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Abstract

Background: Burkholderia cenocepacia belongs to a group of closely related organisms called the
B. cepacia complex (Bcc) which are important opportunistic human pathogens. B. cenocepacia
utilizes a mechanism of cell-cell communication called quorum sensing to control gene expression
including genes involved in virulence. The B. cenocepacia quorum sensing network includes the
CeplR and CcilR regulatory systems.

Results: Global gene expression profiles during growth in stationary phase were generated using
microarrays of B. cenocepacia cepR, cciR and cepRccilR mutants. This is the first time CciR was shown
to be a global regulator of quorum sensing gene expression. CepR was primarily responsible for
positive regulation of gene expression while CciR generally exerted negative gene regulation. Many
of the genes that were regulated by both quorum sensing systems were reciprocally regulated by
CepR and CciR. Microarray analysis of the cepRccilR mutant suggested that CepR is positioned
upstream of CciR in the quorum sensing hierarchy in B. cenocepacia. A comparison of CeplR-
regulated genes identified in previous studies and in the current study showed a substantial amount
of overlap validating the microarray approach. Several novel quorum sensing-controlled genes
were confirmed using qRT-PCR or promoter:lux fusions. CepR and CciR inversely regulated
flagellar-associated genes, the nematocidal protein AidA and a large gene cluster on Chromosome
3. CepR and CciR also regulated genes required for iron transport, synthesis of extracellular
enzymes and surface appendages, resistance to oxidative stress, and phage-related genes.

Conclusion: For the first time, the influence of CcilR on global gene regulation in B. cenocepacia
has been elucidated. Novel genes under the control of the CepIR and CcilR quorum sensing
systems in B. cenocepacia have been identified. The two quorum sensing systems exert reciprocal
regulation of many genes likely enabling fine-tuned control of quorum sensing gene expression in
B. cenocepacia strains carrying the cenocepacia island.

Background which are important opportunistic pathogens in individ-
Burkholderia cenocepacia is a member of a group of closely ~ uals with cystic fibrosis (CF) or chronic granulomatous
related organisms called the B. cepacia complex (Bcc),  disease [1-5]. B. cenocepacia and B. multivorans are the
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most common members of the Bcc isolated from lungs of
CF patients [6,7]. Infections with B. cenocepacia can lead to
what is termed "cepacia syndrome", a rapid decline in
lung function associated with necrotizing pneumonia,
bacteremia and sepsis which can result in death [8]. B. cen-
ocepacia is intrinsically resistant to antibiotic therapy and
often impossible to eradicate from lungs of infected CF
patients [9].

Quorum sensing (QS) is an intricate cell-cell signaling sys-
tem used by a diverse range of microbial species to com-
municate with neighbouring cells to regulate gene
expression. In Gram-negative bacteria, homologs of the
Luxl protein family synthesize signaling molecules
termed N-acyl-homoserine lactones (AHLs) that are
bound by homologs of the LuxR protein family which act
as transcriptional regulators (for reviews see [10] and
[11]). B. cenocepacia has two pairs of QS systems, the
CeplIR system which is present in all species of the Bcc [12-
15] and the CcilR system, which is only present in B. cen-
ocepacia containing the cenocepacia island (cci) found in
highly transmissible ET12 strains [13]. Cepl is primarily
responsible for the synthesis of C8-HSL [14] and minor
amounts C6-HSL [15]. Ccil primarily synthesizes C6-HSL
with lesser amounts of C8-HSL produced [16]. At the
genomic level, cepl and cepR are divergently transcribed
from each other while ccil and cciR form a transcriptional
unit [16]. The QS systems are arranged in a hierarchical
fashion as CepR is required for the transcription of the
ccilR operon [16]. However, CciR negatively regulates the
expression of cepl thus allowing negative regulatory feed-
back on the CeplR system [16]. Additionally, CepR activ-
ity can be inhibited by excess amounts of C6-HSL [17]. B.
cenocepacia also contains a third LuxR homolog, CepR2,
that lacks an associated AHL synthase gene [18]. CepR2
negatively regulates its own expression and is negatively
regulated by CciR. We have recently identified several
CepR2-regulated genes, including virulence factors, and
demonstrated that CepR2 can influence gene expression
in the absence of AHLs [18].

The CeplR system in B. cenocepacia and B. cepacia posi-
tively influences virulence in murine, nematode, wax
moth, alfalfa and onion infection models [19-22]. B. cen-
ocepacia CeplIR negatively regulates genes involved in the
biosynthesis of the siderophore ornibactin [14], but posi-
tively regulates expression of the zmpA and zmpB extracel-
lular zinc metalloprotease genes [14,19,20]. CeplIR also
positively influences swarming motility [21], biofilm for-
mation and maturation [21,23]. Several studies have
shown that CepR positively regulates the expression of
AidA, a protein involved in nematode virulence [17,24-
26].

http://www.biomedcentral.com/1471-2164/10/441

Several global approaches have been used to identify the
CepIR regulon. A B. cepacia ATCC 25416 random pro-
moter library screened in E. coli identified 20 ORFs that
were positively regulated by CepR in the presence of C8-
HSL including a malate synthase gene and oxidative stress
induced genes [24]. A random promoter library approach
was employed for B. cenocepacia K56-2, using a K56-2 cepl
mutant as a host, that identified 58 or 31 genes with
increased or decreased expression, respectively, in the
presence of C8-HSL [27], including genes involved in type
IT and type III secretion systems, catalase activity, cold
shock proteins and genes with regulatory functions [27].
Transposon mutagenesis strategies in a B. cenocepacia cepl
mutant identified seven [17] and six genes [28], differen-
tially regulated by CepR, including the huv (phu) heme
uptake system, a TonB-dependent siderophore receptor,
and aidA [17,28]. Bioinformatic analysis of known CepR-
regulated gene promoters was used to predict a consensus
cep box motif sequence. An in silico screen of the B. cenoce-
pacia genome identified promoters containing the cep box
motif that are potentially regulated by CepIR including
genes involved in type V secretion and lipopolysaccharide
biosynthesis. CepR was shown to regulate promoters con-
taining a cep box upstream of genes now known to encode
proteins of the B. cenocepacia type VI secretion system
(T6SS) [28,29] as well as several other genes including
transcriptional regulators [28]. Additionally, a proteomics
approach in B. cenocepacia H111, which lacks ccilR, iden-
tified differential expression of 11 proteins, including
AidA, FimA, and SodB, when C8-HSL was added to cul-
tures of a H11llcep] mutant [26]. These combined
approaches have facilitated the delineation of genes regu-
lated by the CepIR system; however, there has been rela-
tively little overlap in the genes identified using different
approaches which suggests that our knowledge of the
CeplIR QS regulon is not complete.

Considerably less is known about the genes regulated by
the CcilR QS system. A B. cenocepacia ccil mutant exhib-
ited reduced virulence in a murine chronic respiratory
infection model [13]. Reduced expression of zmpA was
observed in B. cenocepacia ccil and cciR mutants [16].
Expression of zmpB was shown to be increased and
decreased, respectively, in B. cenocepacia ccil and cciR
mutants although a ccilR mutant had similar levels to the
parent strain [19]. Swarming motility was decreased in a
ccil mutant but unchanged in a cciR mutant [16]. Both the
CeplIR and CcilR systems regulate orbI which is involved in
ornibactin synthesis [27].

Studies of expression of individual genes in cepIR or ccilR
mutants have suggested that some genes are co-regulated
by these two QS systems, but that other genes are inde-
pendently regulated. A genome-wide investigation of the
contribution of the CcilR system to gene regulation in B.
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cenocepacia has not yet been undertaken. Furthermore, the
identification of CeplR-regulated genes is incomplete
since differential expression of genes that would account
for some observed phenotypes of cepl or cepR mutants
have not yet been reported. In this study, global gene
expression profiling was performed using B. cenocepacia
microarrays in order to more fully comprehend the extent
of gene regulation exerted by both CepIR and CcilR. These
data provide evidence of the individual, overlapping and
opposing roles played by each of the QS systems in the
regulation of global gene expression in B. cenocepacia.

Results

Identification of genes differentially expressed in cepR,
cciR and cepRccilR mutants

Transcriptional profiling using a custom B. cenocepacia oli-
gonucleotide microarray was used to identify genes differ-
entially expressed in stationary phase cultures of strain
K56-2 cepR, cciR and cepRccilR mutants compared to
wildtype K56-2. Both CepR and CciR were determined to
positively and negatively regulate gene expression, and
both QS systems influenced gene expression on all three
chromosomes as well as the plasmid (Fig. 1A). Using a 2-
fold difference in expression as a cut-off, 646 open read-
ing frames (ORFs) were identified that were positively reg-
ulated by CepR and 214 ORFs were identified that were
negatively regulated by CepR. CciR positively influenced
the expression of 100 ORFs and negatively regulated the
expression of 495 ORFs. In the cepRccilR mutant, 313
ORFs exhibited decreased expression and 176 ORFs
showed increased expression compared to wildtype (See
Additional File 1: Genes with increased or decreased
expression in cepR, cciR or cepRccilR mutants compared to
K56-2). Both QS systems regulated genes involved in a
range of biological processes including virulence, surface
structures, transport or secretion, metabolism and regula-
tion.

Subsets of unique ORFs independently regulated by CepR
or CciR were identified in the microarray data (Fig. 1B).
CepR was primarily a positive regulator while CciR gener-
ally was a negative regulator of gene expression. Although
the majority of differentially expressed genes appeared to
be independently regulated by either CepR or CciR, 196
ORFs were identified that were regulated by both CepR
and CdiR (Fig. 1C). Of these 196 ORFs, 167 were posi-
tively regulated by CepR and negatively regulated by CciR.
Other patterns of co-regulation were observed including
negative regulation by CepR and positive regulation by
CciR, positive regulation by both QS systems or negative
regulation by both QS systems. More than one quarter of
the unique ORFs that were reciprocally regulated by CepR
and CciR showed the same trend in regulation in the cepR
and cepRccilR mutants. Other ORFs showed the same reg-
ulation pattern in the cepR and cepRccilR mutants but no
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Genes regulated in QS mutants of B. cenocepacia
according to microarray analysis. (A) Total number of
genes showing positive or negative regulation in cepR, cciR or
cepRccilR mutants compared to K56-2. (B) Number of genes
showing independent regulation in the cepR or cciR mutants
compared to K56-2. (C) Number of genes exhibiting co-reg-
ulation were grouped as follows: positive regulation by CepR
and negative regulation by CciR (cep+cci-), negative regula-
tion by CepR and positive regulation by CciR (cep-cci+), pos-
itive regulation by both CepR and CciR (cep+cci+) and
negative regulation by both CepR and CciR (cep-cci-).

change in the cciR mutant. Together, these data indicate
that positive regulation is more frequently performed by
CepR compared to CciR, that the majority (92%) of co-
regulated genes were inversely regulated by CepR and
CciR and that CepR regulation can be dominant over CciR
regulation.

CepR gene regulation

To validate the transcriptome data we first compared
genes differentially regulated between K56-2 and the cepR
mutant to data from previous studies on CepRI regulation
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in this strain. Previously we used a random promoter
library to identify promoter:lux fusions differentially
expressed between K56-2 and a cepl mutant [27]. Com-
parison of transcriptome data of K56-2 and the cepR
mutant to the promoter fusion data for K56-2 and the cepl
mutant revealed that there was an overlap of at least 10
genes or operons identified using the two approaches
(Table 1). Regulation of these genes by CepR was usually
in the same direction and fold change was generally simi-
lar between the two studies. In some cases, genes were
identified as differentially regulated in the transcriptome
analysis that are predicted to be in the same operon as
genes previously identified using the promoter fusion
approach also suggesting a correlation between the
approaches (data not shown). Two genes were identified
for which opposite regulation by the CepIR system was
observed between the promoter::lux fusions and the tran-
scriptome analysis. For example, opposite results between
the promoter fusion and microarray data were observed
for BCAL1814 expression in the cepR mutant (Table 1).
Subsequent investigation using qRT-PCR confirmed the
microarray data showing reduced BCAL1814 expression
in both the cepR and cciR mutants compared to K56-2
indicating co-regulation (Table 2).

http://www.biomedcentral.com/1471-2164/10/441

In another previous study, we used a bioinformatics
approach to search the B. cenocepacia 2315 genome with
a cep box consensus sequence to identify potential CeplIR-
regulated genes [28]. Twenty-nine ORFs identified to be
CepR-regulated by microarray analysis were previously
shown to have a cep box motif in their predicted promoter
region or were located in a putative operon downstream
from an ORF with a cep box motif (Table 3). These genes
included cepl, zmpA, aidA, and genes of the T6SS. Taken
together, the data suggest the three different experimental
approaches were complementary and that the data
obtained by transcriptome analysis are valid since many
of the genes identified as CepR-regulated using microarray
analysis have been confirmed by other approaches.

Regulation of genes adjacent to cepl and cepR

The genomic location of cepl and the downstream ORF
(BCAM1871) suggests they are part of the same operon.
Expression of cepl and BCAM 1871 was reduced in the cepR
and cepRccilR mutants compared to K56-2 (Tables 3 and
4). BCAM1869 is located between cepR and cepl and is
divergently transcribed from cepR. Expression of
BCAM1869 was reduced in the cepR mutant compared to
K56-2 (Table 4). While the function of these proteins is
not yet known, genomic locations are conserved for

Table I: Comparison of genes (or operons) showing differential expression in microarray analysis and previously determined to be

CeplR regulated using transcriptional fusions.

Change (fold) for
K56-R2 (cepR) vs

Change (fold) for
K56-2cciR vs K56-2

Change (fold) for
K56-2cepRccilR vs

K56-2 K56-2

Gene Function? Change (fold) for
K56-d12 (cepl) vs
K56-2
Promoter fusionb
BCALOI I putative TPR domain -3.7
BCALO380 ABC transporter ATP- -2.7
binding subunit
BCALO812  sigma 54 modulation -2.0
protein
BCALI814d MerR family regulatory 22
protein
BCALI990 glucose-6-phosphate =22
isomerase Pgi
BCAL2244  urocanate hydratase HutU -2.2
BCAL29314 radical SAM superfamily 3.2
protein
BCAL30064 cold shock-like protein -1.9
CspA
BCAS0221  ABC transporter ATP- -1.7
binding protein AfcB
(pseudogene)
BCAS0409  zinc metalloprotease -2.6
ZmpA

Microarray* Microarray* Microarray*

-2.2 NC -22
-2.3 NC NC
-2.8 NC NC
-2.9 -2.7 NC
-2.6 NC NC
-2.1 NC NC
2.0 NC NC
-5.6 2.8 -4.9
-3.6 2.9 NC
-5.3 4.0 45

aFunction derived from B. cenocepacia 2315 [34].

cChange in 16-h cultures of cepl mutant compared to |6-h cultures of K56-2 as determined by promoter fusion Subsin et al. 2007 [27].
¢Change in 16-h cultures of cepR, cciR or cepRccilR mutants compared to 16-h cultures of K56-2 as determined by microarray analysis with at least

two biological replicates (NC, no change).

dPresence of a cep box motif was identified by Subsin et al. 2007 [27] for this gene.
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Table 2: Microarray and qRT-PCR analysis of selected genes showing differential expression in cepR, cciR or cepRccilR mutants

compared to K56-2.

Gene Function?2 Change (fold) for K56-R2 Change (fold) for K56-2cciR Change (fold) for K56-
(cepR) vs K56-2 vs K56-2 2cepRccilR vs K56-2
microarray® qRT-PCR¢ microarrayb qRT-PCR¢ microarray® qRT-PCR¢

BCAS0409  zinc metalloprotease -53 -53 4.0 2.5 -4.5 -3.3
ZmpA

BCALI814 MerR family -29 -1.4 2.7 -1.4 NC 2.7
regulatory protein

BCAMOI89 AraC family 2.1 -1.3 NC -2.6 NC -3.4
regulatory protein

BCAMOI9I putative non- -2.3 -74 NC -2.1 NC -6.8
ribosomal peptide
synthetase

BCAMOI199 outer membrane 2.1 1.6 NC -1.5 NC 1.8
efflux protein

BCAS0293 nematocidal protein -88.7 -6647 NC 1.7 -214.9 -4632
AidA

BCALOI 4 flagellin (type II) 2.4 -164.1 22 77 NC -127.9
protein FliC

BCAS0225  Shiny variant -3.6 -2.6 NC 1.5 -2.3 2.2
regulator ShvR

BCAS0220 putative permease -3.0 -2.5 28 1.7 NC -1.2

BCAS0204 ABC transporter -74 -1.7 37 4.0 NC -1.6
ATP-binding protein

BCAMI420 RND family efflux -4.8 -1.3 10.3 3.0 -7.4 -1.8
system transporter
protein

BCAMI418 two-component NC -10.7 1.3 3.0 NC -2.1
regulatory system,
response

BCAM2626 heme receptor 34 22 -2.2 -2.0 2.7 2.6

protein HuvA

aFunction derived from B. cenocepacia J2315 [34].

bChange in 16-h cultures of cepR, cciR or cepRecilR mutants compared to 16-h cultures of K56-2 as determined by microarray analysis with at least

two biological replicates (NC, no change).

cChange in 16-h cultures of cepR, cciR or cepRecilR mutants compared to |6-h cultures of K56-2 as determined by qRT-PCR.

orthologs of BCAM1869 and BCAM1871 in many B. cen-
ocepacia and other Burkholderia strains [30].

CciR exerts global gene regulation

The percentage of genes showing differential expression in
the cciR mutant was 8.3% of the genome compared to
12.0% for the cepR mutant (See Additional File 1). The
proportion of CciR-regulated genes was similar on each
chromosome (7.9 to 8.6%) while 3 genes (3.1%) were
regulated on the plasmid indicating CciR regulation is glo-
bal in B. cenocepacia.

A large number of genes independently regulated by CciR
were identified (See Additional File 1). CciR negatively
regulated expression of 25 unique ORFs encoding ribos-
omal proteins only two of which were positively regulated
by CepR. The majority of these ribosomal proteins form a
large cluster from BCAL0233-0261. Expression of ORFs
forming part of the putative AmrA-AmrB-BCAL1676
efflux pump was increased in the cciR mutant compared

to K56-2. Expression of some of the genes encoding for
components of this pump was also increased during
growth of B. cenocepacia in CF sputum [31].

CciR reciprocally regulated many genes previously
reported to be CepR-regulated [27,28] (Tables 1 &3).
Examples include increased expression of the cold shock-
like protein CspA and the majority of genes in the
BCAL0340-0348 T6SS operon in the c¢ciR mutant com-
pared to the cepR mutant. Additionally, CciR negatively
regulated expression of pBCA055 (bgiC) which encodes a
hypothetical protein with GGDEF and EAL domains
(Table 4). Weingart et al. [17] reported CepR positively
regulated expression of pBCA055 which was confirmed in
the cepR and cepRccilR mutants (Table 4).

Regulation of genes on the cenocepacia island

The ccilR genes are located on a genomic island only
found in strains of the ET12 lineage [13]. Mutations in
two additional genes located on this island, amil
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Table 3: Comparison of genes (or operons) showing differential expression in microarray analysis and identified to have a cep box
motif.

Gene Function? cep box motif name or Change (fold) for Change (fold) for Change (fold) for
genomic context of K56-R2 (cepR) vs K56-2cciR vs K56- K56-2cepRccilR vs
downstream gene® K56-2¢ 2¢ K56-2¢

BCALOOS5|  periplasmic solute-binding  MST2001 -2.1 25 NC

protein

BCALO052  putative oxidoreductase =~ downstream from MST2001 -2.2 2.7 NC

BCAL0232 elongation factor Tu MST2002 -2.1 NC NC

BCALO0340 putative lipoprotein of MSTO005 & MST2004 -2.8 NC NC

TéSS

BCALO34!| putative type VI secretion downstream from MST005 -2.5 NC -2.1

system protein TssB & MST2004

BCALO342 putative type VI secretion downstream from MST005 -3.1 NC -2.3

system protein TssC & MST2004

BCALO343 putative type VI secretion downstream from MST005 -3.2 2.1 NC

system protein TssD & MST2004

BCALO344 putative type Vl secretion downstream from MST005 2.7 NC NC

system protein TssE & MST2004

BCALO345 putative type VI secretion downstream from MST005 -5.1 28 -2.1

system protein TssF & MST2004

BCALO346 putative type VI secretion downstream from MST005 -2.9 2.1 -2.1

system protein TssG & MST2004

BCALO347 putative type Vl secretion downstream from MST005 NC 2.1 NC

system protein TssH & MST2004
(ClpB)

BCALO348 putative type VI secretion downstream from MST005 2.7 2.1 =22

system protein TssA & MST2004

BCALO83| putative storage protein MST2009 -5.2 NC -4.0

BCALO0832  poly-beta-hydroxy- downstream from MST2009 -24 NC NC

butyrate storage protein
PhaA

BCALO833  putative acetoacetyl-CoA  downstream from MST2009 -2.6 NC -3.6

reductase PhbB

BCALO834 hypothetical protein downstream from MST2009 -2.4 NC NC

BCAL0999 sigma-E factor negative MST2013 NC NC -34

regulatory protein 2
RseA2

BCALI124 conserved hypothetical MST2014 2.0 NC NC

protein

BCALI354 conserved hypothetical MST2020 NC NC =22

protein

BCALI562 hypothetical phage MST2024 NC 2.7 NC

protein

BCAL2871  sigma-E factor negative MST2036 NC NC NC

regulatory protein |
RseAl
BCAL2870 sigma-E factor regulatory =~ downstream from MST2036 NC NC -3.5
protein RseB precursor |
MucBI

BCAL3190 IcIR family regulatory MST2039 NC 2.3 2.6

protein

BCAL3205¢ hypothetical protein MST2040 -2.0 NC NC

BCAL3419  3-dehydroquinate MST2043 -2.0 NC NC

dehydratase AroQI

BCAMIOI5 putative porin MST2050 -2.3 NC NC

BCAMI1405 levansucrase MST2055 -2.9 NC NC

BCAMI1502 hypothetical protein MST2056 -2.8 NC NC

BCAMI1870 N-acylhomoserine MST2059 -67.0 NC -6.9

lactone synthase Cepl

BCAMI871 hypothetical protein downstream from MST2059 -37.6 NC -20.2

BCAM2502 3-dehydroquinate MST2064 2.1 NC NC

dehydratase AroQ
(similar to BCAL3419)
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Table 3: Comparison of genes (or operons) showing differential expression in microarray analysis and identified to have a cep box

motif. (Continued)

BCAM2626 putative heme receptor MST2066
protein HuvA
BCAM2627 putative hemin ABC downstream from MST2066
transport system protein
HmuS
BCAS0293  nematocidal protein AidA  MST2069
BCAS0292 hypothetical protein downstream from MST2069
BCAS0409  zinc metalloprotease MST2070

ZmpA

34 -2.2 2.7
3.1 NC 29
-88.7 NC -214.9
-137.3 NC -278.2
-5.3 4.0 -4.5

aFunction derived from B. cenocepacia 2315 [34].

bcep box motif name from Chambers et al. 2006 [28] or genomic context of downstream.
¢Change in 16-h cultures of cepR, cciR or cepRecilR mutants compared to 16-h cultures of K56-2 as determined by microarray analysis with at least

two biological replicates (NC, no change).

(BCAMO0265) and opcl (BCAMO0267), were found to
reduce virulence in respiratory infections [13]. It was of
interest to determine if CciR regulated these genes or oth-
ers present on the genomic island. CciR did not influence
expression of amil or opcl; however it did influence expres-
sion of several other genes on the island (See Additional
File 1). CciR positively regulated BCAMO0233, the first
gene in an arsenic resistance operon, and negatively regu-
lated a putative ion transporter (BCAM0238) (Table 4).

Microarray analysis showed CciR negatively regulated its
own expression, and that of ccil, as has previously been
reported using cciR::lux promoter fusions [16]. Although
the ccil and cciR genes were shown to be co-transcribed
[16], ccil expression was markedly more increased than
the expression of cciR in the cciR mutant (Table 4). Micro-
array analysis showed cciR expression was decreased in the
cepRccilR mutant compared to K56-2 (Table 4). Expres-
sion of neither ccil nor cciR was changed in the cepR
mutant grown in LB although we have previously demon-
strated that CepR was required for ccilR expression in
PTSB medium using cciR::lux promoter fusions [16].

Regulation of genes encoding extracellular enzymes by
CepR and CciR

We have previously shown decreased expression of zmpA
in the cepR mutant compared to K56-2 [20,27]. Microar-
ray and qRT-PCR analysis confirmed that zmpA expression
was reduced in the cepR mutant (Tables 1 &2) and dem-
onstrated that zmpA expression was reduced in the cepRc-
cilR mutant (Tables 1 &2) confirming phenotypic data for
these mutants [16]. Decreased expression of zmpA in the
cciR mutant compared to K56-2 was previously demon-
strated in PTSB medium using promoter::lacZ fusions
[16]. In the current study, zmpA expression was increased
in the cciR mutant compared to K56-2 in cultures grown
in LB medium for 16 h, by both microarray and qRT-PCR
analysis (Tables 1 &2).

Expression of zmpB was previously shown to be decreased
in cepR, cciR and cepRccilR mutants but increased in a ccil

mutant compared to K56-2 using promoter:lux fusions
[19]. Positive regulation of zmpB, was confirmed in the
cepR and cepRccilR mutants by microarray analysis (Table
4); however, zmpB expression was increased in the cciR
mutant compared to K56-2. Although LB medium was
used in both cases, data from the promoter:lux fusions
was generated at 20 h growth while data from the micro-
array analysis was performed on cultures grown for 16 h.
Several attempts were made to quantitate zmpB expression
levels by qRT-PCR but a high degree of variability was
observed for this weakly expressed transcript. In fact, zmpB
was the most weakly expressed transcript in the majority
of the microarray samples. Together, these data indicate
zmpA and zmpB expression is positively influenced by
CepR under all conditions examined and that growth
medium and phase of growth influence regulation by
CciR.

Genes encoding the exported lipase LipA (BCAM0949)
and the lipase chaperone LipB (BCAMO0950, previously
called limA) are required for lipase production [32].
Expression of both lipA and lipB was decreased in the cepR
mutant compared to K56-2, but was unchanged in the
cciR or cepRecilR mutants (Table 4). Lipase activity was
previously shown to be reduced in a cepR mutant com-
pared to K56-2 [14].

BCAL1722 encoding a putative exported chitinase
showed decreased expression in the cepR mutant com-
pared to K56-2 but no change in expression in the cciR or
cepRecilR mutants (Table 4). Chitinase activity has been
shown to be CepIR-regulated in B. cenocepacia H111, with
lower activity reported in B. cenocepacia H111 cepl and
cepR mutants [21].

CepR and CciR regulate genes adjacent to cepR2

We have recently shown that the B. cenocepacia orphan
LuxR homolog CepR?2 is involved in negative regulation
of genes adjacent to itself [18]. Additionally, cepR2 expres-
sion is increased in the cciR mutant [18]. Several CepR2-
regulated genes and operons also showed differential
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Table 4: Microarray analysis of selected genes showing differential expression in cepR, cciR or cepRccilR mutants compared to K56-2.

Gene Function? Change (fold) for K56-R2 Change (fold) for K56- Change (fold) for K56-
(cepR) vs K56-2 2cciR vs K56-2 2cepRccilR vs K56-2
microarrayb microarrayb microarrayb

BCALI369  Sigma factor 70 EcfC (Fecl) 4.6 NC 3.0

BCALI370  Iron uptake regulatory protein 2.7 NC 2.1
FecR

BCALI1520  Putative lipoprotein -2.1 NC NC

BCALI528  Flp type pilus assembly protein -2.1 NC NC

BCALI530  Flp type pilus assembly protein -3.2 NC -2.0

BCALI531 Flp type pilus assembly protein -2.2 NC NC

BCALI532  Flp type pilus assembly protein NC NC -2.2

BCALI533  Putative lipoprotein -2.1 23 NC

BCALI534  Putative exported protein -3.3 2.6 NC

BCALI368  Probable porin -2.4 25 -2.1

BCALI1677  Putative type-| fimbrial protein -2.3 3.1 NC

BCAL1688  sigma factor 70 Ecfl (OrbS) NC -2.5 NC

BCALI689  MbtH-like protein OrbH NC 2.2 NC

BCALI690  putative dioxygenase OrbG NC NC 2.5

BCALI1692  iron transport-related membrane NC NC 3.0
protein OrbD

BCALI1693 iron transport-related membrane NC NC 2.1
protein OrbF

BCALI694  iron transport-related exported NC NC 2.4
protein OrbB

BCAL1696  ornibactin biosynthesis non- NC -24 NC
ribosomal peptide synthase Orbl

BCALI1697  ornibactin biosynthesis non- NC NC 24
ribosomal peptide synthase Orb)

BCAL1698  ornibactin biosynthesis protein NC -2.8 NC
OrbK

BCALI699  L-ornithine 5-monooxygenase NC -2.8 NC
PvdA

BCALI700  ornibactin receptor precursor NC -2.2 22
OrbA

BCALI1701 ornibactin synthetase OrbF NC NC 2.2

BCALI702  ornibactin biosynthesis protein NC NC 2.5
OrbL

BCALI722  Putative exported chitinase -2.8 NC NC

BCAL2757  Superoxide dismutase SodB -2.3 NC NC

BCAL3297  Ferretin DPS-family DNA-binding -2.8 NC -3.8
protein

BCAL3298  Conserved hypothetical protein -2.1 NC -2.8

BCAL3299  Peroxidase/catablase KatB -2.3 NC -4.0

BCAMOI84 Lectin NC 2.0 -2.1

BCAMOI86  Lectin BclA -7.5 3.1 -3.2

BCAMO0233  ArsR family regulatory protein NC -2.0 NC

BCAMO0238  Putative ion transporter NC 2.0 NC

BCAMO0239a N-acylhomoserine lactone synthase NC 52.1 NC
Cil

BCAM0240  N-acylhomoserine lactone NC 4.0 -23.5
dependent regulatory protein CciR

BCAM0949  Exported lipase LipA -3.1 NC NC

BCAMO0950 Lipase chaperone LipB -2.5 NC NC

BCAMI1869 Conserved hypothetical protein -5.9 NC NC

BCAMI871  Conserved hypothetical protein -37.6 NC -20.2

BCAM2307  Zinc metalloprotease ZmpB -2.3 2.1 -24

pBCAO055 Putative membrane protein -12.0 24 9.1

aFunction derived from B. cenocepacia J2315 [34].
bChange in 16-h cultures of cepR, cciR or cepRccilR mutants compared to 16-h cultures of K56-2 as determined by microarray analysis with at least
two biological replicates (NC, no change).
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expression in the current study (See Additional File 1).
These genes included BCAM0189 (AraC family regulatory
protein), BCAMO0191 (putative non-ribosomal peptide
synthetase) and BCAM0199 (outer membrane efflux pro-
tein). Expression of BCAM0189 and BCAMO0191 were
decreased but expression of BCAM0199 was increased in
the cepR mutant compared to K56-2 (Table 2). This trend
in regulation was confirmed for all three genes using qRT-
PCR (Table 2). BCAM0189, BCAM0191 and BCAM0199
expression levels were similar between the cciR and cepRc-
cilR mutants compared to K56-2 by microarray; however,
qRT-PCR analysis indicated that expression of these genes
was decreased in the cciR mutant, but the expression pat-
tern was similar between the cepRccilR and cepR mutants
(Table 2). CepR2 negatively regulates expression of the
lectin-encoding gene, bclA, [33] which lies adjacent to two
other co-transcribed lectin-encoding genes (BCAM0185-
0184) [18]. Expression of bclA was decreased in the cepR
mutant (Table 4). Expression of both bclA and BCAM0184
was increased in the cciR mutant and decreased in the
cepRccilR mutant compared to K56-2 (Table 4).

CciR negatively regulates aidA expression

Several studies illustrated that CepR positively regulates
the expression of the nematocidal protein, AidA [17,24-
26]. Expression levels of aidA and BCAS0292 were
reduced in the cepR and cepRccilR mutants (Table 2).
Measurement of aidA expression using qRT-PCR con-
firmed reduced expression in the cepR and cepRccilR
mutants and indicated increased expression in the cciR
mutant compared to K56-2 (Table 2). Negative regulation
of aidA expression by CciR was also demonstrated using a
promoter::lux fusion which showed significantly
increased aidA expression in the ccilR mutant between 12
and 16 h of growth (P < 0.05, unpaired t-test, Welch cor-
rected) (Fig. 2).

QS regulation of flagellar and motility genes

Previously it was demonstrated that the cepR mutant
exhibits reduced swarming motility while the cciR mutant
has similar swarming motility compared to K56-2 [16].
Expression levels of 31 genes in nine operons involved in
flagellar motility were analyzed. The overall trend showed
decreased expression of these genes in the cepR and cepRc-
cilR mutants but increased expression in cciR mutant com-
pared to K56-2 (Fig. 3A). Investigation of fliC
(BCALO114) expression using qRT-PCR confirmed this
trend in regulation (Table 2). Separately, activity of a fliC
promoter::lux fusion confirmed fliC expression was posi-
tively regulated by CepR and negatively regulated by CciR
(data not shown). No obvious difference in flagellin pro-
tein expression was detected by Western blot in the QS
mutants compared to wildtype (data not shown). Muta-
tions in cepl or cepR were previously reported not to alter
swimming motility of B. cenocepacia H111 growing at
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Figure 2

Expression of aidA in the ccilR mutant compared to
K56-2. Expression was monitored throughout growth in
PTSB plus 100 pg/ml of Tp. The expression of aidA:lux
(pAidA) is significantly greater in K56-2ccilR than K56-2 from
12 to 16 h along the time course (*, P < 0.05, unpaired t-test,
Welch corrected). All values are the means + SD of triplicate
cultures and are representative of three individual trials:
Black Square:, K56-2; White Square: K56-2ccilR.

37°C[21]. Strain K56-2cepR and cepRccilR mutants exhib-
ited significantly reduced swimming motility at 22°C and
28°C compared to K56-2 (P < 0.001, two-way ANOVA)
(Fig. 3BC), whereas swimming motility was significantly
increased in the cciR mutant at 22°C and 28°C compared
to K56-2 (P < 0.001, two-way ANOVA) (Fig. 3BC).

Fip type pilus and fimbrial proteins

Bacterial pili and fimbriae are frequently involved in
binding eukaryotic cells and have been shown to play a
role in infection in many pathogenic bacteria. A flp type
pilus cluster containing two putative operons from
BCAL1524-1520 and BCAL1525-1537 has been identified
[34]. Several genes in these operons showed decreased
expression in the cepR and cepRccilR mutants while two
genes showed increased expression in the cciR mutant
(Table 4) suggesting reciprocal regulation of this cluster. It
is likely that the BCAL1525 operon is similar to that of
clone P15 which was positively regulated by CepR in B.
cepacia [24]. BCAL1677, which was positively regulated by
CepR and negatively regulated by CciR (Table 4), encodes
a putative type-1 fimbrial protein and was shown to be
CeplR-regulated in B. cenocepacia H111 [26].

QS controls a regulator involved in virulence (ShvR) and
proteins of unknown function

Many ORFs located in a genomic region of approximately
27 kb on Chromosome 3 were differentially expressed in
the QS mutants compared to K56-2 (Fig. 4A). Part of this
QS-regulated gene cluster included BCAS0225, which reg-
ulates the rough-shiny morphotype and contributes to vir-
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BCALO114 flagellin (type II)

BCALO124 flagellar regulon master regulatorsubunit FIhD
BCAL0125 flagellar regulon master regulatorsubunit FIhC
BCAL0129 chemotaxistwo-component sensor kinase CheA
BCAL0133 putative chemoreceptorglutamine deamidase cheD
BCAL0135 chemotaxis protein CheY

BCAL0140 flagellar biosynthetic protein FIhB

BCAL0142 putative flagellarbiosynthesis protein
BCALO143 putative flagellarbiosynthesis protein
BCAL0144 RNApolymerase sigma factorfor flagellar
BCAL0520 putative flagellarhook-length control protein
BCALO0521 flagellar Flid protein

BCAL0522 flagellum-specific ATP synthase Flil
BCAL0523 flagellar assembly protein FliH

BCAL0525 flagellar M-ring protein FIiF

BCAL0526 flagellar hook-basalbody complex protein FIiE
BCALO0564 flagellar basal-body rod protein FIgB
BCAL0565 flagellar basal-body rod protein FigC
BCAL0566 basal-bodyrod modification protein FIgD
BCAL0567 flagellar hook protein 1 FIgE1

BCAL0568 flagellar basal-body rod protein FIgF
BCALO569 flagellar basal-body rod protein FigG
BCAL0570 flagellar L-ring protein precursor

BCAL0571 flagellar P-ring protein precursor

BCALO572 peptidoglycan hydrolase FigJ (muramidase FigJ)
BCAL0577 flagellar hook-associated protein 3 (HAP3)
BCAL3501 flagellar biosynthetic protein FIiR

BCAL3505 flagellar motor switch protein FIiN

BCAL3506 flagellar motor switch protein FliM

BCAL3507 flagellar FliL protein

BCAS0104 A-type flagellar hook-associated protein 2
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Regulation of flagellar-associated genes and swimming motility. (A) Cluster analysis of flagellar-associated genes with
decreased (green), increased (red) or no change (black) in expression in each mutant compared to K56-2 according to micro-
array analysis. Arrows indicate putative (dashed lines) or experimentally-determined (solid lines) transcriptional units. Gene
name and function are derived from B. cenocepacia [34]. Mean change (fold) in expression is indicated for the displayed group of
genes for each mutant. Swimming motility was assessed by measuring zones of growth of cultures at (B) 22°C or (C) 28°C. Sig-
nificantly different swimming motilities were observed for the QS mutants compared to K56-2 at 22°C and 28°C (***, P <
0.001, two-way ANOVA) (Fig. 3). All values are the means + SEM of triplicate cultures and are representative of two individual

trials.
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BCAS0202 putative membrane protein

BCAS0203 ABC transporter protein

BCAS0204 ABC transporter ATP-binding protein
BCAS0205 TauD/TfdAtaurine catabolism dioxygenase family
BCAS0206 putative methyltransferase family protein
BCAS0207 conserved hypothetical protein
BCAS0208 putative acyl-CoA dehydrogenase
BCAS0209 conserved hypothetical protein
BCAS0210 putative AMP-binding enzyme

BCAS0211 putative pyridoxal-dependent decarboxylase
BCAS0212 conserved hypothetical protein
BCAS0213 conserved hypothetical protein
BCAS0214 conserved hypothetical protein
BCAS0215 putative exported protein

BCAS0216 putative acyl carrier protein

BCAS0217 conserved hypothetical protein
BCAS0218 hypothetical protein

BCAS0219 putative exported protein

BCAS0220 putative permease

BCAS0221 ABC transporter ATP-binding protein AfcB
BCAS0223 putative fatty acid desaturase AfcC
BCAS0224 conserved hypothetical protein AfcD
BCAS0225 LysR family regulatory protein ShvR
BCAS0226 putative hydrolase

-5.62.5-2.7 Mean change (displayed setofgenes)

6.010%= —m- K56-2 (pAfcA)

4.0,1034

N
o
%
o
w

— —A— K56-2AcepR (pAfcA)
-0~ K56-2ccilR (pAfcA)

Time (h)

Regulation of a 27 kb gene cluster on Chromosome 3. (A) Cluster analysis of genes in the afcA and shvR genomic
regions with decreased (green), increased (red) or no change (black) in expression in each mutant compared to K56-2 accord-
ing to microarray analysis. Arrows indicated putative (dashed lines) or experimentally-determined (solid lines) transcriptional
units. Gene name and function are derived from B. cenocepacia [34]. Mean change (fold) in expression is indicated for the dis-
played group of genes for each mutant. (B) Expression of afcA was monitored throughout growth in K56-2AcepR and K56-
2ccilR mutants compared to K56-2 in PTSB plus 100 pg/ml of Tp. The expression of afcA:lux (pAfcA) is significantly greater in
K56-2ccilR than K56-2 from 6 to 10 h along the time course (P < 0.05, unpaired t-test, Welch corrected). All values are the
means + SD of triplicate cultures and are representative of two individual trials.
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ulence in K56-2 [35]. Expression of BCAS0225 (which we
now refer to as shuR for shiny variant regulator) was
decreased in the cepR and cepRccilR mutants compared to
K56-2 (Table 2). Lower expression of shuR was confirmed
using qRT-PCR in the cepR and cepRccilR mutants while
increased expression was observed in the cciR mutant
(Table 2).

In B. cepacia BC11, AfcA and AfcCD are responsible for
production of an antifungal compound [36]. Orthologs of
these genes are present in B. cenocepacia as part of two
putative transcriptional units; afcA (BCAS0222) to
BCAS0202 and afcCD [30]. In the afcA genomic region,
expression of the majority of ORFs was decreased in the
cepR and cepRccilR mutants but increased in the cciR
mutant compared to K56-2 (Fig. 4A). Furthermore, qRT-
PCR analysis of BCAS0204 and BCAS0220 confirmed this
trend in the cepR, cciR and cepRccilR mutants (Table 2).
Although a difference in afcA expression was not detecta-
ble in these mutants by microarray analysis, an afcA::lux
promoter fusion had lower expression in the cepR mutant
and significantly higher expression in the ccilR mutant
compared to K56-2 between 6 and 10 h of growth (P <
0.05, unpaired t-test, Welch corrected) (Fig. 4B). Previ-
ously, CepR was also shown to positively regulate an
afcB::lux reporter fusion [27] (Table 1).

Transcriptional control of a resistance-nodulation division
family efflux pump

B. cenocepacia is known to exhibit high levels of intrinsic
resistance to antimicrobials [9]. At least 14 potential
resistance-nodulation division (RND) family -efflux
pumps [37] have been identified in B. cenocepacia [37,38].
We recently demonstrated CepR2 positively regulates
expression of BCAM1420, part of a putative RND efflux
pump [18]. Expression of BCAM1420 and several adja-
cent regulatory genes was lower in the cepR and cepRccilR
mutants but increased in the cciR mutant compared to
K56-2 (Table 2) (See Additional File 1). The expression
patterns of BCAM1420 and BCAM1418 (two-component
regulatory system, response regulator) were confirmed by
qRT-PCR (Table 2). Antibiotic susceptibility is not signifi-
cantly different in peg-formed biofilms of cepR or cciR
mutants compared to K56-2 [23]. No differences in resist-
ance to a selection of heavy metals were observed between
the QS mutants and K56-2 (data not shown).

Reciprocal QS regulation of iron transport genes

We have shown CepR negatively regulates ornibactin syn-
thesis in B. cenocepacia strains K56-2 and H111 [15,18].
No change in expression was detected for any gene in the
orbl (BCAL1696) or ecfI (orbS, BCAL1688) operons in the
cepR mutant (Table 4); however, expression of several
genes in these operons was decreased in the cciR mutant
and increased in the cepRccilR mutant compared to K56-2
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(Table 4). This indicates that CciR positively regulates orn-
ibactin synthesis and transport genes, and suggests CepIR
is dominant over CcilR, since these genes are negatively
regulated in the cepRccilR mutant as has previously been
reported in the cepR mutant.

B. cenocepacia contains a FecIR-like system potentially
involved in iron uptake [39]. Increased expression of fecl
(ecfC, BCAL1369) and fecR (BCAL1370) was detected in
cepR and cepRccilR mutants compared to K56-2 indicating
that CepR also negatively regulates ferric citrate transport
(Table 4). Divergently transcribed from efcC is a probable
porin gene that showed lower expression in cepR and
cepRccilR mutants compared to K56-2 (Table 4). This
appears to be similar to clone P57 identified by Aguilar et
al. 2003 [24] that was positively regulated by CepR in B.
cepacia. Expression of a putative oxidoreductase
(BCAL0269) and a ferric reductase-like transmembrane
component (BCAL0270) was decreased in the cepRccilR
mutant compared to K56-2 (Table 4). It was recently
reported that expression of BCAL0270, was increased dur-
ing growth of B. cenocepacia in CF sputum [31].

We previously demonstrated that genes involved in heme
transport are positively regulated by the CepIR QS system
and that huvA (BCAM2626) contained a cep box in its pro-
moter region [28] (Table 3). In this study huvA expression
was increased in the cepR and cepRccilR mutants and
decreased in the cciR mutant compared to wildtype. This
trend in regulation for huvA, which contradicts the data
obtained previously with huvA transcriptional fusions was
independently confirmed using qRT-PCR (Table 2).

CepR regulation of oxidative stress genes

B. cenocepacia contains a major catalase/peroxidase pro-
tein, KatB (BCAL3299), important for resistance to hydro-
gen peroxide [40]. Expression of a putative three-gene
operon consisting of katB and two downstream ORFs was
decreased in the cepR and cepRccilR mutants compared to
K56-2 (Table 4). Expression of superoxide dismutase sodB
(BCAL2757), previously shown to be CepR-regulated in
B. cenocepacia H111 [26], was also reduced in the cepR
mutant compared to K56-2 (Table 4).

QS regulation of phage-related genes

Recently, an epidemic strain of Pseudomonas aeruginosa
with mutations in prophage and genomic island
sequences was shown to have reduced ability to compete
with the parent strain in a rat lung infection model [41].
B. cenocepacia J2315 possesses 5 prophages contained on
14 genomic islands (termed BcenGI) [34]. Twenty-four
differentially regulated phage-related genes were identi-
fied in the cepR mutant, twenty genes were differentially
expressed in the cepRccilR mutant, whereas only 5 phage-
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related genes showed changes in expression in the cciR
mutant (See Additional File 1).

Discussion

In this study we characterized the contributions of CepR
and CciR to global gene regulation in B. cenocepacia. Elu-
cidation of the CciR regulon indicates that it is a global
regulator of QS gene expression in B. cenocepacia. Many
CepR-regulated genes identified in prior studies were also
identified as CepR-regulated using microarrays. This
approach facilitated the identification of novel genes reg-
ulated by the CeplR and CcilR QS systems. Genes inde-
pendently regulated by CepR or CciR, as well as co-
regulated genes, were identified. Importantly, the major-
ity of co-regulated genes were reciprocally regulated by
CepR and CciR. This pattern of regulation was independ-
ently confirmed for a number of these genes using qRT-
PCR or promoter::lux fusions.

CepR-regulation of AidA has been consistently identified
in previous studies [17,24-26] suggesting tight regulation
by CepR. The putative two-gene operon comprising aidA
and the downstream ORF (BCAS0292) contained the
most highly regulated genes in the cepR and cepRccilR
mutants compared to K56-2. Promoter:lux fusions
showed that aidA expression was negatively regulated by
the CcilR system. Other genes, including cepl, ccil,
pBCAO055 and BCAM1871 also showed high levels of QS
regulation (12- to 67-fold) using microarrays. The major-
ity of genes showed low levels of QS regulation consistent
with previous studies in B. cenocepacia K56-2 [27,28]. A 2-
fold change in expression was selected as a cut-off for
microarray analysis which was consistent with the degree
of differential expression of a number of previously-iden-
tified CepR-regulated genes in strain K56-2 [17,27,28].
These changes in gene expression have also been corre-
lated with changes in some phenotypes such as protease
activity and siderophore production [15,19,20]. Further-
more, some CepR-regulated genes identified in B. cenoce-
pacia H111 or B. cepacia ATCC 25416 were shown to be
CepR regulated in strain K56-2, suggesting that QS-medi-
ated regulation of many genes is conserved in the Bcc
[24,26].

The interrelationship between the CepIR and CcilR sys-
tems is complex. Although we previously reported that
CciR negatively regulated cepl in PTSB medium [16], no
change in cepl expression was detectable in the transcrip-
tome analysis of the cciR mutant grown in LB medium;
however, consistent with previous data, CciR negatively
regulated expression of the ccilR operon. We previously
demonstrated that CepR was required for expression of a
ccilR promoter::lux fusion in PTSB medium [16], but sim-
ilar results were not obtained in this study with cultures
grown in LB medium. These data suggest that the regula-
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tory relationship between the two QS systems varies
depending on growth conditions and nutrient availabil-

ity.

Presence of cci has been associated with several transmis-
sible B. cenocepacia strains [13]. The cci can be found in
strains belonging to the ET12 lineage [13], but is absent
from genomes of other B. cenocepacia strains, including
representatives of the transmissible PHDC lineage
(AU1054, HI2424) and strain H111 [26,34]. Our study
now shows that presence of CcilR in certain B. cenocepacia
strains has major implications for QS-regulated genes
across the genome; most notably genes reciprocally regu-
lated by CepIR and CcilR. Three master regulators of CepR
have been identified in B. cenocepacia H111 [42]. It is
unknown if other regulatory factors (other than CciR,
SuhB, YciL and YciR) exist which can limit the influence
of CepR and thus provide balance to QS-mediated gene
expression. This may have important consequences dur-
ing infection to fine tune expression of virulence factors in
response to particular environmental cues.

It has previously been shown that LasR, RhIR and QscR,
components of the Pseudomonas aeruginosa QS network,
have overlapping but distinct regulons [43]. The presence
of las-rhl box-like sequences in the promoter regions of
many QS-regulated genes has been demonstrated [44]. A
subsequent study showed a consensus motif could be
more easily identified for genes regulated by RhIR rather
than LasR and that a single conserved motif could not be
identified for QS-regulated promoters [45]. Recently, it
was shown that rhIR is expressed in the absence of LasR in
P. aeruginosa [46] and that RhIR exerts regulation over
genes that were thought to be specifically LasR-regulated
including lasl.

In our study we confirmed CepR regulation for a number
of genes which contain a cep box motif in their promoters
[28]. We do not know if CepR and CciR bind the same
promoter motif. There were no genes with a cep box in
their promoters that showed only CciR regulation. Nega-
tive regulation by CciR occurs in genes with or without a
cep box in their promoters suggesting this motif is not
required for regulation by CciR and opens the possibility
that CciR recognizes a distinct motif. Gene regulation in
the cepRccilR mutant more closely resembled gene regula-
tion in the cepR mutant than the cciR mutant. This sug-
gests CepR is the more dominant regulator and very likely
acts upstream from CciR. Direct binding of CepR to two
promoters has been demonstrated [17]. CepR and CciR
promoter binding studies might provide insight into the
reciprocal regulation of co-regulated genes. It is possible
that CciR could inactivate CepR by forming heterodimers
as has been suggested as a mechanism for negative regula-
tion by QscR [47]. The majority of C8-HSL or C6-HSL is
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produced by Cepl and Ccil, respectively [14-16]. There-
fore, QS-regulation by CepR and CciR may also be strictly
dependent on the relative abundance of the signaling
molecules.

Flagella are recognized as important virulence factors for
human and plant pathogens [48]. A clear change in
expression was observed at the transcriptional level for
many flagellar-associated genes in the QS mutants com-
pared to wildtype. Differences in swimming motility were
found when cultures were grown at 22°C and 28°C con-
firming the reciprocal regulation of flagellar-associated
genes and swimming motility by the CepIR and CcilR sys-
tems. A change in flagellin protein expression was not
apparent in the QS mutants grown at 37 °C. Positive con-
trol of flagella formation by QS is observed in B. glumae.
However, lack of flagella formation in a B. glumae tofl
mutant can be overcome by incubation at 28°C indicat-
ing other factors are involved [49]. Reduced biosurfactant
production, as opposed to improper flagella formation, is
responsible for reduced swarming in an AHL-deficient
mutant of Serratia liquefaciens [50]. Reduced swarming
observed in the B. cenocepacia H111cepR mutant can be
restored by addition of exogenous surfactants. An endog-
enously-produced biosurfactant has not yet been
described in B. cenocepacia. From an evolutionary perspec-
tive, flagella share common features with the type 3 secre-
tion system (T3SS) [51] which we have also shown to be
positively regulated by CeplIR [27]. The expression of flag-
ellar-associated and T3SS genes was increased in B. cenoce-
pacia grown in CF sputum indicating conditions
promoting their expression may be present during infec-
tion [31].

The majority of genes in the afcA genomic region have not
been studied in detail in Burkholderia species, although
some of these genes in B. cepacia BC11 are responsible for
production of an antifungal with inhibitory activity
against Rhizoctonia solani [36]. Antifungal production was
highest in stationary phase and under low aeration
growth conditions [36]. Expression of three putative oper-
ons containing afcA-BCAS0202, afcCD and shvR-
BCAS0226 is induced in a B. cenocepacia agricultural field
isolate (strain HI2424) growing under soil-like conditions
compared to CF-like conditions but was unchanged in a
B. cenocepacia CF isolate (strain AU1054) in these condi-
tions [52]. We have now clearly shown that both CepR
and CciR regulate many genes in the afcA genomic region.

Our recent characterization of the B. cenocepacia orphan
LuxR homolog CepR2 [18] facilitated the incorporation of
its regulon into the current study. A number of CepR2-reg-
ulated genes were also regulated by CepR and CciR,
including genes in the genomic region adjacent to cepR2.
A larger number of co-regulated genes may have been
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identified if the experiments were conducted at the same
time in growth as opposed when CepR2 expression is
maximal (mid-log phase) and when CepR and CciR
expression is maximal (late stationary phase).

Intrinsic antibiotic resistance due to efflux pumps is a
major problem associated with the treatment of B. cenoce-
pacia infections. Presence of multiple efflux pumps with
redundant functions is suggested by the lack of difference
in cepR or cciR mutants compared to wildtype in resistance
to antibiotics and heavy metals [23] (this study). How-
ever, QS regulation of efflux pumps may have other con-
sequences. Efflux pumps are also involved in the efflux of
QS molecules in P. aeruginosa [53] and B. pseudomallei
[54]. QS regulation of efflux pumps may be more impor-
tant in certain environments than in others. Growth of B.
cenocepacia in CF sputum was shown to increase expres-
sion of a component of the BCAM0199-0201 putative
multi-drug efflux pump [31] which we showed was nega-
tively regulated by CepR and positively regulated by CciR
and CepR2 [18] (this study).

Iron is an essential cofactor in many metabolic pathways
however iron availability is usually limited in the host
[55]. B. cenocepacia produce the siderophores ornibactin
and pyochelin to sequester iron. CepR2 and indirectly
CepR positively regulate pyochelin biosynthesis in B. cen-
ocepacia H111 [18]. Pyochelin biosynthesis does not occur
in B. cenocepacia K56-2 because a point mutation exists in
the pyochelin synthetase gene pchF [34]. In this study we
demonstrate that the CepR and CciR systems inversely
regulate genes involved in ornibactin biosythesis and
uptake, as well as regulate genes involved in other iron
transport systems including heme and the FecIR uptake
systems. QS regulation of multiple iron transport mecha-
nisms may facilitate growth in specific environmental
niches where resources are limited. Some ornibactin genes
were poorly expressed, most likely due to the fact cultures
for microarray analysis were grown in LB medium com-
pared to cultures with promoter::lux fusions which were
grown in low-iron TSB-DC medium [56]. The difference
in media may explain the difference in regulation for
some of these iron acquisition genes between the current
and previous studies [28], since we also demonstrated
that the expression of cepl and ccilR varied depending on
the media. Different media are also known to influence
lasIR, rhlIR and QS-regulated genes in P. aeruginosa [57].

Evidence of a link between oxidative stress and QS was
shown in the regulation of katA, sodA and sodB by the las
and rhl systems in P. aeruginosa [58]. In B. pseudomallei, the
response to oxidative stress occurs through QS regulation
of dpsA expression [59]. In this study we demonstrated
that CepR regulates katB (BCAL3299) and a downstream
gene BCAL3297 encoding a putative ferritin DPS-family
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DNA binding protein in B. cenocepacia. Genomic analysis
suggests that BCAL3297 is a homolog of the ORF desig-
nated dpsA positioned downstream from katG (clone
P80), which is CepR-regulated in B. cepacia [24].

QS-regulated phage-related genes included a large propor-
tion of genes contained on prophage BcenGI12. We have
not investigated the consequences of QS regulation on
phage activity in B. cenocepacia; however, mutation of
phage components in P. aeruginosa has important conse-
quences for bacterial competition in vivo [41]. It is entic-
ing to consider that unidentified virulence factors may be
carried on genomic islands/prophages and that expres-
sion of these is under QS control. It is also possible that
cell density-dependent regulation of phage elements facil-
itates genomic rearrangement within a species or horizon-
tal gene transfer between mixed bacterial populations.

Conclusion

The CepIR and CcilR QS systems regulate expression of
multiple genes at the transcriptional level in B. cenocepa-
cia, including potential virulence genes. QS-regulated
genes involved in motility, biofilm formation/adhesion,
extracellular enzymes, secretion systems, iron transport,
stress response and antibiotic resistance are summarized
in Fig. 5. The CeplR system is primarily responsible for
positive regulation while the opposite is true for the CcilR
system. The majority of the co-regulated QS-controlled
genes are subject to reciprocal regulation by CepR and
CciR. Until now the scale of this inverse regulation was
not fully appreciated. The antagonistic influence of CepR
and CciR ensures that QS-regulated gene expression in B.
cenocepacia is tightly regulated. Novel gene clusters, not
previously shown to be QS-regulated, were identified,
facilitating the future examination of these genes in rela-
tion to pathogenesis. This work provides significant
advances for understanding QS-mediated regulation of
virulence genes in B. cenocepacia. A detailed picture of the
QS network is required to facilitate the development of
therapies aimed at interfering with cell-cell communica-
tion systems to control bacterial infection.

Methods

Strains and growth conditions

The bacterial strains used in this study are listed in Table
5. Cultures were routinely grown at 37°C, in Miller's Luria
broth (LB) (Invitrogen, Burlington, ON) with shaking or
on 1.5% Lennox LB agar plates. For promoter::lux assays,
strains were grown in 0.25% trypticase soy broth (Difco,
Franklin Lakes, NJ) with 5% Bacto-Peptone (Difco)
(PTSB). Swimming motility assays were performed as pre-
viously described [35] except that overnight cultures were
normalized to an ODy,, of 0.4 prior to inoculation and
growth was assessed at 22°C or 28°C. When appropriate,
the following concentrations of antibiotics were used: 100
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pg/ml of trimethoprim (Tp) and 200 pg/ml of tetracycline
(Tc). Antibiotics were purchased from Sigma-Aldrich Can-
ada Ltd. (Oakville, ON).

DNA manipulations

DNA manipulations were performed using standard tech-
niques as described by Sambrook et al. [60]. Genomic
DNA was isolated as described by Ausubel et al. [61] or
Walsh et al. [62]. Oligonucleotide primers (See Additional
File 2: Oligonucleotide primers used in this study) were
designed with Primer3 [63] and were synthesized by the
University of Calgary Core DNA and Protein Services
(Calgary, Alberta, Canada). Plasmids were introduced
into B. cenocepacia by electroporation [64].

Construction of the K56-2AcepR mutant

An unmarked cepR mutant was constructed in K56-2 fol-
lowing the procedure outlined by Flannagan et al. [65].
Briefly, two regions of homology flanking cepR were
amplified using primers F1-M1868-UP-EcoRI, R1-M1868-
UuP-Clal, F2-M1868-DW-Clal and R2-M1868-DW-Xbal.
The amplified products were digested with Clal to remove
an internal portion of cepR and ligated into pCR2.1TOPO,
giving rise to plasmid TPCR2.1:H12. Plasmid
TPCR2.1::H12 was digested with Xbal and EcoRI and the
fragment was inserted into pGPI-Scel, giving rise to muta-
genesis plasmid pGPI-Scel::H12. pGPI-Scel::H12 was
introduced into B. cenocepacia by conjugation. A single
crossover event in K56-2 was confirmed by PCR in Tp
resistant clones. To these clones, pDAI-Scel was intro-
duced by conjugation to obtain the double crossover
event. The pDAI-Scel plasmid was resolved by curing the
exconjugants in LB broth. PCR confirmed that the dele-
tion had occurred.

RNA manipulations

B. cenocepacia was subcultured to obtain an initial optical
density at 600 nm (ODy,,) of 0.02 and grown for the time
indicated below for each experiment without selection.
Total RNA was isolated using a RiboPure bacterial RNA
isolation kit (Ambion, Streetsville, Ontario, Canada).
DNase treatment was performed, and samples were con-
firmed by PCR using Taq polymerase (Invitrogen) to be
free of DNA prior to cDNA synthesis.

Microarray sample preparation

Three independent RNA samples from B. cenocepacia
strains grown for 16 h were used in microarray experi-
ments. Gene expression profiles were generated using cus-
tom B. cenocepacia J2315 microarrays (Agilent, Santa
Clara, CA) [34,66]. A reference pool of K56-2 cDNA was
fluorescently labelled with Cy3 while the test cDNA sam-
ples (K56-2, K56-R2, K56-2cciR and K56-2cepRccilR) were
fluorescently labelled with Cy5. cDNA generation and
labelling was performed using the CyScribe Post-Label-
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Figure 5

Hierarchical organization of the CeplR, CcilR and CepR2 quorum sensing systems and traits under their con-
trol in B. cenocepacia K56-2. Summary diagram of the regulatory interrelationship between CeplR and CcilR, and CcilR and
CepR2. AHLs are required to activate CepR and CciR but not CepR2. All three regulators negatively control their own
expression. The three QS systems positively and negatively influence gene expression. +, positive regulation; -, negative regula-

tion.

ling kit (GE Healthcare, Wales) according to the manufac-
turer's protocol. Spike-in controls (Aglient) were included
into the labelling procedure for quality control purposes.
c¢DNA purification was performed by ethanol precipita-
tion and the labelled cDNA was purified using a CyScribe
GFX purification kit and eluted with water. Hybridization
and washing of arrays was performed according to the

two-colour microarray based gene expression analysis
protocol (Agilent) with minor modifications where the
25x fragmentation buffer was omitted and the cDNA mix
and 10x blocking agent were heat-denatured for 3 min at
98°C and cooled to room temperature before adding the
hybridization buffer. Washing of microarrays was per-
formed including acetonitrile as well as stabilization and
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Table 5: Bacterial strains and plasmids used in this study.
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Strain or plasmid Description Reference
Strains
B. cenocepacia
K56-2 CF isolate, BCESM +, [70]
K56-R2 cepR::Tn5-OT 182 derivative of K56-2, TcR [14]
K56-2AcepR AcepR derivative of K56-2 This study
K56-2cciR cciR::Tp derivative of K56-2, TpR [16]
K56-2ccilR AccilR derivative of K56-2 [16]
K56-2cepRecilR ~ cepR:Tp, AccilR derivative of K56-2, TpR [16]
E. coli
DH5a F-mcrA A(mrr-hsdRMS-mcrBC) $80lacZAMI5 AlacX74 recAl endAl araD139A(ara, leu)7697 galU galK A-rpsL Invitrogen
nupG
TOPIO F-mcrA A(mrr-hsdRMS-mcrBC) $80lacZAMI5 AlacX74 recAl araD |39A(ara-leu)7697 galU galK rpsL (StrR) Invitrogen
endAl nupG h-
SY327 araD, A(lac pro) argE(Am) recA56 rifRnalALpir [71]
Plasmids
pGPI-Scel Origek»> TPR, mob*, carries |-Scel cut site [65]
pDAI-Scel pDAI7 carrying the I-Scel gene [65]
TPCR2.1:HI12 pCR2.ITOPO containing amplified homologous regions flanking cepR This study
pGPI-Scel:HI12  Mutageneis plasmid pGPI-Scel with homologous regions flanking cepR This study
pAidA301 aidA::lux transcriptional fusion constructed in pMS402 KmR TpR [28]
pAfcA afcA:lux transcriptional fusion constructed in pMS402 KmR TpR This study

drying solution (Agilent). A G2565 BA microarray scanner
and the scan control software (Agilent) were used. Scan-
ning resolution was set to 5 pm and the scan region was
adjusted to 61 x 21.6 mm. The extended dynamic range
function was switched on with 100% and 10% photom-
ultiplier gain settings. Images were analysed with the fea-
ture  extraction  software  (Agilent).  Labelling,
hybrizidation and scanning were performed by the
Mahenthiralingam Laboratory, Cardiff University, Wales.

Microarray data analysis

Microarray data analysis was performed using GeneSpring
GX 7.3.1 software (Agilent). Initial data were preprocessed
by employing the enhanced Agilent FE import method,
and then per-spot and per-chip normalizations were per-
formed for all arrays. Some variation was noted across the
16 arrays of the signal intensities of spike-in control genes
(added prior to cDNA synthesis) and prelabeled control
genes (added prior to hybridization) (data not shown).
After filtering on flags (present/marginal versus absent),
genes were selected on the basis of changes, for which a 2-
fold cutoff was used for comparison. Subsequent to
microarray analysis, certain genes were noted because
they appeared to be in transcriptional units associated
with differentially regulated genes.

Microarray accession number
The entire microarray data set has been deposited in the

ArrayExpress database http://www.ebi.ac.uk/arrayexpress

under accession number E-MEXP-2303.

Cluster analysis and operon prediction

Microarray data was analyzed with Cluster [67] and visu-
alized using Treeview to allow a visual comparison of
expression levels for each gene in an operon. Operon pre-
diction was performed by analysis of the B. cenocepacia
J2315 genome at http://www.burkholderia.com[30].
Adjacent genes on the same coding strand with less than
300 bp intergenic space between them were arranged in
putative operons.

Quantitative RT-PCR

The sigma factor gene sigE [39] (previously termed sigA
[18]) (BCAMO0918) was used as a reference standard as
described previously [18]. Expression of sigE was not sig-
nificantly altered according to microarray analysis (data
not shown). RT-PCR was performed using an iScript Select
cDNA synthesis kit (Bio-Rad). For quantitative RT-PCR
(gqRT-PCR), quantification and melting curve analyses
were performed with an iCycler and iQ SYBR green Super-
mix (Bio-Rad) according to manufacturer's instructions.
qRT-PCRs were performed in triplicate, and the data
shown below represent data from at least two independ-
ent experiments. Relative expression values for each gene
were calculated using the AAC, equation [68].

Transcriptional fusions to luxCDABE (lux)

The 371 bp afcA promoter region was amplified using
primers AfcAPromforl and AfcAPromrevl and cloned
into the Xhol-BamHI site upstream of lux in pMS402 [69].
The aidA transcriptional fusion was previously described
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[28]. Luminescence assays were carried out as previously
described [18,28]. The level of promoter activity is
expressed below as the ratio of luminescence to turbidity
(CPS/ODgq)-
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