the low incidence of polymorphisms
(22.2%) remains a major limitation that impedes the aug-
mentation of marker density. Therefore, we selected two
other parental populations, Jingsong × Lan10 and Fa50B
× Nistari, for combination. The integration of the three
combinations (DC, JL, and FN) allowed more than 150
new markers to be anchored in the integrated map.

Although the number of markers increased, it was below
our expectations. The 518 markers that were initially
mapped (20% of all that were identified) from DC had a
high percentage of polymorphisms compared to other
sources (40% of those mapped by NF and 75% by JL;
additional file 16). To some extent, this explains the rela-
tively low number of new markers identified in this study:
once an SSR locus was identified in one mapping popula-
tion, it was more likely to be mapped in the other popu-
lations. This transitivity of polymorphisms indicates that
the polymorphic loci are shared by several silkworm
strains. On the other hand, the two pairs of parents used
in this study had large genetic differences. However, less
than 20% of the SSR markers could be mapped. These
results indicate that although B. mori differentiated from
B. mandarina more than 5,000 years ago, their genomes
are still highly homologous. Additionally, we believe that

Dazao × C108 is the most useful population for genotyp-
ing genetic markers.

An effective strategy for developing polymorphic markers
Because the efficiency of markers is low for silkworm gen-
otyping, we developed new markers based on genomic
sequences and tried to include more available informa-
tion for mapping in different populations. We considered
SSRs to be relatively good candidates, given the increased
frequency of polymorphisms compared with other
sequence-based markers (Additional file 16). We there-
fore investigated the distribution of SSRs in 13.8 Mb of the
silkworm genome for use in the development of neigh-
boring markers. We predicted that certain types of SSRs
would have a higher frequency of polymorphisms; thus,
we sought to develop an effective strategy for identifying
polymorphic markers. In this regard, the repeat motif and
repeat number were taken into account.

A total of 2,903 SSRs were identified and categorized into
five groups based on their motif type: (AC)n, (AG)n,
(AT)n, (GC)n, and T/T ("T/T" for tri- and tetra-nucle-
otides). The distribution of SSRs among the five types was
23, 25.8, 28.1, 0.9, and 22.2%, respectively (see the gray
bars in Figure 5). The abundance of (GC)n was low signif-
icantly in accordance with that reported in silkworm [6]
and other organisms [25-28]. Next, we performed the
enrichment analysis for each type of SSR in the confirmed
markers and polymorphic markers, respectively. An anal-
ysis by χ2 testing indicated that the type of motif had a sig-
nificant effect on the frequency of polymorphisms (P <
0.005), but not on product amplification (Figure 5). It is
accepted that amplification ability is related to the flank-
ing sequences (bearing the primers) rather than to the
core repeat units, whereas the structure of the motif might
affect sequence stability following replication. The (AG)n
and T/T motifs were more polymorphic than the other

Table 2: Detailed information for the thirteen mapped genes (the gene-based markers used for mapping are listed in additional file 
13)

Locus name Accession number Gene description LG Position

Rp0201 AY769345 ribosomal protein S29 25 14.5 cM to S2508
Rp2001 AY769324 ribosomal protein S10 5 6.6 cM to Rp5401
Rp2501 AY769319 ribosomal protein S5 22 0 cM to S2206
Rp2602 AY769318 ribosomal protein S4 21 8.6 cM to S2120
Rp2701 AY769317 ribosomal protein S3A 17 3.7 cM to S1709
Rp2902 AY769315 ribosomal protein S2 13 1.1 cM to S1325
Rp3401 AY769310 ribosomal protein L38 17 3.3 cM to S1701
Rp402 AY769343 ribosomal protein S27A 2 4.9 cM to S0212
Rp5401 AY769289 ribosomal protein L19 5 2.1 cM to S0523
Rp5701 AY769286 ribosomal protein L17 21 7 cM to S2119
Rp6801 AY769275 ribosomal protein L7A 15 4.4 M to S1509
C41 AY769270 ribosomal protein L4 11 3.7 cM to S1120
Dll - dll 2 1.3 cM to S0220
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motif types (see the red boxes in Figure 5). For repeat
number, we utilized a similar statistical method. A large
number of highly repetitive SSRs were identified as candi-
date markers, which revealed our priority for SSRs with a
longer repeat region. However, no correlations were
found between the repeat number and amplification effi-
ciency or frequency of polymorphisms (Figure 5).

While lacking a detailed explanation in terms of mecha-
nism, our analysis suggests that the frequency of polymor-
phisms among the SSRs was related to their motif type,
and that SSRs with an (AG)n or T/T motif are good candi-
dates for the development of polymorphic markers.

Distribution of SSRs in the silkworm genome
We next conducted an investigation into all available silk-
worm scaffolds [29], corresponding to 344 Mb, in order
to determine the distribution of the SSRs. A total of 9,426

scaffolds were used to identify 21,122 objects with a
repeat number > 6 (Table 4). Of these, the number of
objects detected in 4,226 of the scaffolds ranged from 1 to
18.

A number of interesting observations were made concern-
ing the genome. For example, (AT)n constituted ~40% of
the di-nucleotides (28.3% of the total), while (A+T)-rich
repeats had an absolute majority among the tri- and tetra-
nucleotide types with a large number of repeats (Table 4).
This dominance has not been observed in other organ-
isms [25,30]. Further investigation of the silkworm
genome revealed that among those motifs with > 3 bases,
it is somehow difficult to form long SSRs (Table 4). In
accordance with the dominance of (A+T)-rich sequences,
the percentage of (AT)n also decreased as the repeat
number increased; in turn, (AG)n was found to be rela-
tively capable of forming long SSRs.

Mapping results for the Ze locusFigure 3
Mapping results for the Ze locus. The Ze locus, which controls the zebra-like stripes of larvae, was preliminarily mapped 
to Chr. 3. The picture on the right shows the phenotypes of wild-type and Ze-mutant strains.
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Analysis of cocoon quality using QTL
Cocoon quality is an important characteristic in silk-
worms; however it is more difficult to map than single-
factor Mendelian traits. In our study, we identified at least
six QTL involved in the following traits: CW, CSW, CSR,
and PW. Of these, Q1 had simultaneous effects on CW,
CSW, and PW with a significant LOD score and pheno-
typic variance. Thus, this locus may be valuable for fila-
ment research. The other putative QTL (Q2–Q4) for CW,
CSW, and PW were distributed in the interval between
S2304 and FL1203. Q2 and Q3 actually represent the dou-
ble peak of the LOD score from the QTL search for CW
and PW, while Q4 represents another peak of CSW at a
neighboring position (Figure 4). Although these QTL were
just above the threshold values, multi-marker joint analy-
sis revealed a relationship between these traits and S2304
or FL1203 (additional file 13), confirming that this con-
tinuous region has an effect on CW, CSW, and PW.

On the other hand, the genetic correlations between CW
and CSW, CW and PW, and CSW and PW were extremely
high (0.89, 0.99, and 0.85, respectively). The clustered
distribution of the QTL is suggestive of the genetic related-
ness of these traits and is consistent with data showing
relationships between cocoon, cocoon shell, and pupal
weight.

Conclusion
The integrated linkage map described here has a greater
number of sites and more than one optional marker for
most sites, and is more efficient for a range of applica-
tions. In combination with recent silkworm genomic data

[31], the fine mapping and positional cloning of interest-
ing traits will be realized more easily. The identification of
target genes will in turn facilitate detailed research of
insect innate immunity, metamorphosis, hormone
metabolism, and the genetic improvement of economical
strains with high stress resistance.

Methods
Silkworm strains and mapping reagents
Two populations (Figure 1) were generated from four silk-
worm strains: Nistari (Indian origin), Fa50B (French ori-
gin), Jingsong (Chinese origin), and Lan10 (Chinese
origin). Nistari and Fa50B have quite different origins,
while Jingsong and Lan10 differ in terms of their ecologi-
cal features [32]. These strains were preserved in the Seri-
cultural Research Institute at the Chinese Academy of
Agricultural Sciences. The 188 segregants of a single-pair
backcross (BC1M) between a Nistari female and an F1male
(Nistari female × Fa50B male) were used to genotype
markers while another 22 segregants of a single-pair back-
cross (BC1F) between a Nistari male and an F1 female
(Nistari female × Fa50B male) were used to validate the
results of grouping, owing to a lack of crossing over in
females [33]. A phenotypic trait of the Zebra locus (Ze+/
Ze) was involved in the arrangement of the mapping
panel, which causes narrow black bands on the anterior
portion of each larval segment and dark brown cuticles on
both sides of the head. The panel, including 94 BC1M
individuals, without this trait was the Ze+ panel, and the
panel with this trait was the Ze panel. The other popula-
tion was generated from (Jingsong × Lan10) F1 males
backcrossed with Lan10 females. The materials used in

Table 3: Putative major QTL and their genetic effects on whole cocoon weight and related traits from BC1M of JL (100 replicates)

Trait QTL Chr.1 Position (cM) LOD2 Additive effect r2 (%) Power 3 (%)

Cocoon weight Q1 1 41.81 15.49 0.35 29.38 100
21 12.01 2.68 -0.18 6.68 7

Q2 23 32.01 2.94 0.14 5.19 28
Q3-14 23 41.61 3.15 0.15 5.54 28

Cocoon shell weight Q1 1 41.81 14.85 0.05 27.75 92
22 18.01 3.31 0.03 8.71 6

Q4 23 51.61 3.30 0.02 5.23 49

Cocoon shell ratio Q5 18 6.01 2.77 1.21 6.54 96
Q6 19 2.01 3.89 1.36 8.28 100

Pupal weight Q1 1 41.81 14.64 0.30 27.96 100
Q2 23 32.01 2.91 0.12 5.23 29

Q3-24 23 39.61 3.03 0.12 5.27 29

1 Chromosome
2 The thresholds of LOD for CW, CSW, CSR, and PW were 2.67, 2.69, 2.54, and 2.78, respectively.
3 The statistical power represents the detected number of LOD values that were > 2 in 100 random replicates by multi-marker joint analysis.
4 Q3-1 possesses an extremely similar LOD value (LOD = 3.02) for PW to Q3-2. In addition, their similar effects (r2 of 13.95 and 13.94%) and close 
positions (2 cM) indicate that they may share the same region.
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this SSR investigation were randomly selected from 190
individuals in a single BC1M population. Each cocoon,
cocoon shell, and pupa was weighed, and the cocoon
shell ratio was calculated as CSW/CW.

Silkworm genomic DNA was extracted from individual
fifth instar larvae (day 3) using previously described
methods [4] and stored in 96-well PCR plates at a concen-
tration of 20 ng/μL.

Marker design
Markers for map construction were isolated from our
genomic libraries [7]. Silkworm genomic scaffolds and

ribosomal protein gene sequences were obtained from
GenBank [29]. Gene-based markers were designed based
on intron sequences.

Neighboring SSR markers were designed on flanking
sequences bearing > 12 bp of core simple repeats, which
involved 2–4-bp unit tracts. Python scripts were used for
hunting SSRs from genomic sequences. SSRs with large
numbers of repeats were preferred.

The primers were designed manually using the following
criteria: 56–63°C for annealing, 40–60% GC content, and
100–500-bp products.

Graphical overview of our QTL mapping resultsFigure 4
Graphical overview of our QTL mapping results. From top to bottom, the three graphs show the LOD scores, additive 
effects, and r2 values for each trait (each in a different color). Each chromosome is indicated by vertical lines, with the chromo-
some numbers along the bottom. In the LOD score graph, a threshold line is indicated for each trait based on the threshold 
values. Peaks above the threshold line indicate QTL.
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Analysis of the relationship between SSR type and marker efficiencyFigure 5
Analysis of the relationship between SSR type and marker efficiency. The enrichment analysis result for each type is 
shown in the bottom table while the colored bars in the top graph indicate the percentage of each type in the corresponding 
condition: blue bars indicate the frequency of each type of SSR based on all of the candidate SSRs used for marker develop-
ment; light blue bars indicate the frequency of each SSR type based on all of the confirmed markers (i.e., those that amplified 
the product successfully); dark blue bars indicate the frequency of each SSR type to all of the polymorphic markers. A correla-
tive analysis was performed for the four data sets. Our χ2 test results are shown at the bottom of the table; significant correla-
tions are indicated by a star.
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Polymorphism survey and genotyping
SSRs were amplified by standard PCR following a Touch-
down procedure [7]. For polymorphism detection, prod-
ucts were separated by polyacrylamide gel electrophoresis
(8% non-denaturing gel in 1× TBE buffer at 110 V for 8 h).
The detection of neighboring markers was carried out on
an agarose gel (3% gel in 1× TAE buffer at 80 V for 60–80
min), considering the potentially broad application.

Markers for genotyping were 5'-labeled with FAM, HEX,
TAMRA, or TET on the forward primer, and high-through-
put typing results for segregants in BC1M and BC1F were
obtained on an ABI-Prism 377 automated sequencer (5%
denaturing polyacrylamide gel in 1× TBE buffer at 3000 V
for 2 h; Applied Biosystems, Foster City, CA). Genotype
patterns were visualized using Genescan® 3.1.2 (Applied
Biosystems). The corresponding scoring was interpreted
in two independent readings.

Linkage analysis and map construction
The primary analysis, including a chi-square test and
grouping, was carried out by JoinMap 3.0 [34]. According
to the Mendelian ratio of 1:1 (3:1 for Z chromosome), loci
with significant differences (P ≤ 0.05) were discarded. The

remaining loci were dissected into groups at increasing
stringency levels of the linkage test (LOD values from 3 to
12). The final grouping results refer to the genotypes in
BC1F.

MAPMAKER/EXP 3.0b [35] was then used to order valid
loci for each group. We directly performed exhaustive
comparative analysis to obtain the most likely order for
groups with less than eight loci. To determine the arrange-
ment of a larger group, we ordered the loci at least three
times and accepted the consistent subset order. Where
necessary, we attempted to find the most likely intervals
for the remaining unplaced loci or to compare all possible
orders for indefinite regions. In addition, we mapped the
complete order with a calculated Kosambi distance for
each group.

WinQTLCart 2.5 [36] was used to locate QTL in the Jin-
gsong × Lan10 BC1M population for whole cocoon
weight, shell weight, cocoon shell ratio, and pupal weight
by composite interval mapping. For each trait, 1,000 per-
mutations were performed to determine the threshold
value, then the entire chromosome was scanned every 2
cM for the presence of QTL using a standard model. The
positions of the candidate QTL were fixed based on the
peak LOD scores.

To confirm the results generated by WinQTLCart 2.5 and
to identify epistatic QTL, we carried out multi-marker
joint analysis as shown below. The phenotypic value of
the ith BC1M sample, yi, may be described by the follow-
ing model:

where μ is the mean total; m is the number of markers; ak
is additive effect for the kth marker (or QTL); ars is the epi-
static effect between the rth and sth markers; x represents
dummy variables; and εi is the residual error with an
assumed N(0, σ2) distribution. One hundred imputed
data sets for the marker genotypes were sampled at ran-
dom using the conditional probabilities of the marker
genotypes. Each data set was then analyzed by the penal-
ized maximum-likelihood method [37]. Significant can-
didate loci were defined as having a statistical power
above 20%.

Mapping data set integration and consensus map 
construction
Two data sets generated by NF [Nistari × (Nistari ×
Fa50B)] and JL [Lan10 × (Jingsong × L10)] were integrated
with the previous DC data set [C108 × (Dazao × C108),
which included 189 individuals] [7]. We corrected some
obvious errors and re-analyzed the previous data setset
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Table 4: Summary of SSRs distributed in all silkworm genomic 
scaffolds

No. of repeats ≥ 6 ≥ 7 ≥ 8 ≥ 9 ≥ 10

Scaffold 9,426 6,809 5,046 3,763 2,893
SSR 21,122 11,788 7,679 5,238 3,782

AC (%) 4,024
(19.1%)

2,486
(21.1%)

1,729
(22.5%)

1,243
(23.7%)

933
(24.7%)

AG (%) 4,707
(22.3%)

3,268
(27.7%)

2,426
(31.6%)

1,800
(34.4%)

1,349
(35.7%)

AT (%) 5,969
(28.3%)

3,237
(27.5%)

2,182
(28.4%)

1,521
(29.0%)

1,120
(29.6%)

CG (%) 56
(0.27%)

8
(0.07%)

4
(0.05%)

3
(0.06%)

3
(0.08%)

T/T1 (%) 6,366
(30.1%)

2,789
(23.7%)

1,338
(17.4%)

671
(12.8%)

377
(10.0%)

Details of T/T1

AT-rich (%) 5,979
(93.9%)

2,627
(94.2%)

1,230
(91.9%)

590
(87.9%)

313
(83.0%)

Most tri- AAT
(2,589)

AAT
(1,047)

AAT
(441)

AAT
(181)

ATC
(79)

ACT
(976)

ACT
(516)

ACT
(269)

ATC
(133)

AAT
(73)

ATC
(923)

ATC
(499)

ATC
(262)

ACT
(130)

ACT
(67)

Most tetra- AAAT
(545)

AAAT
(216)

AAAT
(110)

AAAT
(70)

AAAT
(43)

ACAT
(74)

AAAG
(43)

AAAG
(35)

AAAG
(24)

AAAG
(19)

AAAG
(65)

ACGC
(37)

ACGC
(28)

ACGC
(23)

ACGC
(18)

1 T/T represents the repeat units that comprise tri- and tetra-
nucleotides.
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using a uniform rule. Locus order as determined by DC
and NF crossing was considered the key reference for the
integrated map. We included the JL data without regard to
the linkage results.

Since MAPMAKER only handles one cross at a time, we
could not directly pool scoring in different crosses to con-
struct a consensus map. Instead, we first merged the single
data sets into a consensus data set. Given the similar sizes
of three mapping populations (189 individuals in DC,
190 in JL, and 188 in NF), we made up a large population
of 567 individuals that could include three sets of scoring.
From this, the first 189, the next 190, and the last 188 rep-
resented individuals came from DC, JL, and FN, respec-
tively. If the individuals were not genotyped in the
corresponding cross, they were considered as missing data
loci (designated 0). Fortunately, we could treat many
common markers, typed in two or three crosses with little
or no missing data loci, as anchors for groups from differ-
ent mapping populations. The resulting consensus data
set was used to perform a linkage analysis using MAP-
MAKER. The framework generated by a single cross was
accounted for if the result of ordering was dramatic. Join-
Map was also employed for reference, which automati-
cally constructs an integrated consensus map.

Abbreviations
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