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Abstract

Background: Systemic administration of P-adrenoceptor (B-AR) agonists has been found to induce skeletal muscle
hypertrophy and significant metabolic changes. In the context of energy homeostasis, the importance of 3-AR signaling has been
highlighted by the inability of 3, ;-AR-deficient mice to regulate energy expenditure and susceptibility to diet induced obesity.
However, the molecular pathways and gene expression changes that initiate and maintain these phenotypic modulations are
poorly understood. Therefore, the aim of this study was to identify differential changes in gene expression in murine skeletal
muscle associated with systemic (acute and chronic) administration of the ,-AR agonist formoterol.

Results: Skeletal muscle gene expression (from murine tibialis anterior) was profiled at both | and 4 hours following systemic
administration of the 3,-AR agonist formoterol, using lllumina 46K mouse BeadArrays. lllumina expression profiling revealed
significant expression changes in genes associated with skeletal muscle hypertrophy, myoblast differentiation, metabolism,
circadian rhythm, transcription, histones, and oxidative stress. Differentially expressed genes relevant to the regulation of muscle
mass and metabolism (in the context of the hypertrophic phenotype) were further validated by quantitative RT-PCR to examine
gene expression in response to both acute (1-24 h) and chronic administration (1-28 days) of formoterol at multiple timepoints.
In terms of skeletal muscle hypertrophy, attenuation of myostatin signaling (including differential expression of myostatin, activin
receptor IIB, phospho-Smad3 etc) was observed following acute and chronic administration of formoterol. Acute (but not
chronic) administration of formoterol also significantly induced the expression of genes involved in oxidative metabolism,
including hexokinase 2, sorbin and SH3 domain containing |, and uncoupling protein 3. Interestingly, formoterol administration
also appeared to influence some genes associated with the peripheral regulation of circadian rhythm (including nuclear factor
interleukin 3 regulated, D site albumin promoter binding protein, and cryptochrome 2).

Conclusion: This is the first study to utilize gene expression profiling to examine global gene expression in response to acute
B,-AR agonist treatment of skeletal muscle. In summary, systemic administration of a 3,-AR agonist had a profound effect on
global gene expression in skeletal muscle. In terms of hypertrophy, 3,-AR agonist treatment altered the expression of several
genes associated with myostatin signaling, a previously unreported effect of $-AR signaling in skeletal muscle. This study also
demonstrates a ,-AR agonist regulation of circadian rhythm genes, indicating crosstalk between B-AR signaling and circadian
cycling in skeletal muscle. Gene expression alterations discovered in this study provides insight into many of the underlying
changes in gene expression that mediate $-AR induced skeletal muscle hypertrophy and altered metabolism.
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Background

Previous studies have demonstrated that chronic adminis-
tration of B-adrenoceptor (f-AR) agonists (particularly 3,-
AR agonists) can increase myofibrillar protein content
and thus induce skeletal muscle hypertrophy in mammals
[1-3]. This B,-AR induced hypertrophy is believed to be a
result of decreased proteolysis coupled with increased
protein synthesis [4-9]. The ubiquitin-proteasome signal-
ing[8,10,11], Ca2*-dependent proteolysis [12] and/or cal-
pain-mediated proteolysis [6,13,14] have all been
proposed to play a role, however the molecular and cellu-
lar pathways altered following -AR agonist administra-
tion remain poorly understood [15].

In addition to hypertrophy, acute exposure of skeletal
muscle (and cells) to B-AR agonists has been found to
modulate oxidative metabolism, energy expenditure,
lipolysis [16-21], glucose transport [22], and glucose oxi-
dation [20]. Skeletal muscle accounts for a large propor-
tion of the body's energy demand and thus plays a pivotal
role in insulin sensitivity, blood lipid profile and energy
balance [23,24].

Underscoring the importance of B-AR signaling in regulat-
ing metabolism, transgenic mice lacking all three -ARs
are susceptible to diet-induced obesity. These animals lack
any diet- and cold-induced thermogenic response, indi-
cating that B-ARs play a major role in energy expenditure
[25]. Similar to the molecular mechanisms underlying
skeletal muscle hypertrophy, our understanding of the
pathways regulating the metabolic response to 3-AR stim-
ulation have yet to be fully elucidated.

In the context of B-AR signaling and skeletal muscle, we
(and others ([26]) have previously demonstrated that
acute B-AR signaling markedly and transiently increased
the expression of the NR4A subgroup of orphan nuclear
receptors (Nur77, Nurrl and Nor-1) in skeletal muscle tis-
sue and cultures [27,28]. The induction of the NR4A sub-
group was associated with the modulation of critical
metabolic genes and cellular metabolism [28,29] ([26-
29]. Interestingly, in terms of hypertrophy, knockdown of
Nor-1 expression, in vitro, resulted in a >65 fold increase in
the expression of myostatin, a key negative regulator of
muscle hypertrophy. Such studies suggest that the NR4A
subgroup may mediate some effects of B-AR signaling in
skeletal muscle.

To examine skeletal muscle gene expression following
acute B-AR stimulation, we examined global gene expres-
sion in mice using Illumina BeadArrays. Spurlock et al.
[30] previously examined global gene expression in skele-
tal muscle 1 and 10 days after administration of the 3,-AR
agonist clenbuterol. Spurlock et al. identified genes asso-
ciated with skeletal muscle growth/hypertrophy, includ-
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ing multiple genes associated with proliferation,
differentiation, and the recruitment of satellite cells into
muscle fibers. Furthermore, they found an increase in the
expression of transcriptional and translational initiators
responsible for increasing protein synthesis.

We also performed a comprehensive expression analysis
of both the acute (1-24 hours) and chronic (1-28 days)
effects of B,-AR agonist administration. We identified
changes in the expression of mRNAs encoding genes asso-
ciated with skeletal muscle hypertrophy, myoblast differ-
entiation, metabolism, circadian rhythm, transcription,
histones, and oxidative stress that occur within 4 hours
and alter signaling pathways responsible for the long-term
phenotypic footprint of b2-AR activation.

Results

Acute systemic administration of the [5,-adreneroreceptor
agonist, formoterol, induces widespread changes in gene
expression in skeletal muscle

The entire data set is available via Gene Expression Omni-
bus (accession number GSE15793). Expression profiling
was performed on 16 mice in total using 46K Illumina
Sentrix BeadArray chips. Skeletal muscle samples from 16
independent animals were removed at 1 and 4 hours fol-
lowing a single i.p. injection of the 3,-AR agonist, formot-
erol, or saline (vehicle control). Each timepoint consisted
of eight animals with four saline and four formoterol
treated animals. The tibialis anterior muscle was chosen
for all analyses as it contains predominantly type II fibers,
and (in rodents) is known to exhibit marked increases in
protein content and lean mass (hypertrophy) in response
to B-AR agonist administration [31-35].

Using a p value cutoff of p < 0.05 (see methods for full sta-
tistical analysis) and a fold change cutoff of 1.85, at one
hour following formoterol administration, 23 probes
were significantly altered and 112 probes were signifi-
cantly altered at four hours. Significant annotated genes
from both timepoints are shown in table 1. Significant
non-annotated genes (Riken ¢DNAs and hypothetical
proteins) are included in Table 2.

Functional categorization of genes differentially regulated
by /,-AR activation

Genes presented in table 1 were grouped according to
their potential relevant function in skeletal muscle. The
potential relevant function is based on the authors' opin-
ion gained from a combination of lllumina Gene Ontol-
ogy classifications, Ingenuity Pathway Analysis http://
www.ingenuity.com, Online Mendelian Inheritance in

Man (OMIM; http://www.ncbi.nlm.nih.gov/sites/ent
rez?db=omim), and AceView http://

www.ncbi.nlm.nih.gov/IEB/Research/Acembly/ searches.

The Illumina BeadArray expression analysis revealed sig-
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Table I: Significant differentially expressed genes in skeletal muscle after acute systemic administration of 3,-AR agonist

Gene Name Genebank ID I HOUR 4 HOURS Potential Relevant Function

change p-value change p-value

Growth and myoblast differentiation

related

Integrin beta | binding protein 3 (ltgbIbp3) XM_125745.1 +3.28 NS +3.84 0.023 Regulation of terminal myogenesis
Hairy and enhancer of split | (Drosophila) NM 0082352 +3.58 0.021 +1.02 NS Possible negative regulator of
(Hesl) myogenesis

Small mothers against decapentaplegic NM 016769 +1.49 NS +2.20 0.006 Myoblast differentiation
homolog 3 (Smad3)

TG interacting factor (Tgif) NM 0093722 +1.53 NS +2.04 0.033 Smad corepressor
Inhibitor of DNA binding | (Idbl) NM 010495.1 +1.79 NS +1.92 0.024 Myoblast differentiation
Fibroblast growth factor | (Fgfl) NM 0101972 +1.27 NS +1.92 0.006 Myoblast differentiation
Signal transducer and activator of NM 011486.2 +1.10 NS +1.89 0.028 Myocyte hypertrophy
transcription 3 (Stat3)

Small mothers against decapentaplegic NM_008539.3 +1.08 NS -1.85 0.006 Myoblast differentiation
homolog | (Smadl)

Metabolism and mitochondrial related

PPARY coactivator | alpha (Pgc-la) NM_008904.1 +1.53 NS +5.25 0.022 Mitochondrial biogenesis
Pyruvate dehydrogenase kinase 4 (Pdk4) NM 013743.1 +1.35 NS +2.88 0.016 Pyruvate metabolism
Protein phosphatase | regulatory subunit 3C ~ NM 016854.1 +1.34 NS +2.55 0.021 Glycogen maintenance
(Ppplr3c)

Uncoupling protein 3 (Ucp3) NM 0094642 +1.42 NS +237 0.017 Mitochondrial uncoupling
Forkhead box Ol (FoxOl) NM_ 0197392 -1.03 NS +2.29 0.025 Lipid metabolism

Kinesin family member IB (Kiflb), transcript ~ NM_008441.1 1.00 NS -2.28 0.034 Mitochondrial transport
variant |

Hexokinase 2 (Hk2) NM_013820.1 +1.53 NS +2.18 0.006 Glycolysis
Phosphomevalonate kinase (Pmvk) NM_026784.1 +1.31 NS +2.07 0.012 Cholesterol/steroid synthesis
Plasma membrane associated protein (S3-12)  NM_020568.1 -1.02 NS +2.03 0.041 Lipid droplet protein
Lipin | (Lpinl) NM 015763 +1.16 NS +2.03 0.011 Lipid metabolism
ATPase, H+ transporting, VI subunit B, NM_007509.2 +1.19 NS +2.02 0.012 ATPase

isoform 2 (Atp6v1b2)

Sorbin and SH3-domains containing | (Sorbsl) NM_ 009166 +138 NS +2.01 0.006 Insulin signaling
Scavenger receptor class B member | (Scarbl) NM _016741.1 - 1.40 NS - 1.91 0.008 Regulation of blood lipids
Peroxisome proliferator activator receptor NM 011145 +1.06 NS +1.87 0.040 Lipid metabolism

delta (Ppard)

Regulation of circadian rhythm
Nuclear factor, interleukin 3, regulated (Nfil3) NM 017373.2 +2.06 0.020 +5.32 0.014 Negative regulation of circadian clock

D site albumin promoter binding protein NM 016974.1 -4.59 0.015 -3.60 0.021 Regulation of circadian rhythms
(Dbp)
Cryptochrome 2 (Cry2) NM 009963.3 +1.25 NS +2.78 0.005 Regulation of circadian rhythms
Transcriptional activation
FBJ osteosarcoma oncogene (Fos) NM 0102342 +5.17 0.041 +1.40 NS Early stress response
Kruppel-like factor 4 (gut) (KIf4) NM_010637.1 +3.97 0.015 +2.21 0.039 Anti-proliferative
cAMP responsive element modulator (Crem) NM_013498.1 +1.65 0.025 +3.50 0.004 Complex transcriptional regulation
CCAAT/enhancer binding protein beta NM 009883.1 +1.70 NS +3.41 0.007 Negative regulator of cardiac
(Cebpb) hypertrophy
Nuclear receptor subfamily 4, group A, NM 013613.1 +3.21 0.015 +1.91 0.044 Complex transcriptional regulation
member 2 (Nurrl)
Fos-like antigen 2 (Fosl2) NM_0080373 +3.00 0.000 +1.69 0.032 Regulation of developmental

processes
v-maf musculoaponeurotic fibrosarcoma NM 0107552 +2.58 NS +2.72 0.015 Regulation of acute-phase reaction
oncogene family, protein F (avian) (Maff)
Activating transcription factor 3 (Atf3) NM_007498.2 +1.54 NS +2.69 0.039 Regulator of cell proliferation,

differentiation, and transformation
Kruppel-like factor 2 (lung) (KIf2) NM_008452.1 +2.44 0.027 +1.08 NS Inhibition of cell proliferation
T-box 3 (Tbx3), transcript variant 2 NM 0115352 +1.29 NS +1.98 0.003 Possible cellular stress response
LPS-induced TN factor (Litaf) NM 019980.1 +2.76 NS +1.87 0.037 Cytokine signaling
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Table I: Significant differentially expressed genes in skeletal muscle after acute systemic administration of 3,-AR agonist (Continued)

Histones
Histone |, H2ai (Hist|h2ai) NM 178182 -2.07 NS -2.81 0.038 Chromatin structure
Histone |, H2ao (Histlh2ao) NM_178185.1 -2.07 NS -2.62 0.048 Chromatin structure

Oxidative stress

Metallothionein (Mtl) NM 0136022 +3.01 NS +12.18 0.003 Removal of oxidant radicals
Sulfiredoxin | homolog (Npn3) NM 0296882 +1.68 NS +10.61 0.005 Oxidant reduction
Metallothionein 2 (Mt2) NM 008630.1 +2.53 NS +9.53 0.008 Removal of oxidant radicals

Angiogenesis

ADAM metallopeptidase with XM _204236.1 +1.76 NS +2.80 0.010 Inhibition of angiogenesis
thrombospondin type | motif 9 (Adamts9)

EGL nine homolog 3 (C. elegans) (EgIn3) NM 028133.1 +1.35 NS +2.22 0.042 Hypoxia Response
Platelet derived growth factor alpha (Pdgfa) NM_ 008808 -1.07 NS -1.92  0.009 Activation of angiogenesis

Solute carriers

Short calcium-binding mitochondrial carrier 2 NM_1461182 +2.98 0.016 +3.01 NS Calcium-dependent mitochondrial
(Slc25a25) solute carrier

Tweety homolog | (Drosophila) (Ttyhl) NM 0213243 +1.34 NS +2.16 0.027 Chloride anion channel
Sodium-dependent vitamin C transporter 2 NM 0188242 +1.07 NS +1.99 0.021 Vitamin C transport
(Slc23a2)

Solute carrier family 10 (sodium/bile acid NM_145406.1 +1.30 NS +1.93 0.015 Organic anion/sodium transport?
cotransporter family), member 3 (Slc10a3)

solute carrier family 20, member | (Slc20al) NM_015747.1 +1.81 0.008 +1.51 NS Phosphate transporter
Apoptosis and cell cycle

Polo-like kinase 3 (Plk3) NM 013807.1 +2.39 NS +3.52 0.009 Regulation of cell cycle
Cyclin-dependent kinase inhibitor 1C NM _009876.2 -2.17 NS -3.45 0.005 Apoptosis

(Cdknlc)

Cyclin-dependent kinase inhibitor |A NM 007669.2 +2.28 0.047 +3.04 0.019 Apoptosis

(Cdknla)

S100 calcium binding protein A8 (calgranulin NM 013650.1 -1.04 NS +2.81 0.039 Cell cycle

A) (S100a8)

DNA-damage-inducible transcript 4-like NM 0301432 - 1.04 NS -2.60 0.032 Apoptosis

(Ddit4l)

Cytokine induced apoptosis inhibitor | NM_1341412 +1.21 NS +2.03 0.016 Cytokine-induced inhibitor of
(Ciapinl) apoptosis

Lectin, galactose binding, soluble 3 (Lgals3) NM 010705.1 -1.29 NS +1.98 0.019 Possible cell cycle regulator

Cancer and DNA repair

Jun-B oncogene (Junb) NM 008416.1 +5.20 0.021 +1.81 NS Cell signaling
AXINI up-regulated | (Axudl) NM_1532872 +2.84 0.040 +1.49 NS Tumor suppressor function?
Growth arrest and DNA-damage-inducible 45 NM_007836.1 - 1.01 NS +2.03 0.027 Induced by DNA damage

alpha (Gadd45a)
Excision repair cross-complementing rodent ~ NM_011729 +1.51 0.050 +1.93 0.026 Repair of UV-induced DNA damage
repair deficiency, complementation 5 (Ercc5)

Ubiquitin-proteasome system

Ubiquitin G (Ubg) N/A +1.30 NS +2.36 0.003 Ubiquitin-proteasome system
Ubiquitin C (Ubc) XM 147315.1 +1.30 NS +2.24 0.002 Ubiquitin-proteasome system
F-box only protein 34 (Fbxo34) NM_030236.1 +1.17 NS +2.12 0.012 Ubiquitin-proteasome system
Ubiquitin specific protease 2 (Usp2), transcript NM_198091.1 - 1.24 NS +2.08 0.032 Ubiquitin-proteasome system
variant 2

Miscellaneous genes

Midnolin (Midn) NM 021565.1 +2.53 NS +4.87 0.002 Neurogenesis

Imprinted and ancient (Impact) NM 008378.1 +2.04 NS +4.70 0.005 Unknown

Emerin (Emd) NM _007927.1 +1.82 NS +4.07 0.005 Nuclear envelope regulation?
Downstream of Stk | (Dos) XM_125771 +2.25 NS +3.83 0.010 Unknown
Phosphodiesterase 4D (Pde4d) NM 0l11056.1 +2.06 0.010 +3.78 0.014 Regulation of cAMP levels
Interferon gamma inducible protein 30 (Ifi30) NM_023065.2 +1.31 NS +3.23 0.019 Antigen processing

Y box protein 3 (Ybx3) AK02944| +2.59 0.047 +2.91 0.010 Unknown

DNA segment, Chr |19, Wayne State NM_ 146099 +138 NS +2.85 0.006 Unknown

University 162, expressed (D19Wsul62e)

Alpha-kinase 2 (Alpk2) XM_128981 +1.16 NS +2.82 0.005 Amino acid phosphorylation
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Table I: Significant differentially expressed genes in skeletal muscle after acute systemic administration of 3,-AR agonist (Continued)

Tumor necrosis factor receptor superfamily, NM 013749.1 +2.11
member |2a (Tnfrsfl2a)

Synaptopodin 2-like (Synpo2l) NM 175132 - 112
Alkaline phosphatase 2 (Akp2) NM_007431.1 + 1.59
Syndecan 4 (Sdc4) NM 011521.1 +1.55
Alpha Tubulin 6 (Tubaé) XM _147357.1 +1.14
Avian musculoaponeurotic fibrosarcoma (v- N/A +1.93
maf) AS42 oncogene homolog (Maf)

Glutamic pyruvate transaminase (alanine NM_173866.1 +1.13
aminotransferase) 2 (Gpt2)

Thrombomeodulin (Thbd) NM_009378.1 +1.87
CCR4 carbon catabolite repression 4-like (S.  NM_009834.1 + I.11
cerevisiae) (Ccrn4l)

Small chemokine (C-C motif) ligand || NM 011330.1 +1.26
(Cclll)

Mitogen-activated protein kinase kinase kinase NM_016693 +1.13
6 (Map3keé)

Chemokine (C-C motif) ligand 9 (Ccl9) NM 0113382 + 1.0l
Microtubule-associated protein | light chain 3 NM_025735.1 +1.23
alpha (Mapllc3a)

MAP kinase-interacting serine/threonine NM 0214622 +1.27
kinase 2 (Mknk2)

Lymphocyte antigen 6 complex, locus A (Lyéa) NM 0107382 - 1.14
Ssemaphorin 3F (Sema3f) NM 0113492 + 1.47
Zinc finger protein 46 (Zfp46) NM _009557.1 - 1.41
Optineurin (Optn) NM 1818483 + 1.20
Vasodilator-stimulated phosphoprotein (Vasp) NM_009499 +1.12

NS +2.76 0.014 Unknown

NS -2.70  0.005 May modulate actin shape

0.015 +2.69 0.028 Phosphatase

NS +2.68 0.005 Intracellular signaling receptor

NS +2.58 0.025 Microtubules formation

0.040 +2.51 0.008 Unknown

NS +2.04 0.032 Amino acid metabolism

0.013 +2.02 NS Anticoagulant pathway

NS +2.01 0.041 Predicted transcription factor

NS +1.96 0.010 Cytokine signaling

NS +1.94 0.036 MAPK signaling pathway

NS +1.91 0.018 Cytokine signaling

NS +1.90 0.016 Mediates interactions between
microtubules and cytoskeleton

NS +1.87 0.017 MAPK signaling pathway

NS +1.87 0.018 Cell adhesion and cell signaling

NS +1.86 0.046 Cell signaling?

NS - 1.86 0.005 Unknown

NS +1.85 0.016 Possible mediator of apoptosis?

NS -1.85 0.027 Focal adhesion stability

nificant changes in the expression of genes in several func-
tional categories at 1 and 4 hours following formoterol
administration, including genes involved in skeletal mus-
cle hypertrophy/growth, myoblast differentiation, metab-
olism, circadian rhythm, transcription, histones, oxidative
stress, angiogenesis, solute carriers, apoptosis, cell cycle,
cancer, DNA repair, and the ubiquitin-proteasome sys-
tem.

Validation of differential gene expression by quantitative
RT-PCR

The expression of 16 genes (Stat3, Idbl, Smadl, Smad3,
Hk2, Pdk4, Sorbsl, Pgcle, Lipinlea, FoxO1, Ucp3, Nfil3,
Dbp, Nurrl, Crem, and Cebpb) that were identified as dif-
ferentially expressed by Illumina beadarray analysis
(Table 1) and associated with the regulation of skeletal
muscle mass, circadian rhythm and metabolism were val-
idated and examined in greater detail following acute (1-
24 h) and chronic (1-28 days) formoterol administration
via quantitative RT-PCR (qRT-PCR; Figures 1, 2, 3, 4 and
5). All qRT-PCR analyses were performed on an independ-
ent/different set of formoterol treated mice (n = 5 per
timepoint) than the group used in the [llumina BeadArray
study. All 16 gene analyzed by qRT-PCR on independent
animals closely mirrored the Illumina changes at both
timepoints, highlighting the robust nature of the Illumina
platform.

Formoterol administration alters the expression of genes
associated with skeletal muscle hypertrophy and
differentiation: attenuation of myostatin signaling

Several differentially expressed genes associated with the
regulation of muscle differentiation and mass (identified
from the Illumina BeadArray) were examined over an
acute and chronic time course of formoterol administra-
tion using qRT-PCR. In addition we also examined the
expression of myostatin and the myostatin receptor,
activin receptor [IB (Acvr2b) that are critical modulators of
muscle mass. We examined these genes using qRT-PCR as
Acvr2b was down-regulated at 4 hour in the [llumina Bea-
dArray, however it did not pass statistical analysis (data
not shown). Tibialis anterior muscle was isolated from
groups (n = 5) of male mice, treated with either the spe-
cific B,-AR agonist treatment or saline (vehicle control)
and assayed at O, 1, 4, 8 and 24 h post treatment. Signifi-
cant changes in expression at one or more timepoints
were observed in the mRNAs encoding signal transducer
and activator of transcription 3 (Stat3; Figure 1A), inhibi-
tor of DNA binding 1 (Idb1; Figure 1B), small mothers
against decapentaplegic homolog 1 (Smad1; Figure 1C),
Acvr2b (Figure 1D), and small mothers against decapenta-
plegic homolog 3 (Smad3; Figure 1E). We did not observe
any significant changes in myostatin expression, after
acute P3,-AR agonist treatment (Figure 1F)

To examine chronic changes induced by formoterol
administration, qRT-PCR was used to examine expression
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Table 2: Significant differentially expressed non-annotated genes in skeletal muscle after acute systemic administration of §3,-AR

agonist
Gene Name Genebank ID I HOUR 4 HOURS
change p-value change p-value

RIKEN cDNA 3300001A09 XM_134869.3 +4.68 NS +5.32 0.042
RIKEN cDNA 120001 6E24 XM_489305 +4.90 0.016 +232 NS
cDNA sequence BC036718 NM 153136.1 +1.81 NS +3.96 0.004
RIKEN cDNA C330006P03 N/A +1.11 NS +3.78 0.006
RIKEN cDNA B430214A04 NM 146018.1 +1.42 NS +3.05 0.004
RIKEN cDNA 6430548M08 NM_172286 +1.15 NS +2.94 0.025
RIKEN cDNA A830030H10 AK080627 +1.96 NS +2.69 0.025
RIKEN cDNA 4833406M21 N/A +1.38 NS +2.66 0.004
RIKEN cDNA 1300002F 3 NM 133753.1 +2.54 0.013 +1.11 NS
RIKEN cDNA 9530083012 N/A +2.53 0.013 +1.69 NS
RIKEN cDNA 1200015N20 NM_024244.3 - 1.06 NS +2.52 0.010
Hypothetical protein 4933408F |5 NM 172715.1 +1.24 NS +2.52 0.010
RIKEN cDNA A730009E18 N/A +1.34 NS +2.42 0.005
RIKEN cDNA A430107N12 N/A +1.04 NS +2.21 0.036
RIKEN cDNA 5830446M03 NM_1339342 +1.32 NS +2.14 0.016
Similar to heart alpha-kinase (LOC381181) XM _355107.1 +1.08 NS +2.11 0.009
RIKEN cDNA 2810426P10 XM 148728.1 +1.03 NS +2.08 0.008
Weakly similar to protein transport protein SEC24A (SEC24-RELATED PROTEIN A)  AKO038836 +2.07 0.041 +1.29 NS
RIKEN cDNA 2310040A07 N/A +1.06 NS +2.07 0.047
RIKEN cDNA 8030450118 N/A +1.33 NS +2.05 0.043
RIKEN cDNA 3021401C12 N/A +1.17 NS +1.98 0.015
RIKEN cDNA 2900078C09 N/A +1.46 NS +1.95 0.039
RIKEN cDNA 1110033114 XM 126635.1 +1.72 NS +1.95 0.044
c<DNA sequence BC023105 NM_ 145357 - 1.07 NS -1.92 0.039

of genes from chronically treated mice (after 1, 7 and 28
days of agonist treatment). Similar to acute timepoints,
tibialis anterior was isolated from groups (n = 5) of male
mice, treated daily with either the specific ,-AR agonist
formoterol or saline (vehicle control) and assayed at 0, 1,
7 and 28 days of treatment. Chronic formoterol adminis-
tration was associated with a significant attenuation in the
expression of the mRNAs encoding Idb1 (Figure 2B),
Smad3 (Figure 2E) and myostatin (Figure 2F) after 7 or 28
days. No significant changes were observed following
chronic formoterol administration in the expression of the
mRNAs encoding Stat3 (Figure 2A), Smadl (Figure 2C),
and Acvr2b (Figure 2D), despite significant repression fol-
lowing acute formoterol administration.

To examine the effect of chronic 3,-AR agonist treatment
on critical regulators of the myostatin signaling pathway
we examined the levels of the Myostatin precursor (pro-
Myostatin), Smad3, phosphorylated Smad3 relative to
Gapdh. We assayed levels by Western blotting analysis of
tibialis anterior muscle (contralateral to muscle used for
qRT-PCR analysis) following 28 days of formoterol/saline
administration in four animals for each treatment (Figure
2G). Consistent with the qRT-PCR data, at the protein
level, pro-Myostatin appears subtley (but consistently)

suppressed following 28 days of formoterol administra-
tion. In concordance, the levels of Smad3 phosphoryla-
tion following the chronic formoterol administration are
also reduced (in 3 out of 4 mice), while total Smad3
appears unchanged.

In summary, ,-adrenergic stimulation mediates changes
in the expression of several genes associated with myosta-
tin signaling, and the regulation of muscle mass (Figure
2H).

Formoterol administration alters the expression of genes
associated with metabolism and circadian rhythm

Many genes that regulate and/or are directly involved in
metabolism are regulated in a circadian manner. The Illu-
mina BeadArray study identified differential expression of
several genes involved in these pathways. Consequently,
we utilized qRT-PCR to validate the differential expression
of these genes after acute or chronic administration of
fomoterol (vs vehicle) in tibialis anterior as detailed
above. Significant expression changes at one or more
timepoints were observed in several genes involved in
metabolism, including, hexokinase 2 (Hk2; Figure 3A),
pyruvate dehydrogenase kinase 4 (Pdk4; Figure 3B),
sorbin and SH3 domain containing 1 (Sorbs1; Figure 3C),
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Acute systemic administration of formoterol alters the expression of genes associated with muscle growth and
differentiation at multiple timepoints. Quantitative RT-PCR was used to assay the expression of A. Stat3, B. Idb/, C.
Smad|l, D. Acvr2b, E. Smad3, and F.Myostatin mRNAs in tibialis anterior over acute timepoints. Muscles were removed at |, 4, 8
and 24 hours following a single intraperitoneal injection of formoterol or saline vehicle (NT = no treatment). Results were nor-
malized against 36B4 at each timepoint. Statistical significance was assessed using a one-way ANOVA with Bonferroni's post-
test where p < 0.05 (¥), p < 0.0l (*¥) and p <0.001 (**%). Unmarked data points are non-significant.
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Chronic systemic administration of formoterol alters the expression of genes associated with skeletal muscle
hypertrophy and myogenesis at multiple timepoints. Quantitative RT-PCR was used to assay the expression of A.
Stat3, B. Idb!, C. Smadl, D. Acvr2b, E. Smad3, and F.Myostatin mRNA:s in tibialis anterior over chronic timepoints. Muscles were
removed at |, 7 and 28 days following daily intraperitoneal injection of formoterol or saline vehicle (NT = no treatment).
Results were normalized against 36B4 at each timepoint. Data are expressed as mean + SEM (n = 5). Statistical significance was
assessed using a one-way ANOVA with Bonferroni's post-test where p < 0.05 (*), p < 0.01 (**) and p < 0.001 (**¥). Unmarked
data points are non-significant. G. Protein levels of Myostatin precursor (pro-Myostatin), Smad3, phosphorylated Smad3, and
Gapdh were visualized by Western blotting performed on tibialis anterior muscle following 28 days of formoterol/saline admin-
istration in four animals for each treatment. H. Diagrammatic representation of acute and chronic gene expression changes
related to skeletal muscle hypertrophy and myogenesis in response to formoterol.
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Acute systemic administration of formoterol alters the expression of genes associated with metabolism. Quan-
titative RT-PCR was used to assay the expression of A. Hk2, B. Pdk4, C. Sorbs|, D. Pgcl o, E.Lipinl e, F. FoxO |, and G.Ucp3
mRNA:s in tibialis anterior over acute timepoints. Muscles were removed at |, 4, 8 and 24 hours following a single intraperito-
neal injection of formoterol or saline vehicle (NT = no treatment). Results were normalized against 36B4 at each timepoint.
Statistical significance was assessed using a one-way ANOVA with Bonferroni's post-test where p < 0.05 (¥), p < 0.0l (*¥) and
p <0.001 (**¥). Unmarked data points are non-significant. G. Diagrammatic representation of acute gene expression changes
related to metabolic in skeletal muscle in response to formoterol.
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Chronic systemic administration of formoterol alters the expression of genes associated with metabolism.
Quantitative RT-PCR was used to assay the expression of A. Hk2, B. Pdk4, C. Sorbs|, D. Pgcl ¢, E. Lipin| o, F. FoxO 1, and
G.Ucp3 mRNA:s in tibialis anterior over chronic timepoints. Muscles were removed at |, 7 and 28 days following daily intraperi-
toneal injection of formoterol or saline vehicle (NT = no treatment). Results were normalized against 36B4 at each timepoint.
Statistical significance was assessed using a one-way ANOVA with Bonferroni's post-test where p < 0.05 (*), p < 0.0l (**) and

p <0.001 (***). Unmarked data points are non-significant.
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Figure 5 (see previous page)

Acute and chronic systemic administration of formoterol alters the expression of genes associated with circa-
dian rhythm and transcriptional regulation. Quantitative RT-PCR was used to assay the expression of A. Nfil3, B. Dbp,
C. Nurrl, D. Creb, and E.Cebpb mRNA:s in tibialis anterior over acute timepoints. Muscles were removed at |, 4, 8 and 24 hours
following a single intraperitoneal injection of formoterol or saline vehicle (NT = no treatment). For chronic timepoints, the
expression of F. Nfil3, G. Dbp, H. Nurrl, I. Creb, and J.Cebpb mRNAs were measured in tibialis anterior removed at |, 7 and 28
days following daily intraperitoneal injection of formoterol or saline vehicle (NT = no treatment). All results were normalized
against 36B4 at each timepoint. Data are expressed as mean + SEM (n = 5). Statistical significance was assessed using a one-way
ANOVA with Bonferroni's post-test where p < 0.05 (¥), p < 0.0l (*¥) and p < 0.001 (***¥). Unmarked data points are non-sig-

nificant.

PPARy coactivator 1 alpha (Pgcle; Figure 3D), Lipinla
(Figure 3E); forkhead box O1 (FoxO1; Figure 3F), and
uncoupling protein 3 (Ucp3; Figure 3G). In the context of
crosstalk between B-AR signaling and Nor-1 (NR4A3) sig-
naling in skeletal muscle, we have previously identified
and examined the induction of Pdk4, Pgcl e, FoxO1, and
Lipinl « over following acute B-AR activation [28,36].

Chronic formoterol administration significantly altered
the expression of FoxO1 (Figure 4F) and Ucp3 (Figure 4G)
at 7 and 28 days respectively, while Hk2 (Figure 4A), Pdk4
(Figure 4B), Sorbs1 (Figure 4C), Pgcla (Figure 4D), and
Lipinl o (Figure 4E) were not significantly altered.

The expression of two peripheral tissue regulators of circa-
dian rhythm, albumin D-box binding protein (Dbp), and
nuclear factor interleukin 3 regulated (Nfil3) were signifi-
cantly dysregulated by both acute and chronic formoterol
administration (Figures 5A, B, F and 5G).

In summary, formoterol administration mediated the sig-
nificant modulates of several metabolic genes (for exam-
ple Pgcle, Lipinl e, Pdk4, FoxO1, Hk2, Ucp3, Sorbsl etc)
associated with the transient induction of oxidative
metabolism, particularly following acute stimulation of B-
AR's. Interestingly, the expression of these genes was nor-
malized 24 h post treatment, and remained at control lev-
els throughout the 28 days of formoterol administration.
In addition, acute and chronic ,-AR agonist treatment
significantly regulates the expression of two critical regu-
lators of circadian cycling.

Altered transcriptional regulation following formoterol
administration

We have previously demonstrated that B-AR agonists
markedly increased the expression of the NR4A subgroup
(Nur77, Nurrl and Nor-1) of nuclear receptor transcrip-
tion factors in skeletal muscle [27-29]. From the Illumina
BeadArray, ten transcription factors (not placed in other
categories) were induced by formoterol 1 and 4 h post-
administration (Table 1). At one or more timepoints,
acute administration of formoterol significantly induced
nuclear receptor related 1 protein (Nurrl; Figure 5C),

cAMP responsive element modulator (Crem; Figure 5D),
and CCAAT/enhancer binding protein B (Cebpb; Figure
5E). In contrast, Crem was the only transcription factor to
remain elevated throughout the 28 day formoterol
administration period (Figure 5I compared to Figures 5H
and 5J).

Discussion

A variety of studies have demonstrated that acute (and
chronic) B-AR stimulation in skeletal muscle induces
hypertrophy, and modulates oxidative metabolism, mito-
chondrial parameters, energy expenditure, lipolysis [1,16-
20], glucose transport [37], and glucose oxidation [20].

To examine gene expression associated with these effects,
we utilized Illumina BeadArray gene expression profiling
to examine global gene expression in skeletal muscle in
response to acute systemic administration (1 and 4 hours)
of a specific B,-AR agonist (formoterol). In this study we
have revealed that B,-AR agonist treatment altered the
expression of several genes associated with myostatin sig-
naling, a previously unreported effect of B-AR signaling in
skeletal muscle. This is also the first study to demonstrate
a P,-AR agonist regulation of circadian rhythm genes,
indicating crosstalk between B-AR signaling and circadian
cycling in skeletal muscle

Skeletal muscle hypertrophy and myoblast differentiation
Previous studies have demonstrated that systemic admin-
istration of B,-AR agonists induces hypertrophy in both
skeletal and cardiac muscle [1-3,38]. Furthermore, 3,-AR
agonists have been found to prevent or reverse the muscle
wasting and weakness associated with numerous condi-
tions [for review see Ryall & Lynch, 2008 [15]]. However,
the cellular and molecular mechanisms underlying these
changes have yet to be fully elucidated. The scientific liter-
ature is not consistent on whether 3-AR agonists increase
myofibrilar protein mass during hypertrophy by increased
protein biosynthesis, decreased proteolysis, or both.

Reeds et al. [4] suggested that B-AR agonists do not
increase global protein biosynthesis, however recent
reports suggested that B-AR agonists increase the expres-
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sion of several contractile proteins [30,39,40], myogenin
[41], and initiators of protein translation [30]. In addition
to effects on protein synthesis a number of studies have
attributed increased myofibrilar protein content to an
inhibition of myofibrilar proteolysis [4,8,42], possibly via
inhibition of ubiquitin-proteasome mediated degrada-
tion [8,10,11], Ca2*-dependent proteolysis [12] or cal-
pain-mediated proteolysis [6,13,14].

At the molecular level, the gene ankyrin repeat and SOCS
box protein Asb15, known to promote protein synthesis
and myoblast differentiation, has been found to be
induced by B-AR stimulation [43-46]. Similarly, both Igf1
and Igf2 mRNA expression has been observed to increase
following chronic systemic administration of B-AR ago-
nists, suggesting the involvement of these growth factors
in hypertrophy [40,47]. Interestingly, in the current study
no significant acute changes were observed in Asb15 or
Igf1 (data not shown), however Igf2 expression was down-
regulated (non-significantly; data not shown) after four
hours, a result that is not consistent with these previous
studies [40,47].

We have also included a more detailed table (Table 3),
which compares the Illumina BeadArray information in
this study to previously published hypotheses on B-AR
agonist-induced hypertrophy.

In our study, Illumina BeadArray expression profiling
analysis revealed several gene expression changes associ-
ated with the regulation of skeletal muscle mass and
myoblast differentiation. From the array (and qRT-PCR),
we observed alterations in Stat3, and Smad3, Acvr2b three
genes directly associated with the regulation of muscle
hypertrophy. Both Acvr2b (a key myostatin receptor) and
Smad3 are downstream mediators of myostatin, a well-
characterized negative regulator of muscle mass. With
qRT-PCR, we also observed a subtle, but significant atten-
uation of the mRNAs encoding myostatin in response to
chronic B,-AR agonist treatment, however this was not
detected by the acute Illumina analysis. This is concordant
with the chronic effects of formoterol administration on
skeletal muscle, and could provide a partial mechanistic
basis for hypertrophy.

While muscle growth from B-AR agonists is associated
with hypertrophy, enhancement of myogenesis could
lead to proliferation, differentiation, and/or recruitment
of satellite cells into muscle fibers to promote muscle
growth. We observed significant changes in Itgb1bp3,
Smad1, Smad3, FoxO1 (listed under metabolism in Table
1) and, Idb1, genes believed to play an important role in
regulating myogenesis. We observed significant changes
in Smad1l expression, and while closely related to Smad3,
Smadl has not been associated with skeletal muscle
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hypertrophy, however it may have a role in the regulation
of myogenesis [48]. A complex of Smadl and 4 has been
shown to transactivate Id1 [49], another myogenic gene
altered by formoterol administration. Interestingly, we
observed a significant repression of FoxO1, a negative reg-
ulator of myogenesis, following 28 days of formoterol
administration [50-52], thus suggesting B,-AR agonist
enhance myogenesis in the context of chronic treatment.
Furthermore, myostatin may also be a transcriptionaly
regulated by FoxO1 [53], possibly suggesting coordinate
regulation of hypertrophy and myogenesis via multiple
mechanisms including Fox01/myostatin signaling. More-
over, we have performed Western (immunoblot) analysis
on the tibialis anterior muscle from 28 day vehicle
(saline) and B,-AR agonist treatment (formoterol) treated
mice (n = 4 mice per treatment). This demonstrated that
formoterol treatment suppressed expression of pro-
Myostatin, and the levels of phospho-Smad3. These obser-
vations are in concordance with the attenuation of the
myostatin signaling pathway and therefore the hyper-
trophic phenotype [54,55].

In summary, formoterol administration induced signifi-
cant changes in genes associated with skeletal muscle
hypertrophy and myogenesis. A broad overview of these
expression changes are provided in Figure 2H, notably
highlighting possible crosstalk between B-AR signaling
and myostatin/Smad3 signaling pathway.

Metabolism

Many previous studies have implicated B-AR signaling in
the control of metabolism. Mice lacking all three 3-AR are
unable to effectively regulate energy expenditure and thus
develop obesity on a high-fat diet [25]. In terms of skeletal
muscle, B-AR agonist administration has been found to
modulate oxidative metabolism, energy expenditure,
lipolysis [1,16-20], glucose transport [22] glucose oxida-
tion [20] and mitochondrial morphology [56]. In the cur-
rent study we found that formoterol administration
significantly induced the expression of 14 genes associ-
ated with metabolism and mitochondrial function greater
than 1.85 fold (Table 1). These consisted of genes
involved in lipid regulation and metabolism, including
Lipinla, FoxO1, scavenger receptor class B member 1
(Scarb1), phosphomevalonate kinase (Pmvk), plasma
membrane associated protein (S3-12), peroxisome prolif-
erator-activated receptor y (Ppary), and Ucp3. The largest
change observed was the induction of Pgc-1¢, a key tran-
scriptional regulator of oxidative metabolism and regula-
tor of skeletal muscle fiber type and therefore lipid
metabolism. Genes involved in glucose metabolism/stor-
age and insulin signaling were up-regulated, Pdk4, protein
phosphatase 1 regulatory subunit 3C (Ppp1r3c), and Hk2.
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Table 3: Summary of previous reports describing the known molecular effects of 3-AR agonist-induced hypertrophy in skeletal muscle

B-AR agonist-induced hypertrophy hypothesis

Reference(s) Comparison to our study

Increased expression of skeletal muscle contractile proteins [30,39,40]
Increased mRNA expression of myogenin, a key [30]
developmental regulator of functional skeletal muscle

Increased expression of initiators of protein translation [30]
Decreased myofibrilar proteolysis via inhibition of the ATP- [8,10,11]
ubiquitin-dependent proteolytic system

Decreased myofibrilar proteolysis via CaZ*-dependent or [12]
calpain-mediated proteolysis

Decreased expression of SOCS box protein Asb5, whichisa  [43-46]
negative regulator of protein synthesis and myoblast

differentiation

Induction of Igfl mRNA expression [30]
Induction of Igf2 mRNA expression [40,47]

No significant changes were observed in contractile proteins at |
and 4 hours in our lllumina array data. In the previous referenced
studies, contractile proteins were only examined following
chronic B-AR agonist administration. Increased myosin heavy
chain was observed at protein level [39], and may not be present
at mRNA level.

No significant changes were observed in myogenin at | and 4
hours in our lllumina array data. In Spurlock et al. [30], increased
myogenin mRNA expression was only observed at 24 hours
following B-AR agonist administration. Our earlier timepoints
may miss this change.

Our lllumina array data showed no significant changes in any
genes that are known initiators of protein translation. In Spurlock
et al. [30], increased expression of mMRNA encoding initiators of
protein translation were observed mainly at 24 hours following
B-AR agonist administration. Our earlier timepoints may miss
these changes.

We observed the induction of four genes associated with
ubiquitin-proteolytic system (Ubg, Ubc, Fbxo34 and Usp2). This
is in contrast to the referenced studies that demonstrated
inhibition of the ATP-ubiquitin-dependent proteolytic system via
chronic B-AR agonist administration on skeletal muscle. The
induction we observed may represent a mechanism whereby
acute [-AR signaling induces proteolysis for myofibril repair
following exercise (which is known to induce 3-AR signaling

[75]).

Our lllumina array data showed no significant changes in any
genes associated with calpain-mediated or other Ca2*-dependent
proteolytic genes.

We did not observe repression (or induction) of Asb/5 mRNA in
the lllumina array data at either timepoint. In the referenced
studies, Asb 15 is repressed at |2-24 hours. Our earlier timepoints
may miss this expression change, however there is the potential
for a transcription factor listed in our study to repress Asb/5.

We did not observe any induction of Igfl in the lllumina array
data at either timepoint. In Spurlock et al. [30], increased
expression of Igfl was observed mainly at 24 hours post 3-AR
agonist administration.

Igf2 was repressed 2.61 fold, however this was removed due to
multiple testing correction. Although this result is not consistent
with the referenced previous studies, Igf2 mRNA in these
previous studies was only examined after chronic -AR agonist
administration.

Several of these genes have been previously identified in
our studies following in vitro and in vivo treatment of mus-
cle with a B,-AR agonist. For example, the induction of the
mRNAs encoding Pgcl ¢, Lipinl o, Pdk4 and FoxO1 in skel-
etal muscle were identified in our study [28] and that of
Miura et al. [36].

Interestingly, the expression levels of Pgcla, Lipinl and
FoxO1 have also been found to be increased following

exercise [57], suggesting ,-AR treatment may imitate
some functions and/or effects of exercise.

Circadian Rhythm

Skeletal muscle, like most other tissues, is known to have
a peripheral circadian clock, characterized by the expres-
sion of peripheral clock genes. It is thought that the regu-
lation of these peripheral circadian clocks is ultimately
regulated and synchronized by a central circadian clock
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located in the suprachiasmatic nucleus of the brain, how-
ever the exact mechanism of communication to skeletal
muscle remains unclear.

As previous studies have implicated B-AR signaling as a
mediator of circadian rhythm [58-62], it is of interest that
we observed the dysregulation of three peripheral clock
genes by formoterol administration (Table 1), including
nuclear factor, interleukin 3 (Nfil3), D site albumin pro-
moter binding protein (Dbp), and cryptochrome 2 (Cry2).
The observation, that only a subset of peripheral clock
genes were dysregulated by formoterol administration
suggests regulation of these genes is occurring at an organ
specific level and not via direct actions on the central cir-
cadian clock since interference to the central circadian
clock should result in changes to the majority of periph-
eral clock genes. Furthermore, as only a small fraction of
known circadian-regulated genes in skeletal muscle are
being altered in our study (compared to McCarthy et al.
[63]), this suggests that these results are valid and not
occurring due to minor timing issues that occur during tis-
sue collection.

Adrenergic regulation of the related clock gene crypto-
chrome 1 (Cry1) has been previously reported in the rat
pineal glands [59,64]. In addition, Cryl has been shown
to be regulated by resistance exercise, a stimulus known to
increase sympathetic activity in skeletal muscle [65]. This
further underscores the crosstalk between exercise, and 3,-
AR signaling in the context of peripheral circadian con-
trol.

The central role of circadian rhythm in skeletal muscle
metabolism is highlighted by the circadian changes in glu-
cose utilization in muscle, and the findings that disrup-
tion of skeletal muscle circadian rhythm occurs in diabetic
rats [66]. Furthermore, major changes to peripheral clock
genes have been found to be increased by altering the
activity of AMP kinase, a key metabolic regulator of skele-
tal muscle [67]. Interestingly, AMPK modulators have
been recently described as exercise mimics [68].

Interestingly, a limited number of genes highlighted in
this study have been shown to be regulated in the circa-
dian transcriptome of adult mouse skeletal muscle [63].
Cry2, Dbp, Ucp3, Pdk4, Ubc, Pgcle, and Usp2 have been
shown to be regulated in the circadian transcriptome, pos-
sibly suggesting that these metabolic transcripts and Usp2
may be regulated by dysregulated clock genes rather than
directly by B-AR signaling. However, some genes such as
Pgcla have a well characterized induction pathway
involving B-AR signaling independent of circadian regula-
tion [69].

http://www.biomedcentral.com/1471-2164/10/448

In conclusion, this is the first paper to show regulation of
the peripheral circadian regulators in skeletal muscle by -
AR signaling, possibly implicating B-AR (sympathetic) sig-
naling as a pathway that coordinates communication
between central and peripheral circadian clocks in skeletal
muscle.

Transcription and histones

Spurlock et al. [30] have previously used microarray tech-
nology to examine skeletal muscle gene expression fol-
lowing chronic B-AR administration. In this study the
authors found an up-regulation of transcriptional and
translational initiators responsible for increasing protein
synthesis. In this context, we observed the induction of 11
genes (Table 1) noted as transcription factors (although
some transcription factors are in other categories eg.
FoxO1). The 11 induced transcriptional regulators were
FBJ osteosarcoma oncogene (Fos), kruppel-like factors 2
and 4 (KIf2 and 4), cAMP responsive element modulator
(Crem), CAAT/enhancer binding protein beta (Cebpb),
nuclear receptor related 1 protein (Nurr1), fos-like antigen
2 (Fosl2), V-maf musculoaponeurotic fibrosarcoma onco-
gene family protein F (Maff), activating transcription fac-
tor 3 (Aft3), T-box 3 (Tbx3), transcript variant 2, and LPS-
induced TN factor (Litaf).

Interestingly, concomitant with transcriptional induction,
our Illumina analysis revealed that f3,-AR stimulation sig-
nificantly inhibited the expression of two histone proteins
(also four more histones were present at >2 fold, but these
were removed via multiple testing correction), suggesting
that B-AR stimulation promote the formation of euchro-
matin, thus enhancing transcription. This result, coupled
with the induction of transcription factors, indicates $-AR
signaling may play an important role in regulating skeletal
muscle transcription.

Oxidative stress

In our study, many of the largest inductions occurred in
genes associated with the response to oxidative stress.
Metallothioneins 1 and 2 (Mtl, 2), sulfiredoxin 1
homolog (Npn3), and uncoupling protein 3 (Ucp3; listed
under metabolism) were all significantly induced at four
hours after formoterol administration. During exercise,
reactive oxygen species (ROS) are generated in skeletal
muscle [70,71], and some oxidative damage occurs [72].
Excess ROS may lead to cellular damage, which has been
implicated in with the development of insulin resistance
[73], and apoptosis of myoblasts [74]. Given that exercise
induces B-AR signaling activity in skeletal muscle [75],
this activity may provide a mechanism for increased
expression of antioxidant genes to restore oxidative home-
ostasis. This is supported by the work of Mahoney et al
[57], who demonstrated that exercise induced a wide
range of antioxidant genes, including several metal-
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lothioneins. Furthermore, induction of both Ucp2 and
Ucp3 has also been shown previously to be induced by -
AR signaling in exercising skeletal muscle [27,76-78].
Since Ucp3 and Ucp2 have been implicated in the reduc-
tion of ROS [79,80], it is possible that the induction of
Ucp3 and Ucp2 expression in skeletal muscle is one mech-
anism for reducing ROS production during or after exer-
cise.

Conclusion

This study utilized gene expression profiling to examine
global gene expression in skeletal muscle following acute
and long-term (chronic) B-AR agonist administration. In
summary, systemic administration of formoterol had a
profound effect on global gene expression in skeletal mus-
cle. With respect to skeletal muscle hypertrophy, formot-
erol altered the expression of several genes associated with
the attenuation of myostatin signaling, highlighting the
role of B-AR signaling in the mechanisms regulating skel-
etal muscle mass

Interestingly, many changes in gene expression with -AR
signaling are similar to findings from other studies exam-
ining exercise-related effects in skeletal muscle. For exam-
ple, the changes in expression of Pgcl1 e, FoxO1, Ucp3, the
NR4A subgroup and severalmetallothioneins are identical
in both systems [57,65]. This would suggest the induction
of B-AR signaling during exercise is a major determinant
of the subsequent changes in gene expression changes fol-
lowing exercise.

The findings also demonstrate for the first time crosstalk
between B-AR signaling and the peripheral regulators of
circadian rhythm in skeletal muscle, possibly implicating
B-AR signaling in circadian effects on skeletal muscle.
Gene expression changes discovered in the present study
may provide insight into the mechanisms underlying B-
AR-mediated changes in skeletal muscle hypertrophy and
metabolism.

Methods

Animals, }-AR agonist administration and tissue collection
All procedures were approved by the Animal Experimen-
tation Ethics Committees of The University of Melbourne.
All procedures conformed to the Guidelines for the Care
and Use of Experimental Animals described by the
National Health and Medical Research Council of Aus-
tralia. Male C57BL/10 ScSn (wild type, 6-7 weeks old)
were obtained from the Animal Resource Centre (Can-
ning Vale, WA, Australia) and were randomly assigned to
either saline control, formoterol (a specific 8,-AR agonist)
treated or non-treated groups. For BeadArray analysis, 16
mice in total were analyzed with eight mice for both time-
points. At each timepoint, four mice were treated with for-
moterol and four with saline (n = 4 mice per timepoint
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per treatment). For quantitative real-time PCR (qRT-PCR)
analysis, ten mice were used per timepoint with five for-
moterol treated and five saline formoterol animals. Five
mice were also analyzed as non-treated animals (n = 5
mice per timepoint per treatment). The animals used for
quantitative real-time PCR were independent animals to
that used for BeadArray analysis. The mice were housed in
the Biological Research Facility at The University of Mel-
bourne and maintained on a 12 h-light/12 h-dark cycle,
with standard mouse chow and water provided ad libi-
tum.

Treated mice received a single intraperitoneal injection of
formoterol (Astra-Zeneca: 100 pg/kg in 0.2 mL saline)
and control mice received an equivalent volume of sterile
saline. We have demonstrated previously that this is the
most efficacious dose for eliciting skeletal muscle hyper-
trophy in rodents [3]. For chronic treatment timepoints,
mice received a single intraperitoneal injection of formot-
erol (Astra-Zeneca: 100 ug/kg in 0.2 mL saline) daily and
control mice received an equivalent volume of sterile
saline daily.

Mice were anesthetized at 1, 4, 8, and 24 hours after acute
treatment with formoterol and at 7 and 28 days after
chronic formoterol administration. Following anestheti-
zation, tibialis anterior muscles were surgically excised.
Tissue was also removed from anesthetized untreated
mice (n = 5) that did not receive an intraperitoneal injec-
tion for qRT-PCR "no treatment" controls. Tissue from
"no treatment" was removed at time zero following injec-
tions of the treatment mice. All injections were carried out
at approximately 3 hours within the light cycle and mus-
cle was removed at relative appropriate intervals during
the light cycle. Care was taken to administer formoterol
and saline injections as close as possible to negate gene
expression changes associated with circadian rhythm. For
chronic treatments injections, were carried out at approx-
imately 3 hours within the light cycle and muscle was
removed 24 hours following the last injection. Due to
concerns about stress hormones in acute timepoints, both
saline control and formoterol treated animals were han-
dled and injected in the same manner. Non-treated ani-
mals were also included with the qRT-PCR data to provide
an indication of any stress related gene expression
changes. As the non-treated animals were quickly anesthe-
tized, stress related gene expression changes should be
avoided.

All samples were snap-frozen in liquid nitrogen and
stored at -70° C. Samples were used for RNA extraction for
BeadArray analysis and qRT-PCR. Contralateral tibialis
anterior muscle samples were also used for Western blot
analysis.
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RNA extraction for quantitative real-time PCR

RNA was extracted from skeletal muscle tissue using TRI-
Reagent (Sigma Aldrich) according to the manufacturer's
protocol. For qRT-PCR only, RNA was treated with 2U of
Turbo DNase (Ambion) for 30 minutes. RNA was further
purified using a mini-RNeasy kit (QIAGEN) according to
manufacturer's instructions and quantified using a Nano-
Drop ND-1000 spectrophotometer.

cDNA synthesis for quantitative real-time PCR

c¢DNA was synthesized from 3 pg of total RNA for cell cul-
ture experiments and 1 pg for animal muscle experiments
(normalized via UV spectroscopy) using Superscript II1
primed by random hexamers (Geneworks), according to
the manufacturer's instructions (Invitrogen).

Quantitative real-time PCR (qRT-PCR) and statistical
analysis

Target cDNA levels were compared by qRT-PCR in 25 pl
reactions containing either 1x SYBR green (Applied Bio-
systems) or Tagman PCR master mix (Roche Molecular
Systems), 100 nM of each forward and reverse primers for
SYBR green or 1x Assay-on-Demand Taqman primers
(Applied Biosystems) and the equivalent of 0.3 uL cDNA.
Using an ABI Prism 7500 (Applied Biosystems) sequence
detection system, PCR was conducted over 45 cycles of
95°C for 15 seconds and 60°C for 1 minute, preceded by
an initial 95°C for 10 minutes. Expression levels were
normalized to 36B4 as determined from the ratio of delta
CT values. All 36B4 probes remained stable during Illu-
mina BeadArray analysis, confirming this gene was appro-
priate for normalization. Results are expressed as means +
SEM from five biological replicates. Statistical analyses
were performed using GraphPad Prism software. All qRT-
PCR data were analyzed using a one-way ANOVA with
Bonferroni's post-test.

qRT-PCR primers

Primers for qRT-PCR analysis of the mRNA populations
using SYBR green have been described in detail for 36B4
[81], Ucp3 ([82], Nurrl [83], Pdk4 [28], and Pgcla ([82].
The following SYBR primers were designed using Primer
Express (Applied Biosystems, Foster City, CA): Sorbsl
(F:5'-GTG CCA CAG AAC GAT GAT GAG T-3'; R'5-AAG
TAC CAA ACT GCC TCG TCC TT-3"), Id1 (F:5'-GCA GGT
GAA CGT CCT GCT CTA-3'; R:5'-TCT CCA CCT TGC TCA
CIT TGC-3'"), Activin receptor IIB (F:5'-ACG TGG CGG
AGA CGA TGT-3'; R:5-GTG AGG TCG CTC TTC AGC AG
TAC-3"), Hk2 (F:5'-TTA GGT CAG TCG GCG TIT CAG-3/;
R:5'-TAG GAG GGC AAA TAA ATG TAC AAA CA-3'), Nfil3
(F:5'-CGG TTA CAG CCG CCC TIT-3'; R:5-GIT GTC
CGG CAC AGG GTA AAT-3'), and Stat3 (F:5'-GAG GAG
GCA TTT GGA AAG TAC TGT A-3'; R:5'-GTC ACA CAG
ATG AACTTG GTCTTC A-3'). Assay-on-Demand Tagman

http://www.biomedcentral.com/1471-2164/10/448

primer/probe sets were used to assay expression of
myostatin, Crem, Crebp, Dbp, FoxO1, and Lipinl c.

BeadArray hybridization and statistical analysis

For BeadArray analysis, 16 mice in total were analyzed
with eight mice for both timepoints. At each timepoint,
four formoterol treated and four saline formoterol ani-
mals. Total skeletal muscle RNA was assessed for integrity
using the Agilent Bioanalyzer 2100 and RNA integrity
(RIN) scores above 8.3 were present in all samples. 500 ng
of RNA was amplified using the Illumina TotalPrep RNA
Amplification kit (Ambion) with an in vitro transcription
reaction period of 12 hours. Biotinylated, amplified cRNA
was assessed for quantity and quality also using the Agi-
lent Bioanalyzer 2100. 1500 ng per array of amplified
cRNA was hybridized to Sentrix Mouse-6.v1 BeadChip
arrays (Illumina) according to manufacturer directions.
Hybridized BeadChip arrays were stained with Amersham
fluorolink streptavidin-Cy3 (GE Healthcare). BeadChip
arrays were scanned with Illumina BeadStation Scanner
and data values with detection scores were compiled using
BeadStudio v1.5.1.3 (Illumina) and imported into Gene-
Spring GX v7.3.1 (Agilent) for data analysis. Mouse Illu-
mina probe set was defined in the GeneSpring Workgroup
using the [llumina targetIDs as the unique identifiers and
annotated according to array content files supplied by
[llumina. Normalized data was produced using Gene-
Spring GX version 7.3.1 via normalization to control
genes, where control genes were represented by all genes
with an Illumina detection score equal to one in at least
four out of the 16 samples (7,596 control genes in total).
All probes except for the 7,596 probes that were deter-
mined to have an [llumina detection score equal to one in
at least four out of the 16 samples were filtered out to
remove probes without adequate expression levels. A par-
ametric Welch's t-test (where variances were not assumed
equal) was performed on the 7,596 probes independently
for both one and four hour times groups with a p-value
cutoff of 0.05. Multiple testing correction (Benjamini and
Hochberg False Discovery Rate) was then applied to genes
that had passed the parametric Welch's t-test based on the
total detected probe-set of 7,596 probes to reduce false
positives. About 5.0% of the identified probes would be
expected to pass the restriction by chance. Following this
statistical filtering, 393 probes were significant at four
hours and 43 probes at one hour. Statistical filtered probe-
sets were then independently filtered by fold change using
a minimum cutoff of 1.85 fold. Following this, 112
probes were present at four hours and 23 genes at one
hour. Multiple significant probes for the same gene were
removed from final data tables with the probe with the
highest fold change being chosen.
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Western blot analysis

Whole skeletal muscle lysates were prepared from homog-
enisation and sonication in lysis buffer [50 mM Tris HCI,
75 mM NaCl, 5 mM EGTA, 1 mM dithiothreitol, 1% Non-
idet P-40, Complete protease inhibitors (Roche Diagnos-
tics Australia), and PhosSTOP phosphatase inhibitors
(Roche Diagnostics Australia)] and resolved on 10% SDS-
PAGE gels under reducing conditions as outlined [84].
Proteins were transferred to an Immobilon-P polyvinyl
difluoride membrane (Millipore) and blocked for 1 h
with 5% non-fat milk powder in tris-buffered saline with
0.1% Tween 20. Blots were probed overnight with anti-
Mpyostatin (sc-6884; Santa Cruz) at 1:300 and anti-Gapdh
(R&D Systems) at 1:10000 in blocking buffer. Blots were
also probed overnight with anti-Smad3 (#9523; Cell Sign-
aling) at 1:1000 and anti-phospho-Smad3 (#9520; Cell
Signaling) at 1:1000 in 5% fraction V BSA (Sigma-
Aldrich) in tris-buffered saline. Secondary anti-rabbit-
horseradish peroxidase conjugate (Pierce Biotechnology)
in blocking buffer was used at 1:10000 for Gapdh, Smad3,
and phospho-Smad3 for 1 h. Secondary anti-goat-horse-
radish peroxidase conjugate (Pierce Biotechnology) in
blocking buffer was used at 1:10000 for Myostatin for 1 h.
Horseradish peroxidase localization was detected with
Immobilon Western Chemiluminescent HRP Substrate
(Millipore) according to the manufacturer's instructions
and visualized by X-ray film.
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