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Abstract

Background: Recent transcriptomic analyses in mammals have uncovered the widespread
occurrence of endogenous antisense transcripts, termed natural antisense transcripts (NATSs).
NATS are transcribed from the opposite strand of the gene locus and are thought to control sense
gene expression, but the mechanism of such regulation is as yet unknown. Although several
thousand potential sense-antisense pairs have been identified in mammals, examples of functionally
characterized NATs remain limited. To identify NAT candidates suitable for further functional
analyses, we performed DNA microarray-based NAT screening using mouse adult normal tissues
and mammary tumors to target not only the sense orientation but also the complementary strand
of the annotated genes.

Results: First, we designed microarray probes to target the complementary strand of genes for
which an antisense counterpart had been identified only in human public cDNA sources, but not in
the mouse. We observed a prominent expression signal from 66.1% of 635 target genes, and 58
genes of these showed tissue-specific expression. Expression analyses of selected examples (Acaalb
and Aard) confirmed their dynamic transcription in vivo. Although interspecies conservation of NAT
expression was previously investigated by the presence of cDNA sources in both species, our
results suggest that there are more examples of human-mouse conserved NATSs that could not be
identified by cDNA sources. We also designed probes to target the complementary strand of well-
characterized genes, including oncogenes, and compared the expression of these genes between
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mammary cancerous tissues and non-pathological tissues. We found that antisense expression of
95 genes of 404 well-annotated genes was markedly altered in tumor tissue compared with that in
normal tissue and that |9 of these genes also exhibited changes in sense gene expression. These
results highlight the importance of NAT expression in the regulation of cellular events and in

pathological conditions.

Conclusion: Our microarray platform targeting the complementary strand of annotated genes
successfully identified novel NATSs that could not be identified by publically available cDNA data,
and as such could not be detected by the usual "sense-targeting" microarray approach.
Differentially expressed NATs monitored by this platform may provide candidates for
investigations of gene function. An advantage of our microarray platform is that it can be applied

to any genes and target samples of interest.

Background

There is a growing body of evidence that natural antisense
transcripts (NATSs) play important regulatory roles in var-
ious biological processes. NATs are usually transcribed
from the opposite strand of a particular gene locus, and
they are thought to regulate sense gene expression [1,2].
One of the proposed models of NAT-mediated regulation
is for the antisense transcript to act as a cis-repressor of
gene expression from the sense strand. For example, in
early embryogenesis, transcription of the antisense genes
Tsix and Air determines the fate of expression of their
sense partners Xist and Igf2r, respectively [3,4]. The
appearance of NATs within several imprinted loci suggests
that NATs may regulate gene expression by controlling the
epigenetic status of surrounding genes [5-7]. Moreover,
NATs may function in pathological conditions by causing
epigenetic alterations such as histone modification and
DNA methylation [8,9].

The other primary model of NAT-mediated gene regula-
tion is induction of the production of small RNAs from
NAT loci and their subsequent function in RNA interfer-
ence (RNAi) pathways. Endogenous small interfering
RNA (endo-siRNA) molecules, generated from NAT lodi,
are induced specifically under conditions of salt stress and
immune response in plants [10-15]. Recent experimental
data also suggests the presence of NAT-associated endo-
siRNA molecules in animals [16-18].

Although the number of NATs thought to have biological
functions has gradually increased, the functions of most
NATs discovered in recent large-scale in silico studies are
unknown. Computational identification of NATs is based
mostly on the analysis of cDNA and EST sequence collec-
tions by sequence alignment, and this process has identi-
fied several thousand sense-antisense pairs [19]. However,
in principle, cDNA sequencing accumulates data on tran-
scripts with poly(A)-stretches and does not access the
non-poly-adenylated population of transcripts. A recent
genome-wide tiling array study of the human genome
revealed that many genomic regions that could not be

identified from c¢DNA collections are apparently tran-
scribed and tend not to be poly-adenylated [20]. This
finding indicates that antisense transcriptome analyses
based solely on cDNA information may be inefficient. In
addition, most publicly available cDNA sequences are
derived from normal cellular conditions, such as normal
adult tissues, and thus are not useful for the identification
of NATs specific to abnormal cellular conditions.

To discover novel NATs expressed under various biologi-
cal conditions, we proposed a microarray-based tech-
nique involving the use of 60-mer oligonucleotide DNA
probes selected from the complementary sequences of
cDNAs (i.e., known genes), referred to as artificial anti-
sense sequence (AFAS) probes. This approach has the abil-
ity to detect antisense expression that cannot be identified
by using information from the cDNA and EST collections
and has the advantage of compatibility with the computa-
tional methodology widely used for sense gene expression
analysis [21]. We performed microarray analyses with
AFAS probes by using oligo-dT and random primed target
samples to provide a comprehensive approach for the
detection of novel non-poly-adenylated transcripts in the
antisense transcriptome.

Here, we designed AFAS probes to correspond to the anti-
sense strand of well-studied selected genes, including
oncogenes and tumor suppressor genes, imprinted genes,
and human-mouse orthologous genes. We studied the
expression profiles of targeted transcripts in normal
mouse adult tissues and in mouse mammary tumor virus
(MMTV)-induced mammary tumors. This technique is
applicable to all genes and sample types and can be used
for antisense expression identification that is not possible
by using conventional cDNA information alone.

Results

AFAS probes detect previously known NATs

To verify whether our methods can detect NAT expression,
we initially examined the signal intensities of AFAS probes
that targeted previously identified antisense transcripts.
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For example, AFAS probes designed for Tsix, which reflects
the abundance of Xist RNA, detected expression in the 11
adult mouse tissues (mixed males and females), but not in
the testis, as expected (see Additional file 1). Such expres-
sion patterns were detected only for probes corresponding
to the exonic-overlapping regions between Tsix and Xist,
and also for the sense probes corresponding to Xist RNA
(see Additional file 1). This finding suggests that AFAS
probes for Tsix can identify not only the presence of its
antisense counterpart, but also its exonic regions. In addi-
tion, AFAS probes for several imprinted genes (Igf2r,
Kcng1, Gnas, Dio3, and Ube3a), which are known to give
rise to antisense transcripts [5], also gave prominent sig-
nals (see Additional file 2). Moreover, previously known
antisense transcripts, such as those arising from Myc (mye-
locytomatosis oncogene) [22] and Tgfb2 (transforming
growth factor beta2) [23], were also detected by our
microarray platform (data not shown). Although the
number of documented NAT examples in normal mouse
adult tissues is limited, the mean signal intensities gener-
ated by AFAS probes corresponding to these genes were
higher than those for the negative control genes. The con-
trol genes comprise a set of randomly selected genes, with-
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out ¢cDNA, EST, and CAGE tags in the antisense
orientation (Figure 1A, P = 5.1e-12 by Welch's t-test).
These data indicate that endogenous NAT expression of
known genes is potentially detectable by probes designed
for the complementary strand of known genes.

Global analyses of AFAS probes

Before screening for novel NATs using AFAS probes, we
first analyzed the global tendency of signal intensities
from all AFAS probes applied to our custom microarray
platform. Because Northern blot analyses for particular
gene loci have previously shown that NATs tend to be
poly(A)-negative [24], we checked whether our AFAS
probes also showed this tendency in normal mouse tissue
expression profiling. A significantly higher number of
AFAS probes than sense probes detected transcripts only
within random-primed samples, but not among the oligo-
dT primed targets (P < 2.2e-16, Fisher's exact test, see
Additional file 3). This result indicates that transcripts
detected by AFAS probes also lack poly(A)-tails, similar to
the finding for NATs characterized by Northern blot anal-
yses [24]. Also, the number of sense probes detecting tran-
scripts in both oligo-dT and random primed samples was
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Global tendency of AFAS probes in normal tissues. (A) Mean signal intensities of AFAS probes were compared

between sets of known NAT-associated genes (including imprinted genes) and negative controls. Negative controls with no
cDNA, EST, and CAGE tags in their antisense orientation were randomly picked from NCBI RefSeq. (B) Nuclear enrichment
(grey bars) was measured by 10g, (S, cieus’Swhole-cell)> Where S, ceus aNd Sy poje.cen denote signals from nuclear fractions and from
whole cells (NIH3T3), respectively. Cytoplasmic enrichment (open bars) was calculated by 10g,(Scycoptasm/Swhole-cen)» Where Sco.
plasm denotes signals from the cytoplasmic fraction. All signal intensities were obtained from the experiments by using random-
primed samples. (C) The sum of Z-scores for every relative position is indicated. For each tissue, the positional preference of
NAT expression was measured by Z-scores calculated from the median signal values of every position. Expression data were
obtained from random-primed samples.

Page 3 of 12

(page number not for citation purposes)



BMC Genomics 2009, 10:392

higher than that of antisense probes (P < 2.2e-16, Fisher's
exact test, see Additional file 3). This finding indicates that
sense transcripts with poly(A)-tails can be identified by
both priming methods, because sense probes target the
protein-coding strand of the mRNA, which is expected to
have a poly(A)-tail. Another characteristic of endogenous
NATs is their nuclear localization [24]. A distribution
comparison of AFAS probe signals between nuclear and
cytoplasmic fractions clearly showed nuclear enrichment
of detected transcripts (Figure 1B, P < 2.2e-16, Median
test).

Several large-scale studies using information in cDNA and
EST collections and from genome-wide tiling arrays in
yeast previously showed that NATSs tend to be transcribed
from the 3' region of its counterpart mRNA [25-27], thus
implying the presence of regulatory mechanisms involv-
ing tail-to-tail overlapping. We also observed this charac-
teristic for the AFAS probes, because the AFAS probe
signals clearly showed positional preference relative to the
sense mRNA (Figure 1C). This result indicates that AFAS
probes indeed detect the positional bias of antisense tran-
scription. Similarly, we also observed higher signals
within 5' regions (Figure 1C), thus suggesting that NATs
may also arise near the transcriptional start site, as previ-
ously shown for head-to-head overlapping NATs such as
WT1, Sphki, and Tsix [28-30].

Novel conserved NAT detection by normal tissue profiling
To test the ability of AFAS probes to detect novel NATs, we
initially applied our microarray approach to the human-
mouse orthologous gene set. In many studies, inter-spe-
cies conservation of NATs is implied by the presence of
common cDNA sequences between the two species
[26,31,32]. However, recent genome-wide tiling array and
CAGE analyses revealed that a large fraction of the
genome is transcribed [33,34], indicating that current
c¢DNA collection is not sufficient for comprehensive com-
parative genomics, including comparative antisense tran-
scriptome analyses. In this situation, the use of AFAS
probes corresponding to genes for which the antisense
counterpart has been identified in humans, but not in
mice, may lead to the detection of novel conserved NATs
(Figure 2).

We designed AFAS probes corresponding to 635 mouse
orthologous partners, for which the antisense counterpart
has been identified in humans, but not in mice (one sense
and one antisense probe were designed per gene). We
then profiled the expression of these genes to detect anti-
sense expression within 12 normal mouse tissues. We
identified 420 (66.1%) probes that gave a signal (signal
intensity >100, which is our empirically defined crite-
rion), at least in a single particular tissue, and 58 of these
(9.2%) showed tissue-specific expression. Probes of 120
genes gave signals with a higher than average intensity

http://www.biomedcentral.com/1471-2164/10/392

according to inter-array normalization (see Additional file
4). These results suggest that many NATs identified only
in the human cDNA collection may also be expressed in
mice.

We attempted to validate the expression of two candidate
conserved NATs (antisense of Acaalb and Aard) by per-
forming Northern and in situ hybridization (ISH) analy-
ses. Whereas human ACAAI (acetyl-Coenzyme A
acyltransferase 1) overlaps with DLECI (deleted in lung
and esophageal cancer 1) in a tail-to-tail overlapping
manner, its orthologous counterpart in the mouse
genome (Acaalb and Dlecl) shows a tail-to-tail relation-
ship but not a reciprocal overlapping relationship, accord-
ing to the annotated gene structure (see Additional file 5).
Both microarray and Northern analyses confirmed that
the Acaalb sense transcript is expressed within liver and
kidney (see Additional file 5). Northern analyses were not
able to detect the antisense transcript of Acaalb from
either poly(A)+ or total RNA (data not shown), but quan-
titative RT-PCR, ISH and microarray analyses were able to
detect this transcript within the testis and kidney (see
Additional file 5). This result implies that NATs detected
by microarray analysis using AFAS probes are transcribed
in vivo.

We also analyzed the expression of Aard (alanine- and
arginine-rich domain-containing protein), which is a
functionally uncharacterized gene but is known to be
expressed within the adult testis and XY fetal gonad [35].
In humans, exons of AARD (also known as C80r1f85) over-
lap with that of an unnamed uterus EST (GenBank:
AK093981), whereas mouse Aard has no EST arising from
the antisense strand (Figure 3B). Northern analysis con-
firmed that expression of the sense transcript of Aard was
testis-specific (Figure 3C); however, Northern analysis of
the antisense transcript showed laddered hybridization
patterns for total RNA, but not for poly(A)+ RNA isolated
from all samples (Figure 3D). By comparison, both the
sense and antisense transcripts (Aard-AS) were detected by
ISH within a particular region of the seminiferous tubules
(Figure 4A,B), thus confirming that the Aard-AS is also
expressed in the testis. In addition, Aard-AS was most
likely located within the nucleus, whereas Aard was
located within the cytoplasm (Figure 4C,D). Because ISH
shows that Aard-AS is expressed in a particular region of
the seminiferous tubules, we checked our microarray data
on fractionated testis samples that reflected the three steps
of spermatogenesis (i.e., pachytene spermatocytes, round
spermatids, and elongated spermatids). We found that
Aard-AS was expressed within the early period of sperma-
togenesis, whereas the sense transcript appeared at a later
phase (Figure 4E). This finding shows that sense and anti-
sense transcripts of Aard are transcribed exclusively and in
a mutually antagonistic fashion during spermatogenesis.
In addition, Aard-AS expression was detected only in the
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Schematic illustration of the strategy to discover novel conserved NATSs. Conserved NATs were previously listed
according to the presence of cDNA within humans and mice (A). Black and grey boxes denote transcribed region identified by
cDNA on plus and minus strand of the genome, respectively. Black triangles indicate microarray probes designed within the
transcribed regions. If antisense counterpart on opposite strand has not been overlapped, or not been identified in mice (B
and C), microarray probes attempted to detect antisense expression could not be designed. To discover novel conserved
NAT, we designed AFAS probes (red triangles) for mouse genes for which the orthologous partner in the human genome has

an antisense counterpart.

random-primed target sample, not in the oligo-dT primed
target (Figure 4E), indicating that Aard-AS tends to be
poly(A)-negative and nuclear-localized.

These data clearly confirm that AFAS probes can detect the
expression of antisense transcripts in normal tissues, and
that they can also identify transcripts expressed in a tissue-
and cell-type-specific manner. Detection of such expres-
sion dynamics for antisense transcripts is possible only by
using the analytical platform targeting the complemen-
tary strand of the annotated genes. Thus, AFAS probes,
when used within appropriate biological samples and
combined with other analytical modalities, can be used to
discover genuine functional NATs; this is an advantage
over conventional approaches that depend on publicly
available cDNA data.

Detection of novel NATs differentially expressed under
pathological conditions

We next checked whether AFAS probes have the ability to
detect antisense transcripts in cancerous tissues. Examples
of functional antisense transcripts identified in abnormal

cells are CDKN2B, WT1, and HBA2 [8,9,29]. These anti-
sense transcripts control the epigenetic status of surround-
ing genes by DNA methylation or histone modification
and thus are thought to affect the expression of their sense
partners. To confirm this notion, we applied the AFAS
probe technique to the 404 well-characterized genes
including oncogenes and tumor suppressors (1752 AFAS
probes were successfully designed, giving 4.4 probes per
gene on average). We used these probes in microarray
experiments based on the GRS/A mouse strain, which fre-
quently suffers from (MMTV)-induced mammary tumors
[36].

For the probes designed to detect the sense transcripts, we
identified 57 genes showing differential expression.
Among these, 48 were up-regulated and 9 were down-reg-
ulated within tumor regions, compared with in normal
regions, according to a set statistical threshold (P <0.05 by
Student's t-test) (Figure 5 and Additional file 6). Among
the up-regulated genes in tumors, 12 genes (Pdcd6 is
shown as an example in Additional file 7) showed loss of
antisense expression (Figure 5A, right lower), whereas
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Northern analyses of the sense and antisense tran-
scripts of Aard. (A) Schematic illustration of AARD and
AK093989 (unannotated gene product) in humans. (B)
Mouse orthologous partner, Aard. (C) Northern analysis for
sense expression of Aard in NIH3T3 cells, brain (Br), liver
(Li), kidney (Ki), and testis (Te). (D) Northern analysis for
expression of the corresponding antisense transcript for
both poly(A)+ and total RNA. Triangles indicate 28S (4710
nt) and 18S (1870 nt) ribosomal RNA.

among the down-regulated genes Nr2¢2 showed up-regu-
lation of its antisense expression in an anti-correlated
manner with the sense transcript counterpart (Figure 5A,
left upper). These genes are reminiscent of the model in
which antisense transcription may lead to the silencing of
sense gene expression, such as cyclin-dependent kinase
inhibitor (CDKN2B) and its antisense counterpart [9].
These genes may be regulated through an antisense-medi-
ated pathway.

Interestingly, the expression of antisense transcripts repre-
senting 37 genes (Thbd is shown as an example in Figure
6A) was found to increase, despite the absence of changes
in expression of their sense transcript counterparts (Figure
5B). We also identified down-regulated antisense tran-
scripts corresponding to 45 genes (Drd4 is shown as an
example in Additional file 7) for which there were no
changes in expression of their corresponding sense tran-
scripts. Because ISH using cancerous tissues, like microar-
ray analysis, can detect antisense expression arising from
Thbd (thrombomodulin) (Figure 6B-D), there might be
more examples of genes for which antisense expression is
altered in cancerous tissue but cannot be detected by

http://www.biomedcentral.com/1471-2164/10/392

microarray analysis that targets expression from the sense
strand of genes.

Discussion

This paper shows that microarray probes targeting tran-
scription from the complementary strand of known genes
can identify novel NATs, an approach that has not been
possible solely on the basis of publicly available cDNA
data. Recently described high-density oligonucleotide til-
ing-array platforms are designed to overview the transcrip-
tional landscape of specific genomic regions at high
resolution. By comparison, our platform uses multiple
probes to specifically screen for transcription from the
antisense strand of known genes. Many previous studies
have attempted to identify NATs by DNA microarray anal-
ysis using cDNA-oriented custom microarrays or commer-
cially available microarray platforms [37-41]. Since our
microarray platform is custom-made and not commercial,
it can be applied to any genes or gene loci of interest. Fur-
thermore, our method does not introduce bias from
cDNA synthesis between sense and antisense profiling
because it does not require specific protocols for target
cDNA synthesis for NAT detection. In addition, our
microarray platform approach can simultaneously profile
sense and antisense expression in one microarray hybrid-
ization experiment.

Many NATs detected by AFAS probes were appeared only
in the random-primed targets. This was concordance with
previous cDNA-based microarray profiling of NAT expres-
sion [24]. Whereas poly(A)-plus RNA population is
roughly represented by oligo-dT primed cDNAs, whole
transcriptome (including the poly(A)-minus RNA popula-
tion) is represented by cDNAs synthesized by random
primers. Therefore, NATs detected by our analysis tend to
be poly(A)-negative. Although oligo-dT primers can pick
the internal poly(A)-stretches, this is not an issue at the
level of microarray-based NAT screening, because the vast
majority of the poly(A)-stretch (approximately 90%) is
located within the 3' end of the transcripts (data not
shown).

By designating AFAS probes to human-mouse ortholo-
gous genes, we identified many probes showing positive
signals. Two of these probes identified transcripts for
which in wvivo expression was confirmed. Thus, our
approach may reveal more, as yet unidentified, conserved
NATs; this has not been possible by conventional
approaches, as previously reported using ¢cDNA data
[26,31,32]. Of the individually validated examples
(Acaalb and Aard), expression of Aard-AS was localized to
the nucleus and was detected only in random-primed tar-
get samples. In addition, multiple-size hybridized bands
pattern was observed especially for total RNA membrane,
not for poly(A)+ RNA membrane. This observation is sim-
ilar to that of previously identified antisense transcripts
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Figure 4

Spermatogenesis

Expression dynamics of Aard and Aard-AS. (A) In situ hybridization results (seminiferous tubules) for sense (Aard) and
antisense (Aard-AS) transcripts. Arrow indicates the direction of spermatogenesis, as illustrated in (B). Scale bars: 100 um. (C
and D) Enlargement of the corresponding boxes in (A). Arrowheads denote the cytoplasmic signal of Aard and the nuclear sig-
nal of Aard-AS. (E) Microarray results of Aard and Aard-AS expression during the spermatogenesis. Black and white bars indi-
cate normalized signal intensity levels of sense and AFAS probe, respectively. Arrow indicates the direction of spermatogenesis
(Psp, pachytene spermatocytes; Rsp, round spermatids; Esp, elongated spermatids). Fractionation of germ cells on the basis of
the three stages of spermatogenesis in the mouse testis was performed as previously described [53,54].

[24], and this is probably due to heterogeneously sized
molecules of Aard-AS transcripts. Because ISH and the
microarray data on other antisense transcript examples
also show nuclear localization and poly(A)-avoidance
(data not shown), it is possible that these features are gen-
eral characteristics of the antisense transcriptome.

We also designed AFAS probes for well-characterized
genes and identified several examples of correlated and
anti-correlated expression between the NATs and the cor-
responding sense transcript within MMTV-induced mam-
mary tumors. We observed differentially expressed genes
for which expression of the antisense transcript had
changed, whereas that of the sense transcript had not.
Given that differential antisense expression might induce
changes in epigenetic status, for example in CDKN2B and

CDKN2BAS [9], antisense transcription may cause
changes in the methylation status of neighboring genes.
This notion can be tested by using methylated DNA
immunoprecipitation (MeDIP) and chromatin immuno-
precipitation (ChIP) on chip analyses to further character-
ize the antisense transcriptome and to determine whether
specific NATs function as epigenetic regulators. Whereas
this study revealed NATs specific to mouse tumors,
human clinical samples have also been analyzed to screen
for novel NATs by the same methodology; this new study
has identified many antisense transcripts showing
increased or decreased expression in human colon cancer
tissues compared with controls (Saito R., Kohno K,
Okada Y., Osada Y., Numata K., Watanabe K., Nakaoka
H., Yamamoto N., Kanai A., Yasue H. et al., manuscript in
preparation).
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Probes showing differential expression between normal and tumor regions. Differential expression between normal
and tumor regions is plotted with log-scaled P value according to Student's t-test for sense (x-axis) and antisense (y-axis)
expression. In cases where the mean value of signals from normal regions was higher than that of tumors, the value was multi-
plied by -1. Accordingly, values higher than zero indicate up-regulation, whereas values lower than zero indicate down-regula-
tion, in tumors. (A) Colored points denote significant changes in the expression of both the sense and antisense transcripts in
tumors, in a correlated manner (blue) and in an anti-correlated manner (red). The names of the genes indicated by the colored
points are listed in additional file 6. (B) Orange and green dots indicate up-regulated and down-regulated antisense expression
from genes, respectively, but no apparent changes in sense transcript expression.

Although next-generation high-throughput transcriptome
sequencing (RNA-seq) might replace microarray-based
expression analyses, antisense transcriptome analysis by
sequencing is still under development because of the
laborious nature of strand-specific library construction
[42]. DNA microarray-based profiling makes it possible to
gain a detailed view of specific genes or gene loci and can
also provide expression profiles of both poly(A)-plus and
poly(A)-minus RNAs.

Conclusion

We showed here that probes targeting the complementary
strand of the annotated genes successfully identify novel
NAT expression, including those altered tissue- and
tumor-specifically. The results suggest that there are more
examples of NATs that cannot not be collected from pub-
lic cDNA sources. Further functional investigation is
required for such dynamically expressed NATs, and the
use of microarray platforms targeting both strands of the
gene locus will help to narrow down the proper candi-
dates for further functional analyses.

Methods

Custom microarray construction

The AFAS probes for detecting NATs were designed to
detect antisense transcription originating from genes cate-
gorized into three groups: (1) 48 genes in which antisense
transcription has been previously reported and 87
imprinted genes in mice, (2) 404 selected well-annotated
genes, (3) orthologous genes in NAT loci (detailed defini-
tion given below), and (4) randomly selected genes for
which there were no cDNA, EST, and CAGE tags in the
antisense orientation. For categories (1) and (2), the AFAS
probes were designed to correspond to every 500 bases of
the antisense strand of the exonic regions of each gene.
For category (3), the AFAS probes were designed to corre-
spond to a single specific sequence in each transcript. For
category (4), two AFAS probes were designed per tran-
script. Target region selection for the probe design is sum-
marized in Additional file 8. All probes were
computationally designed by using the OligoWiz pro-
gram [43] and were used in the Agilent 44K custom oli-
goarray platform for single-color microarray analysis.

Page 8 of 12

(page number not for citation purposes)



BMC Genomics 2009, 10:392

A Thrombomodulin (Thbd)

http://www.biomedcentral.com/1471-2164/10/392

P=0.537 P =0.004
2 1000 2 2000
2 2 I
g g
£ 750 £ 1500
= g
2 500 2 1000
kS 3
2 250 I I S 500 :
| g -
ZO 0 I [— g 0 =
Normal Tumor Normal Tumor
e
D

Figure 6

In situ hybridization of the antisense transcript of Thbd. (A) Microarray results for Thbd, for which expression of the
antisense transcript (red bars) has markedly changed in tumor cells but that of the sense transcript (blue bars) has not. (B-D)
Results of in situ hybridization of mammary tumor tissue of GRS/A mice for detecting antisense transcription of Thbd. Scale

bars: 200 um (C); 100 um (D).

Target sample preparation for the microarray analysis

Total RNA for the mouse (C57BL/6J) microarray experi-
ments was isolated from NIH3T3 cells (fibroblast cell
line), SL10 cells (fibroblast cell line), brain, heart, intes-
tine, kidney, liver, lung, placenta (d.p.c. 10.5 and 13.5),
spleen, stomach, testis, and thymus. Testis was from
C57BL/6] males (8 to 10 weeks), placenta was from preg-
nant mice, and the other tissue was from both male and
female mice. Nuclear and cytoplasmic fractionation of
NIH3T3 cells was carried out according to the Protein and
RNA Isolation System (PARIS) instructions (Ambion
Inc.). For the microarray analysis of murine mammary
tumors, RNA samples were collected from normal and
cancerous mammary glands of dissected GRS/A mice [36].

Data processing and the accessibility
Numerical processed signal values (gProcessedSignal) of
the Agilent Feature Extraction File were obtained as repre-

sentative expression levels for each probe within the array.
If a spot had an intensity value lower than five, or if there
was no prominent difference between foreground and
background signals, then the intensity value was adjusted
to five and the corresponding probe was treated as an
"absent probe". To perform normalization of signal inten-
sity distribution between multiple arrays, the whole mean
signal of every hybridization experiment was adjusted to
that of the data from SL10 cells by oligo-dT priming.
Probes with intensity values lower than five, as well as
being flagged as "saturated", were discarded for the inter-
array-normalization step. Tissue-specificity of the expres-
sion signals was evaluated according to T measurement
[44]. The raw data from the microarray analyses were
deposited in the NCBI Gene Expression Omnibus (GEO)
under accession number GSE14568 [45]. Expression data
as well as a simplified genomic structure can be accessed
via an originally constructed viewer [46].
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In silico identification of orthologous genes in NAT loci
To identify orthologous genes in NAT loci (Figure 2), we
initially performed in silico identification of sense-anti-
sense pairs by the same procedures as previously pub-
lished [47], by using the latest full-length cDNA
collections [33,48], NCBI RefSeq mRNA [49] and the Uni-
Gene collection [50]. This identified 3524 and 5351 exon-
overlapping sense-antisense pairs in humans and mice,
respectively. Genomic synteny data between human and
mouse (defined by BLASTZ derived from UCSC [51]) was
then exploited to determine whether each identified pair
was located within the syntenic region between the two
species. Those pairs located within the syntenic regions
were retained for the orthologous relationship validation.
The orthologous relationship between the genes located
within the syntenic regions was defined according to the
orthologous gene table from the BioMart Project [52].
Finally, 648 genes are identified as orthologous genes for
which NAT was identified in human ¢DNAs but not in
mouse cDNAs. AFAS probes for these (635 of 648) were
successfully designed.

Northern hybridization analyses

RNA from mouse tissues (C57BL/6], 8 to 10 weeks, male
and female mixed), and the NIH3T3 was isolated by using
Trizol reagent (Invitrogen Corporation). Northern analy-
ses were performed as previously described [24]. Loading
of equal amounts of RNA samples was confirmed by visu-
alization of ethidium bromide-stained RNA in the gel.
Probes specific for sense and antisense of Acaalb
(NM_146230), Aard (NM_175503), and Thbd (NM_009
378) were amplified by the PCR (see Additional file 9). All
the probe sequences contained their corresponding
microarray probe sequences. ¢cDNA fragments were
cloned to the pGEM-T Easy Vector (Promega Corpora-
tion), and strand-specific cRNA was prepared for hybridi-
zation.

In situ hybridization

Probes specific for sense and antisense of Acaalb
(NM_146230), Aard (NM_175503), and Thbd
(NM_009378) were amplified by the PCR (see Additional
file 9). All the probe sequences contained their corre-
sponding microarray probe sequences. The amplified
fragment was sub-cloned into pGEMT-Easy vector
(Promega) and was used for generation of sense or anti-
sense RNA probes. Paraffin-embedded testis sections (6
pm) of normal adult mouse (C57BL/6 mouse, male, 8
weeks) were obtained from Genostaff Co., Ltd. For in situ
hybridization the sections were hybridized with digoxi-
genin-labeled RNA probes at 60°C for 16 h. The bound
label was detected using NBT-BCIP, an alkaline phosphate
color substrate. The sections were counterstained with
Kernechtrot (Muto Pure Chemicals Co., Ltd.). Probe
sequence of negative control experiment was selected
from Oryza sativa putative leaf protein (NM_197207) (see
Additional file 5 and 10).

http://www.biomedcentral.com/1471-2164/10/392

Real-time quantitative RT-PCR

cDNA was initially synthesized with gene-specific reverse
primers (Acaalb-AS and Gapdh) from selected tissue RNA
(Brain, Testis, Kidney, and Liver), then subjected to quan-
titative RT-PCR. Gene expression level was normalized
with Gapdh. Primers are listed in Additional file 11.
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Additional material

Additional file 1

Signal intensities from AFAS probes for Tsix. AFAS probes designed for
Tsix, which reflects the abundance of Xist RNA, detected expression in the
11 adult mouse tissues (mixed males and females), but not in the testis.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-392-S1.pdf]

Additional file 2

Antisense expression of mouse imprinted genes. AFAS probes for several
imprinted genes (1gf2r, Kenql, Gnas, Dio3, and Ube3a), which are
known to give rise to antisense transcripts, gave prominent signals.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-392-82.pdf]

Additional file 3

Numbers of valid probes in adult mouse tissue profiling. A significantly
higher number of AFAS probes than sense probes detected transcripts only
within random-primed samples, but not among the oligo-dT primed tar-
gets.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-392-S3.pdf]

Additional file 4

Highest signal intensities from expression profiling of the 12 normal
adult tissues. Probes of 120 genes gave signals with a higher than average
intensity according to inter-array normalization.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-392-54.pdf]

Additional file 5

Expression analyses of sense and antisense transcripts of Acaalb.
Quantitative RT-PCR, ISH and microarray analyses were able to detect
this transcript within the testis and kidney.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-392-85.pdf]
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Additional file 6

List of genes for which expression of the antisense transcript and sense
transcript markedly changed in tumors. Forty-eight were up-regulated
and nine were down-regulated within tumor regions, compared with in
normal regions.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-392-56.pdf]

Additional file 7

Changes in expression of Pdcd6 and Drd4.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-392-57.pdf]

Additional file 8

Selection of target regions for microarray probe design. Target region
selection for the probe design is summarized.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-392-88.pdf]

Additional file 9

List of primers for PCR amplification of cDNA fragments to generate
probes for Northern blot analysis and in situ hybridization. Primers to
amplify probes specific for sense and antisense of Acaalb, Aard, and
Thbd are listed.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-392-S9.pdf]

Additional file 10

Negative control experiment of Aard in situ hybridization.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-392-510.pdf]

Additional file 11

Primers for real-time quantitative RT-PCR. Primers for real-time quan-
titative RT-PCR (Gapdh and Acaalb-AS) are listed.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-392-S11.pdf]
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