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Abstract

Background: Genome analysis of three Frankia sp. strains has revealed a high number of transposable
elements in two of the strains. Twelve out of the 20 major families of bacterial Insertion Sequence (IS)
elements are represented in the 148 annotated transposases of Frankia strain HFPCcl3 (Ccl3) comprising
3% of its total coding sequences (CDS). EANIpec (EAN) has 183 transposase ORFs from |3 IS families
comprising 2.2% of its CDS. Strain ACN 14a (ACN) differs significantly from the other strains with only 33
transposase ORFs (0.5% of the total CDS) from 9 IS families.

Results: Insertion sequences in the Frankia genomes were analyzed using BLAST searches, PHYML
phylogenies and the IRF (Inverted Repeat Finder) algorithms. To identify putative or decaying IS elements,
a PSI-TBLASTN search was performed on all three genomes, identifying 36%, 39% and 12% additional
putative transposase ORFs than originally annotated in strains Ccl3, EAN and ACN, respectively. The
distribution of transposase ORFs in each strain was then analysed using a sliding window, revealing
significant clustering of elements in regions of the EAN and Ccl3 genomes. Lastly the three genomes were
aligned with the MAUVE multiple genome alignment tool, revealing several Large Chromosome
Rearrangement (LCR) events; many of which correlate to transposase clusters.

Conclusion: Analysis of transposase ORFs in Frankia sp. revealed low inter-strain diversity of
transposases, suggesting that the majority of transposase proliferation occurred without recent horizontal
transfer of novel mobile elements from outside the genus. Exceptions to this include representatives from
the 1S3 family in strain EAN and seven IS4 transposases in all three strains that have a lower G+C content,
suggesting recent horizontal transfer. The clustering of transposase ORFs near LCRs revealed a tendency
for IS elements to be associated with regions of chromosome instability in the three strains. The results
of this study suggest that IS elements may help drive chromosome differences in different Frankia sp. strains
as they have adapted to a variety of hosts and environments.
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Background

The genus Frankia consists of actinobacteria that form
root nodule symbioses with non-leguminous plants
wherein they fix N, to ammonia that is assimilated by the
plant [1-4]. The genomes of three Frankia sp. strains show
a complex pattern of deleted, duplicated and hypothetical
genes plus many transposable elements suggesting a high
degree of plasticity[5]. Despite having 16S rRNA
sequences that are greater than 97% identical to each
other, the strains have genome sizes that range from five
to nine Mbp in size. Their genome sizes reflect the diver-
sity of plants infected [5]. HFPCcI3 (CcI3), with the small-
est genome (5.4 Mbp) of the three, infects plants from one
family whereas EAN1pec (EAN), with the largest genome
(9 Mbp), infects plants in five families. Strain ACN14a
(ACN) has a moderate genome size (7.4 Mbp) and infects
plants from two families [1].

The number of transposase open reading frames (ORFs)
in the Frankia genomes is not proportional to their sizes,
contrary to some models suggesting that larger genomes
are likely to contain more mobile genetic elements than
smaller genomes [6]. Initial annotations have indicated
that transposase ORFs, associated with insertion
sequences (ISs), are highly duplicated and diverse in
strains CcI3 (148 orfs) and EAN1 (183 orfs), but less so in
strain ACN14a (33 orfs).

IS elements are mobile genetic elements that lack a
selectable marker gene and insert into the genome of a
host without the need for extensive DNA homology at a
target site (for a review see [7-10]). Most bacterial IS ele-
ments consist of one, or more, transposase ORF(s) that
catalyze excision from, and reinsertion into, a genome.
They are classified into major families based on amino
acid sequence similarity, structure of ORFs devoted to
transposition or the presence of flanking repeat sequences
[11]. Inverted repeats (IRs) are commonly found flanking
the transposase ORF(s) of IS elements, but are notably
absent in the 1S200/IS605 [12-14] and IS110 families
[15]. IRs can contain promoter elements for the flanked
OREF(s) and serve as targets for the active transposase
[11,16,17]. Transposition often creates small direct
repeats (DR) beside the IR sequences of the element,
which may be used to identify prior insertion points of
that element in the genome.

IS-associated transposase genes are generally poorly
expressed [18]. The insertion, excision, or duplication of
IS elements can cause insertion mutations or lead to
genome rearrangements often, but not always, to the det-
riment of the host [7,19]. Point mutations that make IS
elements hyperactive can be lethal to their host [20-22]. If
many ISs are maintained within a genome, they may con-
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fer a degree of genome plasticity allowing for rapid adap-
tation to new environments [6,23,24].

Insertion sequences have also been implicated as causes of
large chromosome rearrangements through intra-chro-
mosomal recombination [7,25,26]. Such changes might
allow some pathogens to evade or adapt to host defences
[27,28]. Large numbers of IS elements have been shown
to induce genome deletions and rearrangements in the
pathogens B. pertussis and B. parapertussis [29]. Similarly, a
hostile or changing soil environment could select for
microbes that can quickly adapt to new conditions. It is
also possible that IS elements confer no such selective
advantage on their hosts. This study focused on annotated
transposase ORFs in Frankia sp. and the identification of
fragmentary IS elements present in three strains of Frankia
sp. Their positioning and diversity suggest roles in driving
genome size and strain differences that may have contrib-
uted to the adaptation of different Frankia lineages to their
hosts and soils.

Results

Classification of IS content

A total of 364 IS-associated transposase ORFs have been
annotated among the three Frankia genomes. Frankia alni
strain ACN has 33, Frankia sp. strain CcI3 has 148 and
Frankia sp. strain EAN has 183 ORFs distributed among
13 IS families plus several unclassified transposases (Table
1 and [5]). This diversity of transposase ORFs is the great-
est yet found in bacterial genomes as of this time. The 33
ISs in ACN are in nine families plus the unclassified ORFs.
The 148 ORFs in CcI3 are in 12 of the 13 Frankia IS fami-
lies. Four paralog groups of transposases in CcI3 contain
ORFs that, within each group, have >99% amino acid
sequence identity; the largest group contains 14 IS4 trans-
posase ORFs that share 100% amino acid identity. These
paralog groups reflect probable recent duplication [30].
The 183 ORFs in EAN are even more diverse with mem-
bers in all families with few that are identical. Inverted
repeats were found flanking 16 transposases in EAN and
41 transposases in CCI3 (see Additional File 1:
Papersupplementall.xls).

For identifying transposases from ancient or horizontal
transfer [31] we conducted BLAST searches of the non-
redundant (nr) database using the amino acid sequences
of all annotated Frankia transposases. Most of the ORFs
(258, 70.8%) hit transposase ORFs in at least one other
Frankia strain (Table 1). Of these, 103 ORFs had BLAST
hits among all three Frankia strains, with 18 (55%) of
such ORFs in strain ACN, 35 (23%) in CcI3 and 50 (27%)
in EAN. Only 8, 29 and 69 ORFs limited to ACN, Ccl3, or
EAN respectively (Figure 1). Fifty-five of those ORFs hit
transposases (Evalue < 10-15) in other bacteria but not in
the other strains of Frankia; 42 of those ORFs belong to
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Table I: IS family diversity in three Frankia strains
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IS Family! Unique to CcI3 Unique to EAN Unique to ACN In EAN and Ccl3 In ACN and either In all three
only? EAN or Ccl33
IS3 2 I - - -
1S4 7 10 63 | 25
IS5 - - 2 - -
1S6 - | - |
IS30 - - 2 - |
IS66 - - 16 - |
ISI10 - 9 5 | 7
1S200 - 2 8 - -
1S605 - 9 6 - 13
1S630 - - 4 | 15
ISL3 | - - - 5
Mutator - 5 - - -
Tn3 - - | 2 3
Unclassified 4 16 35 7 32
Transposase
Cutoff* 15 6 - - -
Total 29 69 143 12 103

I Determined from annotationing transposase ORFs for EAN and Ccl3. ACN transposases were reannotated after the BLAST search to show IS
family diversity of transposase ORFs, as all transposases were originally annotated as "putative." Transposases in EAN and Ccl3 were not

reannotated.

2 Transposase ORFs that hit other ORFs in EAN and Ccl3 but not in ACN.

3 Transposase ORFs that hit other ORFs in ACN and one of the other two strains, but not in all three Frankia strains.
4The number of transposase ORFs in each strain that did not hit any sequence in the nr database with an E-value smaller than 10-'5. In all cases this

was due to a sequence size of less than 80 amino acids.

strain EAN. A complete listing of the results of the BLAST
searches against the nr database can be found in Addi-
tional File 1: papersupplemental1.xls.

Interestingly, the largest shared group was composed of
80 transposase sequences in Ccl3 that retrieved sequences
in EAN (Figure 1). The second largest group was com-
prised of 62 ORFs in EAN that hit ORFs in CcI3, making
142 total ORFs shared by CcI3 and EAN. Altogether, more
than 67% of all Frankia sp. transposases are present in
groups shared between strains CcI3 and EAN (Figure 2).
The ACN genome contains only 9% of the total number
of Frankia sp. transposases but shares most (18/33; 55%)

of those ORFs with the other two strains. Eight (24.4%)
transposase ORFs in ACN are unique to the strain, com-
pared with 38% (69) of the transposase content of EAN.
ACN also lacks the diversity of IS content of the other
strains with members of only nine IS families. The major-
ity of novel transposase ORFs found in strain ACN are
putative; suggesting that they may be remnant members
of other IS families. Ten of the eleven members of the 1S3
family in strain EAN have no external BLAST hits at the 10
15 cut-off value.

In order to screen for transposases that may have been

more recently horizontally transferred, we compared
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Figure |

Transposase ORF distribution in Frankia sp. Putatively
shared ORFs were found using BLAST searches of each
transposase ORF against the non-redundant (nr) database.
Numbers on the arrow heads closest to the strain buttons
indicate the number of transposase ORFs that it had in each
homologue category. Double headed arrows represent
ORFs that had BLAST hits between two strains of Frankia sp.
The three innermost arrows pointing away from the button
labelled "all" indicate the number of transposase ORFs from
each strain that hit ORFs in both of the other strains. The
three outermost arrows represent the number of ORFs in
each strain that only had BLAST hits in other species. The
numbers inside the buttons for each strain indicate the trans-
posase ORFs that had no BLAST hits above an E-value of 10-
15

transposase ORF G+C% to the results of the BLAST
searches. The three Frankia genomes have a combined
average G+C% of 71.28% [5], so we considered a G+C%
of less than 65% to be significantly below the average.
Using this cut-off value, we identified 5, 6 and 23 trans-
posase ORFs that had significantly lower G+C content in
strains CcI3, ACN and EAN respectively. Members of the
IS3 family that are novel to strain EAN make up 39% (9)
of the 23 low G+C% transposase ORFs identified in its
genome. This fact supports the notion that a majority of
the IS3 family transposases were a horizontal acquisition
by strain EAN. Excluding the IS3 family in strain EAN, rel-
atively few strain specific transposase ORFs had low G+C
percentages. Only three other transposases (one per
strain) had a low G+C percentage in addition to no exter-
nal BLAST hits. Seven of the 23 low G+C transposases
were identified as being shared by all three strains, with 1,
2, and 4 ORFs present in strains CcI3, ACN and EAN
respectively. All seven ORFs were annotated as IS4 trans-
posases with an average length of 390 amino acids.

PSI-TBLASTN Analysis of Genomes
Position specific scoring matrices (PSSM's) were gener-
ated for the five major IS families found in the original

http://www.biomedcentral.com/1471-2164/10/468

Ccl3

EAN

Figure 2

Percent of shared IS content in Frankia sp. Shared
transposase ORFs as a percent of the total number of trans-
posases annotated in Frankia sp (364 ORFs). The majority of
ORFs (~67.3%) are shared by strains Ccl3 and EAN. Only
29.2% of all transposase ORFs are found in only one strain,
with 19.1% unique to EAN alone. This distribution suggests
that the majority of transposase ORFs have been maintained
by and have proliferated within the Frankia strains despite
geographic isolation.

ACN

annotation of the three Frankia genomes. Amino acid
sequences of all IS110, 1S4, 1S605, 1S630 and IS66 trans-
posases found in the Frankia genomes were used to create
five separate PSSM's for each major family. To reduce
potential false positives, only two iterations of the PSI-
BLAST algorithm were run against the non-redundant
database for each PSSM. Each PSSM was then used in sep-
arate TBLASTN searches against the nucleotide sequence
of each genome. The results of these searches uncovered
36% (53) and 42% (77) more transposases or their rem-
nants in strains CcI3 and EAN, respectively (Table 2).
Only four putative transposase remnants were identified
in strain ACN.

Several transposase remnants were identified in intergenic
regions, including 21 fragments in CcI3 and 32 in EAN.
The remaining putative transposases were previously
annotated ORFs that were reclassified as transposases by
the PSI-TBLASTN search, with 45 in EAN and 33 in CcI3.
One OREF reclassification of note is the reassignment of a
family of cytosine-5-methyltransferases as transposases of
the IS605 family in EAN (see Additional File 2: PsiBlast-
Supplemental.xls). Conserved domain feature identifica-
tion using pre-recorded data on the NCBI site reveals that
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Table 2: Results of PSI-TBLASTN for top 5 transposase families

Category ACN Ccl3 EAN
Initial number ! 13 102 98
Hits Identified 17 160 170
True Positives 17 154 165
Intergenic remnants (by PSI-BLAST) 2 2 21 32
Reannotated 3 2 32 45
False Positives 4 0 6 5
False Negatives 0 0 0

' Number of original annotated transposase ORFs from the five major
IS families (IS4, IS110, 1S66, 1S630 and 1S605) that were used in the
PSI-BLAST.

2 Hits that involved a majority of nucleotides that were in between
annotated ORFs.

3 ORFs that were not initially annotated as transposases of the PSSM
IS family but were hits of the PSI-BLAST search. This included ORFs
that were annotated as putative transposases.

4 Hits that were lower than 40% ID and/or less than 50 bp in length.

this family of methyltransferases contains two trans-
posase-associated protein domains and no methyltrans-
ferase domains. The presence of transposase protein
domains in these ORFs supports their reclassification as
IS605 transposases.

Due to the stringency of the search, each novel putative
transposase was identified by only one PSSM; however,
some hits from the search gave different nucleotide coor-
dinates for the same putative transposase ORF that varied
by as much as 100 bp. The hit with the highest percent
identity to the query sequence was retained in those situ-
ations. False positives were identified as sequences having
less than 50 bp of length plus less than 40% amino acid
identity to the query sequence. Five false positives were
identified in strain EAN and six in strain CcI3. All origi-
nally annotated transposases of the five major IS families
used in the PSI-TBLASTN search were identified, resulting
in no false negatives. Altogether, a total of 37 transposase
ORFs plus remnants were identified in ACN, 201 were
identified in CcI3 and 261 in EAN. The complete list of
reannotated ORFs and truncated derivatives can be found
in Additional File 2: PsiBlastSupplemental xls.

Identification of Large Chromosome Rearrangements

Using the MAUVE genome alignment program [32] we
identified 8 and 13 Large Chromosome Rearrangements
(LCRs) in strains CcI3 and EAN respectively using ACN as
the reference (Additional File 3: PaperSupplemental3.xIs).
We defined the LCRs as regions greater than 5 kb common
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to all three strains with a maximum of a 100 bp gap that
were out of order or inverted compared to homologous
regions in strain ACN. A preliminary GRIMM (Genome
Rearrangement In Man and Mouse) analysis [33] of our
original MAUVE alignment projected that ACN had the
fewest rearrangement events from the node of the trifurca-
tion (data not shown).

Interestingly, nearly all LCRs in strains CcI3 and EAN
occur either near the origin of replication of the chromo-
some or at its terminus. Inversions at the terminus can be
explained by recombinase-mediated homologous recom-
bination [34], however, overlays of transposable element
density maps on the genomes revealed IS clustering near
these regions as well, potentially linking terminus inver-
sions to intra-chromosomal recombination of mobile
genetic elements (Figure 3). Despite evidence of clustering
in these regions, identical transposase ORFs do not flank
any identified LCRs as was found with a large genome
inversion mediated by IS905 in Lactococcus lactis [35]. Chi
square analysis of transposase gene content within each
defined LCR segment revealed no significant difference
from expected numbers of ORFs for a region of the same
size (Additional File 3: PaperSupplemental3.xls). This
suggests that the LCRs themselves do not serve as hotspots
for IS element insertion, despite their rearrangement with
respect to strain ACN. Instead, they appear to be relatively
stable genomic islands that have simply moved to new
loci within each genome.

Insertion Sequence Clustering

Previous heuristic analyses of the three Frankia genomes
found more transposase ORFs in regions of each genome
lacking synteny with the others [5]. In order to analyze
these IS hotspots, a sliding window was used to count the
number of transposase ORFs present every 250 kb. All
transposase positions found in our PSI-TBLASTN search
were used in the data sets for each organism, as the data
recovered from that analysis most likely indicates recent
as well as current positions of IS elements in the genomes.
To assess statistically the distribution of IS elements, we
used a probability mass function (pmf) derived from the
average number of transposases found per window for
each genome. That number varied from 3, to 12 to 10
OREFs in ACN, CcI3, and EAN respectively.

Strain ACN was found to have significant clustering of
transposase ORFs near 3 and 5 Mb (Figure 3b). Despite
the relatively smaller dataset compared to the other two
strains, these clusters in ACN represented 9 and 11 trans-
posases in a 250 kb window giving their clustering a
greater than 99% confidence. The ACN genome also has
significant clustering of transposase ORFs near the termi-
nus mirroring the heterogeneity of the terminus found in
all three genomes.

Page 5 of 13

(page number not for citation purposes)



BMC Genomics 2009, 10:468

http://www.biomedcentral.com/1471-2164/10/468

ACN

Deleted Ccl3 ORFs per window

EAN

80

70

60

50

40

30

20

99%
95%
95%
99%

Deleted Ccl3 ORFs per window

0 2 4 6
Nucleotides (Mb)

23

Ccl3

dow

Transposase ORFs per win

>
N
P

Transposase ORFs per window

w
o

[
[

N
=]

wn

o

v

o
o

[ 99%

95%

95%
N\ - 99%

1 2 3 4 5
Nucleotides (Mb)

-
N

o)l

95%i

95%)|

EAN

Transposase ORFs per window

2 4 6
Nucleotides (Mb)

40

2 4 6 8
Nucleotides (Mb)

Figure 3

Ccl3 gene deletions and IS clustering. (2) Genes that were deleted in strain Ccl3 but were present in both EAN and ACN

were plotted using a 250 kb sliding window (dark green line). (b) Transposase ORF positions (including those identified by PSI-
BLAST analysis) were plotted using a 250 kb sliding window for each strain (dark blue line). Regions of each genome that cor-

responded to significant clusters of gene deletion in strain Ccl3 are highlighted and lettered (red boxes). Confidence intervals

determined from calculation of the probability mass function are listed on the right of the graphs, with points greater than 95%
confidence in light gray boxes and points greater than 99% confidence in dark gray boxes.
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Approximately 57% of all transposase ORFs identified in
strain Ccl3 are found either near the origin, or between
the 2 Mb to 2.5 Mb region. Both of these regions have
clusters well above a 95% confidence interval, suggesting
that the clusters are not solely due to random insertion.
These regions are in proximity to LCRs in the Ccl3
genome, suggesting preferential IS insertion around these
regions may be linked with Frankia genome rearrange-
ment events. Again, the terminus of this genome serves as
a hotspot of transposase ORFs in addition to a large peak
near the 4.9 Mb region of the genome closer to the origin.
This region of the genome was found to correspond to a
potential deletion (Figures 3 and 4).

The number of transposase ORFs found in the EAN
genome dwarfs those found in the other two strains; a
clear pattern of clustering was found. Two major clusters
were near and symmetrically oriented around the termi-
nus near 3.5 and 5.5 Mb. Both clusters had a confidence
interval greater than 99%, and corresponded to breaks in
synteny with the ACN genome. The lack of synteny near
these clusters suggests that these regions may contain gene
duplicates. An increased presence of the top three dupli-
cated gene families in strain EAN near these clusters con-
firms this prediction (Table 3). The symmetrical
appearance of these clusters was striking but their signifi-
cance remains unknown.

Gene Deletion in strain Ccl3

Using a similar sliding window analysis, we mapped ORFs
present in strains EAN and ACN but deleted in strain CcI3
[5]- A comparison of this map (Figure 3a) with the trans-
posase cluster map (Figure 3b) revealed a pattern of gene
deletion corresponding to some clusters of transposase
ORFs in the Ccl3 genome. Comparing all ORFs in these
regions revealed a general lack of synteny in all three
strains, with a notable reduction of both nucleotides and
number of ORFs in strain CcI3 in comparison to EAN.
Three such regions flanked by syntenic LCBs were selected
for a more detailed comparison of gene position and con-
tent among the three strains (Figure 4). Regions A and B
have fewer ORFs in CcI3's genome compared to ACN;
region C showed an increase in sequence over ACN. Only
two transposase ORFs were present in strain ACN over all
three regions. CcI3 had 8, 10 and 35, and EAN had 10, 7
and 14 transposase ORFs in regions A, B and C, respec-
tively.

The termini of ACN and EAN have the largest clusters of
genes deleted in CcI3; however, a general lack of synteny
among all three strains in this region precluded a neigh-
borhood analysis. In general, the largest significant cluster
of transposases from the 2 Mb to 2.5 Mb region of strain
CclI3 corresponds to regions of gene deletion.

http://www.biomedcentral.com/1471-2164/10/468

Discussion

Frankia IS content

Despite having transposase ORF's from thirteen major IS
families, relatively few are strain-specific in Frankia. The
presence of diverse and numerous IS elements in a
genome is often believed to reflect horizontal gene trans-
fer [6]. Given the different geographic origins of the three
strains [1,5] and the sequence similarity of their trans-
posase ORFs, it is unlikely that recent horizontal gene
transfer is solely responsible for the proliferation of trans-
posases in strains EAN and CclI3. Instead, it appears that
the majority of transposase ORFs are descended from
ones that were present in a common ancestor that
diverged with the emergence of actinorhizal plant families
approximately 100 million years ago [36]. Some prolifer-
ated or were maintained in lineages leading to strains EAN
and CcI3, but some were lost from the ACN lineage. One
family of transposases, the 1S3 transposases of EAN, and a
small subset of IS4 transposases are clearly horizontally
acquired. These 16 ORFs only comprise ~5% of the total
number of transposases annotated. The general lack of
novel IS elements is further supported by the near absence
of unique transposase ORFs in ACN.

Remnant transposases, as detected through the PSI-
TBLASTN method, indicate past IS activity. The low ratio
of annotated IS elements to newly discovered fragments
in strain ACN suggests that IS movement was selected
against in this lineage. By contrast, the EAN genome has at
least 81 transposase remnants, suggesting that transposi-
tion and/or duplication are common and ongoing. Trans-
posase ORFs are associated with heterogeneity and
expansion at the terminus of the EAN genome, as com-
pared to the ACN genome, as well as the large number of
LCRs identified by the MAUVE alignment. IS elements
have long been known to facilitate chromosome rear-
rangements [7,28,37,38] so breaks in synteny near identi-
fiable IS clusters are likely due to IS-mediated
rearrangements. Support for such activity outside of
observed proximity would require direct observation of
chromosome rearrangement.

Strain ACN

With only 33 identifiable transposase ORFs in a genome
of 7 Mb, the ACN genome has fewer transposases than the
other two Frankia genomes. Given the potentially delete-
rious nature of IS elements [6,7], one would expect that
transposition events would be fixed infrequently in a pop-
ulation. In phylogenetic analyses, CcI3 and ACN are more
closely related than either is to EAN [5]. Thus, the pres-
ence of nearly identical transposase ORFs in strains EAN
and CcI3, but not in ACN suggests that the common
ancestor of all three strains contained elements from
many IS families that were retained and duplicated in lin-
eages leading to EAN and CclI3 but lost in ACN. All line-
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Table 3: Number of Transposases in Breaks in Synteny
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Strain Area! Transposases? p value3 Duplicated genes*
EAN 5964668 (66%) 223 (86%) 128 x 103 262 (306) *
Ccl3 2418797 (45%) 134 (67%) 2.18 x 106 18 (28)

I The number of nucleotides in regions of the strain that did not show MAUVE alignment synteny with strain ACN in a continuous |0 kb+ stretch.
Numbers in parentheses indicate the percentage of the genome to which these stretches correspond.
2The number of transposase ORFs in the breaks in synteny. Numbers in parentheses indicate the percentage of all transposases in the strain that

were found, including those identified in the PSI-TBLASTN search.

3 P value derived from a Chi squared test of the number of transposases in the region against an expected number.
4The number of the top 3 duplicated gene family ORFs in each respective strain that were not transposases in this region. Numbers in parentheses
are the total number of duplicated genes of the three top duplicated gene families in that strain. (¥) indicates a p value less than 0.005.

ages continued to acquire novel ISs through horizontal
transfer.

Genome expansion of strain EAN

In contrast to strain ACN, 77 remnant and 182 annotated
transposases are found in the EAN genome. The trans-
posase ORFs identified in this study amount to approxi-
mately 3% of the EAN genome, and nearly 4% of the total
CDS. The high numbers of IS elements may help strains in
the EAN lineage adapt quickly to new niches. A similar
observation has been made in clinical isolates of Entero-
coccus faecium in which IS elements were implicated in
developing new subspecies that are better adapted to a
hospital environment [23]. Of the three sequenced
strains, members of the EAN lineage infect the broadest
range of host plant families [1]. This broad host range may
be enabled by gene duplications, and rearrangements,
driven by IS element insertion and cointegrate formation.
At present, 123 pseudogenes have been identified in the
finished assembly of the EAN genome. Similar pseudog-
ene and IS element content is found in Yersinia pestis,
another dynamic genome [39].

IS clusters determined by our sliding window analysis
may indicate genome instability in certain regions of the
EAN genome. At least two statistically significant IS clus-
ters were identified; one is almost entirely composed of
transposases identified by the PSI-TBLASTN search (red
bars in Figure 5). We also identified regions of the EAN
genome that have expanded by gene duplication (Figure
4). An increased number of ORFs and other nucleotide
sequence in regions that are comparatively deleted in
strain CcI3 suggest that such regions in the Frankia
genomes have been subject to major genome polymor-
phisms.

Genome reduction of strain Ccl3

The genome of Ccl3 appears to be undergoing genome
ratcheting coincident with specialization within a narrow
range of plant hosts and soil types [5]. IS clusters, consist-
ing largely of those present in the common ancestor of the

three Frankia strains, may have promoted the deletion of
large regions around the terminus during homologous
recombination (Figure 3). This is evidenced by the paucity
of non-transposase gene duplicates in strain CcI3 com-
pared to strain EAN and ACN [5], as well as by the pres-
ence of 53 fragmentary transposases identified by the PSI-
TBLASTN analysis. Analysis of regions of the CcI3 genome
that have lost ORFs with respect to the other two strains
has shown a loss of DNA in two regions of the genome
identified from the sliding window plot (Figure 4). The
presence of clusters of transposase ORFs in these regions
suggest that the IS elements were either responsible for the
deletion events, or capitalized on the fragility of this
hotspot. Analysis of the Frankia proteome using LC MS/
MS has recovered peptide fragments associated with five
transposases present in deletion windows A (3) and B (2).
Peptides of nine other transposase present at the terminus
of the CcI3 genome were also identified (J.E. Mastronun-
zio and Y. Huang. personal communication). Given that
transposases can have numerous barriers to expression
during transcription and translation [17,40,41], finding
transposase peptides suggests that transposases remain
active in the Frankia genomes.

Most transposase ORFs in CcI3 have homologs in the
other strains, so the emergence of a strain of Frankia that
infects plants from a single family appears to have been
accomplished primarily through the activity of native
mobile genetic elements. Whereas EAN enjoys a large host
plant family range and a geographically diverse distribu-
tion, CcI3's original native range incorporates parts of
Australia and Pacific islands [42]. Without diverse selec-
tive pressures, intramolecular recombination may have
led to the reduction of the CcI3 genome and a narrower
host range [43].

Conclusion

In the three sequenced Frankia genomes, IS proliferation
has occurred largely without the recent input of IS ele-
ments from horizontal gene transfer. Clustering of exist-
ing transposases in the genomes is statistically significant
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Frankia sp. genome alignment with transposase clustering. MAUVE backbone files were imaged using the Genvision™
Adobe lllustrator® plug-in to show distinct LCR events. The top of each genome's histogram represents syntenic LCB's that are
in the same order with respect to the ACN genome. The middle layer represents LCB's that are inverted with respect to
ACN. The bottom histogram shows positioning of originally annotated (black) and PSI-BLAST determined (red) transposase

OREFs in each genome.

and corresponds to regions lacking synteny with the other
two strains. This finding suggests that such sequences
within strains CcI3 and EAN have contributed to genome
contraction and gene duplication events respectively.
While it may seem contradictory to propose that IS ele-
ments have catalyzed both expansion and reduction
within the Frankia genomes, selective pressures in con-
junction with environmental niche availability appear to
be nudging the genomes in opposite directions.

Methods

Sequence Manipulation

The annotations and amino acid sequences for the trans-
posase genes for Frankia strains Ccl3 [gen-
bank:CP000249], EAN [genbank:CP000820] and ACN
[genbank:CT573213] were obtained from the NCBI Gen-

bank website http://www.ncbi.nlm.nih.gov/. A useful

resource for IS classification and nomenclature is the
ISfinder website http://www-is.biotoul.fr/ but Frankia 1Ss
are only partially classified in the most recent version.
FASTA files of Frankia transposase amino acid sequences
obtained from Genbank were used in a BLAST [44] search
of the non-redundant (nr) protein database. The E-value
cutoff was set at 10-15in order to account for smaller trans-
posase sequences. Reciprocal hits of the smaller trans-
posase amino acid sequences often generated E-values of
less than 10-20,

Only the amino acid sequence of each transposase ORF
was used due to the actinobacterial tendency to replace
the third base pair of each codon with a guanine or cyto-
sine residue [1,4]. This tendency also prevented a dn/ds
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analysis of the transposase orfs as is traditionally used in
studies of this type to determine purifying selection
against transposable elements [45]. Only annotated trans-
posase orfs were used in this analysis. Inverted repeats
were also omitted from the analysis as they do not con-
tribute to the amino acid sequence of the transposase pro-
tein.

Inverted Repeat Identification

IS element inverted repeats were identified using the
Inverted Repeat Finder (IRF) program version 2.17 http://
tandem.bu.edu/cgi-bin/irdb/irdb.exe[46]. Initial IRF
processing was performed on the genomes of the three
Frankia strains CcI3, ACN14a and EAN1 using the param-
eters 2, 3, 5, 40 (match, mismatch, indel, minimum
score). The k-tuple values used in this initial processing
corresponded to 500 for the T4 tuple class, 2000 for the T5
tuple class and 10000 for the T7 tuple class. The "looka-
head test" and the "third alignment going inwards"
options were also selected for the genome processing in
order to more stringently identify IR sequences.

Identification of Putative or Fragmentary IS Elements
Fragmented IS elements were identified using a PSI-
TBLASTN approach [47,48]. Position specific scoring
matrices (PSSM's) were created using the amino acid
sequences of annotated Frankia sp. transposases as queries
in BLAST searches against the nr database in two PSI-
BLAST iterations. Separate PSSM's were made for each
annotated IS family. Searches were then performed on a
six-frame translation of the nucleotide sequence of each
respective genome using the TBLASTN program. Results
were sorted based on sequence percent identity to the
query. Hits with percent identities lower than 30% were
discarded, as were hits with less than 50 bp in sequence
length.

Multiple Genomic Alignments

Genomes were aligned using the MAUVE genome align-
ment program version 2.1.1 [32]. Original alignment of
the genomes was done with a minimum backbone setting
of 100 bp. Local colinear block (LCB) weight of this align-
ment was increased until only 29 LCB's were identified by
the program. LCB order numbers were then input to the
GRIMM web server for rearrangement modeling [33] to
determine which genome had fewer rearrangement events
from the node of the trifurcation. Strain ACN was deter-
mined to have fewer LCR events and was used as an align-
ment standard. Subsequent MAUVE alignment of the
genomes used a minimum backbone of 1200 bp, with a
500 bp minimum island value to eliminate spurious LCB
assignments. Backbone and island files were visualized
using the Genvision plugin for Adobe Illustrator®.

http://www.biomedcentral.com/1471-2164/10/468

Statistical Correlation for IS and Gene Deletion Clustering
A 250 kb sliding window was used to determine the total
number of elements present within each window of the
genomes (accounting for their circular chromosomes).
The nucleotide mid-point of each element was used as the
position of the element. For ease of manipulation, only
window positions where there were changes in the
number total of features were used to generate the distri-
bution figures. Using the average number of elements per
window, the probability of finding particular number of
elements under a Poisson distribution was determined by
using the probability mass function (pmf).

pmf = Ake™ | k!

Where "4" is the average number of elements per window
and "k" is the number of elements in a given interval.
Genes that were predicted to have been deleted in strain
CcI3 yet were still present in both ACN and EAN were
mapped using another 250 kb sliding window. Windows
in which the number of CcI3 deleted genes rose above the
upper 99t percentile in either ACN or EAN were com-
pared against MAUVE alignments of all three genomes. If
any region had a significant cluster of deleted genes and
was found between syntenic LCB's, it was depicted in Fig-
ure 4. Three such regions were identified, despite other
regions of significant clustering of deleted genes.
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