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Abstract
Background: SnoRNAs represent an excellent model for studying the structural and functional evolution
of small non-coding RNAs involved in the post-transcriptional modification machinery for rRNAs and
snRNAs in eukaryotic cells. Identification of snoRNAs from Neurospora crassa, an important model
organism playing key roles in the development of modern genetics, biochemistry and molecular biology
will provide insights into the evolution of snoRNA genes in the fungus kingdom.

Results: Fifty five box C/D snoRNAs were identified and predicted to guide 71 2'-O-methylated sites
including four sites on snRNAs and three sites on tRNAs. Additionally, twenty box H/ACA snoRNAs,
which potentially guide 17 pseudouridylations on rRNAs, were also identified. Although not exhaustive,
the study provides the first comprehensive list of two major families of snoRNAs from the filamentous
fungus N. crassa. The independently transcribed strategy dominates in the expression of box H/ACA
snoRNA genes, whereas most of the box C/D snoRNA genes are intron-encoded. This shows that
different genomic organizations and expression modes have been adopted by the two major classes of
snoRNA genes in N. crassa . Remarkably, five gene clusters represent an outstanding organization of box
C/D snoRNA genes, which are well conserved among yeasts and multicellular fungi, implying their
functional importance for the fungus cells. Interestingly, alternative splicing events were found in the
expression of two polycistronic snoRNA gene hosts that resemble the UHG-like genes in mammals.
Phylogenetic analysis further revealed that the extensive separation and recombination of two functional
elements of snoRNA genes has occurred during fungus evolution.

Conclusion: This is the first genome-wide analysis of the filamentous fungus N. crassa snoRNAs that aids
in understanding the differences between unicellular fungi and multicellular fungi. As compared with two
yeasts, a more complex pattern of methylation guided by box C/D snoRNAs in multicellular fungus than
in unicellular yeasts was revealed, indicating the high diversity of post-transcriptional modification guided
by snoRNAs in the fungus kingdom.
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Background
Eukaryotic rRNAs contain a large number of nucleotide
modifications including 2'-O-methylation and pseudou-
ridylation which are directed by box C/D snoRNAs and
box H/ACA snoRNAs, respectively [1,2]. These modifica-
tions are usually found in the conserved core regions of
rRNAs, and they play important roles in ribosome func-
tion [3]. SnoRNAs are among the most numerous and
functionally diverse non-coding RNAs currently known
[4,5], existing widely in eukaryotes including human [6-
8], plants [9-11], yeasts [12-15] and protists [16-19], as
well as in Archaea [20]. This indicates that they are ancient
molecules that arose over 2-3 billion years ago [21]. In
addition to guiding the posttranscriptional modifications
of rRNAs in eukaryotes and Archaea, snoRNAs also inter-
act with spliceosomal RNAs [22], tRNAs [23,24], SL RNAs
in trypanosomes [25], and at least one brain-specific
mRNA in mammals [26]. Recently, snoRNA U50 was
found to be a candidate tumor suppressor gene in prostate
cancer [27]. The existence of substantial numbers of
orphan snoRNAs indicates that snoRNAs also participate
in diverse biological processes that remain to be identified
[4].

SnoRNAs exhibit canonical sequence motifs and struc-
tural features. Box C/D snoRNAs carry the conserved box
C (RUGAUGA, where R can be any purine) and D
(CUGA) motifs near their 5' and 3' termini, respectively.
Additionally, the variants of the C and D boxes, desig-
nated C' and D' box, are usually present internally [28].
Box H/ACA snoRNAs possess a hairpin-hinge-hairpin-tail
secondary structure and two conserved sequence motifs,
box H and box ACA. The hinge region contains the H box
(ANANNA) and the tail consists of the ACA box located 3
nt before the 3' end [29,30]. The snoRNAs exert their func-
tions by base-pairing with their targets and recruit related
proteins to the sites of modification [31]. Box C/D snoR-
NAs can form 10-21 basepairs (bp) with multiple cellular
RNAs. The methylated nucleotide in the target RNA is usu-
ally positioned 5 nt upstream of the D or D' box of the
snoRNAs, the so called "D/D'+5" rule [6]. In box H/ACA
snoRNAs, two short antisense sequences in one or both of
the two hairpin domains form 9-13 basepairs with rRNA
sequences that flank the target uridine to be converted to
pseudouridine. The pseudouridine is always located 14 to
16 nt upstream from the H box or the ACA box of the
snoRNA [29,30]. These structural and functional features
of box C/D and H/ACA snoRNAs provide the parameters
for identifying snoRNAs and their function.

The genomic organization of snoRNA genes displays great
diversity in different organisms. In vertebrates, almost all
snoRNA genes are located in the introns of host genes,
with a few exceptions, such as U3 which are independ-
ently transcribed [4]. In plants and trypanosomatids,

snoRNA genes are present in polycistronic clusters which
encode both C/D and H/ACA snoRNAs [9,17]. A particu-
lar genomic organization, the intronic gene cluster, was
first found in rice and then in Drosophila melanogaster
[32,33]. Moreover, a unique genomic organization (dicis-
tronic tRNA-snoRNA genes) has been characterized exclu-
sively in plants [34]. The genomic organization of
snoRNA genes differs largely in fungi. In the budding
yeast Saccharomyces cerevisiae, apart from seven intronic
snoRNA genes, the majority of snoRNA are encoded by
independent genes as well as five polycistronic snoRNA
gene clusters [12]. In contrast, most box C/D snoRNA
genes from the fission yeast Schizosaccharomyces pombe are
intron-encoded. This raises the question about the
genomic organization and expression modes of snoRNA
genes in the fungus kingdom. It is well known that multi-
cellular fungi dominate the population of fungi. However,
little is known about snoRNAs in multicellular fungi. It
was thus of interest to determine the snoRNA genes from
a multicellular fungi to shed light on these characteristics.

Neurospora crassa is a filamentous fungus sharing key com-
ponents with animal cells in cellular physiology and
genetics, contributing to the fundamental understanding
of the genome defense system, DNA methylation, post-
transcriptional gene silencing, cellular differentiation and
development [35]. As a model eukaryote, the genome of
N. crassa has been completely sequenced [36]. However,
only four box C/D snoRNAs, snR39, snR52, snR60, snR61
(Rfam) were annotated in N. crassa . Recently, we identi-
fied three U3 snoRNA genes from N. crassa; each of them
is independently transcribed and contains a small intron
[37](Table 1). It is evident that the majority of the N.
crassa snoRNAs remain to be identified. Meanwhile, a
comparative genome analysis between yeast and multicel-
lular fungi will provide insights into the evolution of
snoRNA genes in the fungus kingdom. In this study, by
combining computational and experimental methods, an
extensive analysis of snoRNA genes from N. crassa was
performed. Here, we present the first comprehensive list
of two major families of snoRNAs from N. crassa , and fur-
ther discuss the characteristics and evolutionary signifi-
cance of the snoRNA genes.

Results
Identification of 55 box C/D and 20 box H/ACA snoRNAs 
from N. crassa
We initially carried out the genome-wide analysis of snoR-
NAs from N. crassa by employing the snoscan [12] and
snoGPS programs [13]. From this database search, 89 box
C/D and 131 box H/ACA snoRNA candidates were pre-
dicted (see Methods). To validate the snoRNA candidates
and identify more novel snoRNAs from N. crassa , the box
C/D and box H/ACA snoRNA-specific library of N. crassa
were respectively constructed from mixed-stage mycelium
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Table 1: Box C/D snoRNAs identified in N. crassa

Homologs
Namea Lenb Chrc Expd Target site(s) Matche G pf S. p S. c A. t H. s Locationg

Nc CD1 125 III C, N 26S-Am2242 10/0 D' - snR13 - - Intron
Nc CD2 99 V C 26S-Um2379 13/0 D' snR66 snR66 - - IR
Nc CD3 90 I C, N 26S-Um2840 14/0 D' - - snoR29
Nc CD4 81 V C, N 18S-Cm49 13/0 D' - - - - Intron
Nc CD5 80 VI C 26S-Am856 10/0 D snR60-I snR72 snoR72Y - Intron

26S-Um2383 12/0 D' snR78 snR78 snoR37 U52
Nc CD6 76 I C 26S-Um2687 11/0 D' snR51-I snR51 - U41 Exon
Nc CD7 84 VI C 26S-Gm2250 12/0 D' snR75 snR75 U15 U15 Intron
Nc CD8 85 I C 26S-Gm2751 13/0 D' snR48 snR48 - U60 IR
Nc CD9 81 I C 18S-Gm1122 14/0 D snR41-II snR41 - - Intron
Nc CD10 104 I C, N 26S-Um1039 12/0 D - - - - Intron

26S-Am3264 13/0 D' - - - -
Nc CD11 79 I C 18S-Am793 13/0 D' snR53 snR53 snoR53Y - Intron

U6-Am47 11/0 D' snR53 - - mgU6-47
26S-Am356 15/0 D - - - -

Nc CD12 85 VI C 26S-Cm2159 10/0 D' - snR76 Ath119b HBII-180 Intron
Nc CD13 84 VI C 18S-Am538 12/0 D snR41-I snR41 snR41Y U62A/B Intron
Nc CD14 75 IV C 26S-Am2288 10/0 D' - - U79 U79 Intron
Nc CD15 73 I C, N 18S-Am159 11/0 D' - - - - Intron

tRNAThr-Um114 12/1 D - - - -
Nc CD16 122 II C 26S-Gm2357 13/0 D' snR81 snR190 - HBII-99 Intron

26S-Gm1907 D' - - - U50
Nc CD17 73 I C 18S-Am154 13/0 D - - - U45A/C Intron

26S-Gm2875 12/0 D' - - snoR34 HBII-210
Nc CD18 88 V C, N 18S-Cm1004 11/0 D snR79 snR79 - - Intron
Nc CD19 75 III C 18S-Gm1423 13/0 D' snR56 snR56 snoR19 U25 Intron
Nc CD20 75 VI C, N 26S-Um2372 13/0 D snR88 - snoR58 - Intron
Nc CD21 69 VI C 18S-Am28 13/0 D' snR74 snR74 U27 U27 Intron
Nc CD22 79 I C 26S-Um1866 14/0 D' snR62 snR62 U34 U34 Intron

18S-Um893 11/0 D - - - -
Nc CD23 72 V C, N 26S-Gm2773 11/0 D' snR38 snR38 snoR38Y snR38 Intron
Nc CD24 75 VI C 18S-Um575 13/0 D' snR77 snR77 snoR77Y HBII-135 Intron

U5-Am62 15/0 D - - - -
Nc CD25 81 I C, N 26S-Am846 13/0 D' - - - - Intron
Nc CD26 77 I C U2-Gm183 11/0 D' - - - - Intron
Nc CD27 85 VI C 26S-Am2904 15/0 D' snR71 snR71 U29 U29 Intron

26S-Cm2906 15/0 D' snR69 snR69 snoR69Y -
Nc CD28 78 II C 26S-Am1845 12/0 D' - - snoR33 U95 Intron

26S-Am1859 14/0 D - - - -
Nc CD29 101 II C U2-Am31 16/0 D - - - SCARNA9 Intron

5.8S-Am42 14/0 D' - - snoR9 -
Nc CD30 84 I C, N 18S-Cm584 12/0 D' - - - - IR
Nc CD31 101 VI C, N 26S-Cm2917 13/0 D' snR73 snR73 U35 U35 Intron
Nc CD32 82 VII C 18S-Am161 11/0 D - - snoR18 U44 Intron

18S-Um167 11/0 D' - - snoR122 U45A/B
Nc CD33 102 III C 26S-Am2218 13/0 D snR63 snR63 U46 U46 Intron
Nc CD34 69 IV C 18S-Um1265 12/0 D' snR55 snR55 snoR34 U33 Intron
Nc CD36 90 I C 26S-Cm2299 10/0 D' snR64 snR64 snoR44 U74 Intron
Nc CD37 97 II C Cleavage U14 U14 U14 U14 Intron

18S-Cm411 15/0 D U14 U14 U14 U14
Nc CD38* 80 IV C 26S-Am1114 12/0 D' snR61 snR61 U38 U38 Intron

26S-Am2858 10/0 D' - - - -
Nc CD39 73 I C 26S-Am897 13/0 D' snR83 - - - Intron

26S-Am375 11/0 D - - - -
Nc CD40 107 IV C, N 26S-Am2062 11/0 D' - - - - Intron
Nc CD41 72 II C 18S-Gm1423 12/0 D' snR56 snR56 snoR19 U25 Intron

26S-Cm1489 12/0 D - - U49 mgh28S-2409
Nc CD42* 92 II N, R 18S-Am417 12/0 D snR52 snR52 - U83 Intron
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and spores using anchored primers (18, and see Meth-
ods). To exclude the highly abundant clones and enrich
the novel RNA species in our analysis, the radiolabelled
oligonucleotides were used to screen the cDNA libraries
(~1800 clones in the box C/D and ~ 4000 clones in box
H/ACA snoRNA libraries). Subsequently, a total of 338
and 278 clones from box C/D and box H/ACA snoRNA
libraries were sequenced, respectively. Taken together, 65
snoRNAs including 45 box C/D (Table 1) and 20 box H/
ACA snoRNAs (Table 2) were identified. Twenty eight box
C/D snoRNAs from the cDNA library were covered by the
snoscan results. However, only three H/ACA snoRNAs
overlapped with snoGPS results. Because the data from
the computational search of H/ACA snoRNAs may
include excessive false-positive candidates, they were not
included for further analyses in this study.

The snoRNA candidates identified by cDNA cloning or the
snoscan program were subsequently confirmed by north-
ern blot and/or reverse transcription analyses. The expres-
sion of 27 box C/D and all 20 box H/ACA snoRNAs were
positively detected as expected (Figure 1 and 2). Among
these snoRNAs, the sequence of CD31 snoRNA obtained
from the cDNA cloning appears uncompleted; it corre-

sponds to the second half of CD31 full-length which is
further validated by the northern blotting.

Together, through the combination of computational
analysis and construction of the specialized cDNA librar-
ies, 55 box C/D and 20 box H/ACA snoRNAs were identi-
fied and all the snoRNAs are denominated according to
the order of identification (Table 1 and 2).

In most cases (86%) the C and D boxes in snoRNAs are
highly conserved when compared to the consensus
sequence (UGAUGA and CUGA, see Additional file 1).
However, the C' and D' box are nonconserved and exhibit
much more sequence-degeneracy than their C and D box
counterparts. In some instances, the C' and D' box cannot
be unambiguously inferred as a result of the absence of
the functional region. Generally, the box C/D snoRNAs
from N. crassa are similar to their metazoan and yeast
counterparts in size. However, the sizes of box H/ACA
snoRNAs from N. crassa are peculiar. Almost all of them
are larger than 160 nt (Figure 2), reminiscent of some
irregular box H/ACA snoRNAs in S. cerevisiae. These obser-
vations show that the N. crassa snoRNAs have their own
unique sequence and structural features (see Additional
file 2 and 3).

Nc CD43 96 VI N, R 18S-Gm559 11/0 D' snR80 - - - Intron
Nc CD44 85 IV N, R 18S-Um1227 15/0 D' snR82 - snoR14 HBII-55 Intron

26S-Cm776 11/0 D - - - -
Nc CD45 102 I N, R 26S-Um3021 11/0 D - - - - IR
Nc CD46A 89 VII N, R 26S-Am635 11/0 D' U18 U18 U18 U18 Intron
Nc CD46B 89 I N, R 26S-Am635 12/0 D' U18 U18 U18 U18 Intron
Nc CD47* 75 III N, R 26S-Gm785 16/0 D snR39b snR39b snR39BY snR39b Intron
Nc CD48* 91 V N, R 26S-Am797 14/0 D' snR60-I snR60 U80 U80/U77 Intron

26S-Gm888 17/0 D snR60-II snR60 U80 U80
Nc CD49 91 I N, R 26S-Um2682 12/0 D - snR67 - - Intron

18S-Am971 13/0 D' snR54 snR54 U59 U59A/B
Nc CD50 98 I N, R 26S-Cm1418 15/0 D' U24 U24 U24 U24 IR
Nc CD51 87 VII N, R 26S-Am1430 13/0 D' U24b U24 U24 U76 Intron
Nc CD52 177 VII C, N tRNA-Am43 11/0 D' - - - - IR

tRNALeu-Am90 12/0 D' - - - -
Nc CD53 212 IV C, N Orphan - - - - IR
Nc CD54 125 V C, N 26S-Um667 10/0 D - - - - IR
Nc CD55 137 IV C, N Orphan - - - - Intron
Nc U3A 262 I C, N Cleavage - - - - RE
Nc U3A-2 184 I C, N - - - - RE
Nc U3A-3 75 I C, N - - - - RE
Nc U3B 270 I C, N Cleavage - - - - RE
Nc U3B-2 191 I C, N - - - - RE
Nc U3C 275 II - Cleavage - - - - RE

a The box C/D snoRNAs were numbered according to the order of identification. b Len, cDNA length of the snoRNA. c Chr, chromosomal location 
of snoRNA gene. d Exp, expression situation. C, N, R, snoRNA was identified by cDNA library, northern blotting analysis, and reverse transcription 
analysis, respectively. e target match, (Watson-crick pairs+G*U)/mismatch. f Gp, guide position. g IR, Intergenic region; RE, Repeat element. The 
genes marked with asterisks indicate that the genes were annotated in the Neurospora crassa database but were not detected by experimental 
methods. The data for S. p snoRNAs were cited from Luo (2004) [38] and Bi et al. (2007) [39]. A. t snoRNAs and modifications are from the plant 
database http://bioinf.scri.sari.ac.uk/cgi-bin/plant_snorna/conservation. S. c snoRNAs and modifications are from the yeast snoRNA database at 
UMass-Amberst http://people.biochem.umass.edu/fournierlab/snornadb/main.php. Abbreviation: S. p, S. pombe; S. c, S. cerevisia; A. t, A. thaliana; H. s, 
H. sapiens.

Table 1: Box C/D snoRNAs identified in N. crassa (Continued)
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Functional properties of the N. crassa box C/D and box H/
ACA snoRNAs
Based on the modification rules of snoRNAs [2] , 55 box
C/D snoRNAs from N. crassa were predicted to direct 71
methylations. These include 64 methylations on rRNAs
which comprise 43 methyls on 26S rRNA, 20 methyls on
18S rRNA and one methyl on 5.8S rRNA (see Additional
file 4A). The remnant seven methylations consist of four
methyls on snRNAs and three methyls on tRNAs (see
Additional file 4B and 4C). Furthermore, the structure and
function elements of U14 which participate in the
processing of pre-rRNA were unambiguously identified.
Interestingly, two different methylated sites were pre-
dicted to be guided by the same functional element of a
single snoRNA CD27. Two box C/D snoRNAs (CD53 and
CD55) lack the sequences complementary to either rRNAs
or snRNAs and therefore belong to orphan snoRNAs.
Fourteen box H/ACA snoRNAs were predicted to guide 17
pseudouridine sites of rRNAs (see Additional file 5), and
no pseudouridine sites on snRNAs were predicted. The
remaining six box H/ACA snoRNAs were also classified
into an orphan snoRNA family lacking functional region
complementary to rRNA, tRNA or snRNA. A different

modification pattern appears in N. crassa as compared to
the two yeasts S. cerevisiae, and S. pombe (see discus-
sion)[38,39].

Interestingly, a novel snoRNA, CD29, possesses two guide
elements that can form duplexes with U2 snRNA and 5.8S
rRNA for 2'-O-methylation. Primer extension mapping of
2'-O-methylated nucleotides of the U2 snRNA and 5.8S
rRNA in the presence of low concentration of dNTPs
resulted in stop signals at the G32 and A43 residues, indi-
cating that U2-A31 and 5.8S-A42 are methylated (Figure
3). We have identified cognates of CD29 in other filamen-
tous fungi, however, these cognates only possess the guide
sequence for the methylation of U2 snRNA. This suggests
that CD29 evolves from the snoRNA with a single guide
function. This is reminiscent of the human small Cajal
body-specific RNAs (scaRNAs) that can guide modifica-
tion of the RNA polymerase II-transcribed snRNAs such as
U2 snRNA. The comparative analyses revealed that CD29
and its homologs in fungi have one functional element
similar to that of human SCARNA9 which was first known
as Z32 (GeneBank accession no. AJ009638), and therefore
was homologous to this human scaRNA. In addition, we

Table 2: Box H/ACA snoRNA genes in N. crassa

Homologs
Namea Lenb Chrc Expd Target site (s) G pe S.p S.c A.t H.s Locationf

Nc ACA1 136 III N, R 18S-Ψ105 H - snR44 - ACA36 Intron
26S-Ψ1037 ACA - snR44 - -

Nc ACA2 159 III N, R 26S-Ψ1868 H - - - - IR
26S-Ψ2313 ACA - snR82 - -

Nc ACA3 217 V C, N 26S-Ψ401 H - - - - IR
26S-Ψ2095 ACA - snR3 - ACA6

Nc ACA4 206 II C, N 18S-Ψ463 H - snR189 - - IR
Nc ACA5 187 I C, N 18S-Ψ996 ACA - snR31 snoR5 ACA8 IR
Nc ACA6 165 VII C, N 26S-Ψ940 H - snR8 - ACA56 IR

26S-Ψ1105 ACA snR5 snR5 - -
Nc ACA7 167 V C, N Orphan ACA - - - - IR
Nc ACA8 192 II C, N 18S-Ψ1509 ACA - - - - IR
Nc ACA9 201 V C, N Orphan - - - - Intron
Nc ACA10 309 II C, N Orphan - - - - 3'UTR
Nc ACA11 176 I C, N Orphan - - - - IR
Nc ACA12 296 II C, N Orphan - - - - IR
Nc ACA13 208 I C, N Orphan - - - - IR
Nc ACA14 234 II C, N 26S-Ψ984 ACA snR5 snR5 snoR81 ACA52 IR
Nc ACA15 233 II C, N 26S-Ψ2902 H - snR37 - ACA10 IR
Nc ACA16 189 II C, N Orphan - - - - Exon+3'UTR
Nc ACA17 189 II C, N 18S-Ψ1733 H - - snoR88 - IR
Nc ACA18 186 V C, N 26S-Ψ2309 H - - - E2 IR
Nc ACA19 178 V C, N 26S-Ψ1666 ACA - - - - IR
Nc ACA20 160 V N, R 26S-Ψ2228 ACA - snR84 - Undet IR

a All the box H/ACA snoRNAs were numbered according to the order of identification. b Len, cDNA length of the snoRNA. c Chr, chromosomal 
location of snoRNA gene. d Exp, expression situation. C, N, R, snoRNA was identified by cDNA library, northern blotting analysis, and reverse 
transcription analysis, respectively. e Gp, guide position. g IR, Intergenic region. The data for S. p snoRNAs were cited from Luo (2004) [38]. "Undet" 
indicates that the snoRNA has not been identified in the human genome although the corresponding modification site was detected. Abbreviation: 
S. p, S. pombe; S. c, S. cerevisia; A. t, A. thaliana; H. s, H. sapiens.
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characterized a multi-function box C/D snoRNA, CD11,
in N. crassa . CD11 has the potential to direct a methyla-
tion in U6 snRNA, and two methylations in 18S and 26S
rRNAs, respectively (Figure 3). Interestingly, the CD11 is
also partially similar to mgU6-47 in mammals [40], but
possesses a novel function that can guide a N. crassa-spe-
cific methylation on 26S rRNA at A356.

Genomic organization and expression of the snoRNAs in 
N. crassa
The genomic organization of the snoRNA genes in N.
crassa exhibits great diversity. Among the 55 box C/D
snoRNAs, forty five snoRNA genes are intron-encoded in
protein-coding or non-coding host genes. The remaining
nine were found in the intergenic regions with a putative
polymerase II promoter upstream and appeared inde-
pendently transcribed. Meanwhile, six gene clusters that
only encode box C/D snoRNAs were identified from N.
crassa . Interestingly, an exon-encoded snoRNA (CD6)
was identified in the snoRNA gene cluster III in contrast to
another two intron-encoded snoRNAs (CD9 and CD17)
in the same cluster (Figure 5). Of 20 box H/ACA snoRNA
genes, 16 are located in intergenic regions and two are
intron-encoded. In particular, two snoRNA genes (ACA10
and ACA16) are located in the 3' UTR of two hypothetical
protein genes, one of which is similar to phosphoglycerate
mutase. Obviously, different strategies dominate in the
expression of the two families of snoRNA genes in N.
crassa .

Northern blot and RT analyses of box C/D snoRNAs from N. crassaFigure 1
Northern blot and RT analyses of box C/D snoRNAs 
from N. crassa. A. Northern blot analyses of box C/D 
snoRNAs. B. Reverse transcription analyses of box C/D 
snoRNAs generated from the computational screen. Lane M, 
molecular weight marker (pBR322 digested with Hae III and 
5'-end -labeled with [γ-32P]ATP).

Northern blot and RT analyses of box H/ACA snoRNAs from N. crassaFigure 2
Northern blot and RT analyses of box H/ACA snoR-
NAs from N. crassa. A. Northern blot analyses of box H/
ACA snoRNAs. B. Reverse transcription analyses of the 
three box H/ACA snoRNAs overlaps with the computational 
screen. Lane M, molecular weight marker (pBR322 digested 
with Hae III and 5'-end -labeled with [γ-32P]ATP.

Base-pairing model and verification of modification guided by CD11 (A) and CD29 (B)Figure 3
Base-pairing model and verification of modification 
guided by CD11 (A) and CD29 (B). Black dots indicate 
nucleotides predicted to be methylated. Lane H, control 
reaction at 1.0 mM dNTP; Lane L, primer extension at 0.004 
mM dNTP, and A, C, G and T lanes, the rDNA sequence lad-
der. Black triangles indicate potential methylation sites.
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In accordance with the mode of one snoRNA per intron in
vertebrates [4], a large proportion of the box C/D snoRNA
genes (45 of 55) are located within introns of the host
genes. The distances from the intronic snoRNA genes to
the 3' splice sites of introns, which has been proven to be
important for the effective processing of intronic snoRNAs
from their host mRNA precursors [41,42], resemble those
in D. melanogaster [32,41,42]. The distances from the
snoRNA genes to the 5' splice sites appear to mainly be
between 41 to 60 nt, similar to those in human[41] (Fig-
ure 4).

Remarkably, five (cluster I to V) of the six box C/D
snoRNA gene clusters arehighly conserved between yeast

and N. crassa (Figure 5). Although these host genes were
not well annotated for their introns and exons in the N.
crassa genome, canonical intron splicing sequences were
observed flanking every cluster of snoRNA genes. To fur-
ther confirm this observation, the mature RNA transcripts
were identified with the expected sizes by cloning and
sequencing of RT-PCR products. It is worth noting that
two snoRNA genes, CD16 and CD37, in the cluster V are
validated to be co-transcribed by RT-PCR and sequencing,
though each of the snoRNA genes in the cluster has a puta-
tive promoter upstream. Intriguingly, the putative pro-
moter upstream of CD37, a homologue of U14, would
play a role in guaranteeing and promoting the function of
U14 that has been demonstrated vital in diverse eukaryo-
tes. Our results further revealed that the genomic organi-
zation of the host genes for these five clusters is most like
the UHG gene in animals. The host genes of Cluster I to V
only contain short open reading frames with length rang-
ing from 159 bp to 267 bp, suggesting the little potential
for protein coding just like the gas 5 [43].

Unexpectedly, various alternative splicing events were
found in the processing of polycistronic transcripts from
the snoRNA gene clusters I and II by analyzing cDNA
sequences from RT-PCR of the transcripts (Figure 6). In
cluster I, two alternatively spliced transcripts, differing by
the absence of exon 2 or exon 2 plus exon 3 were detected.
The pattern of alternative splicing in the expression of
cluster II was contingent on an alternative 3' splice site
that allows the lengthening or shortening of exon 3.

Discussion
High diversity of post-transcriptional modification 
predicted by snoRNAs in fungi
Identification of guide snoRNAs in diverse organisms can
provide valuable information towards understanding
RNA modification patterns and their function [18]. It is

Schematic representation of snoRNA gene clusters in N. crassaFigure 5
Schematic representation of snoRNA gene clusters 
in N. crassa. The open and gray boxes represent snoRNAs 
and exons, respectively. The number below indicates the 
length (in nucleotides) of introns. Thinner lines indicate 
introns. Note: figure not drawn to scale.

The distance distributions from the intronic snoRNA genes to the 3' and 5' splicing sites of host gene intronsFigure 4
The distance distributions from the intronic snoRNA 
genes to the 3' and 5' splicing sites of host gene 
introns. The gray and black bars represent space lengths 
from the 3' and 5' splicing sites (SS), respectively, to the 
snoRNA genes.

Alternative splicing in the expression of snoRNA gene clus-ter I and II in N. crassaFigure 6
Alternative splicing in the expression of snoRNA 
gene cluster I and II in N. crassa. The open and black 
boxes represent snoRNAs and exons, respectively. The 
number below indicates the length (in nucleotides) of exons 
and introns. Thinner lines indicate introns and dashed lines 
indicate splicing activities. Arrows indicate the primers used 
in RT-PCR analysis.
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interesting to compare the pattern of modifications on
target RNAs of N. crassa to those described in the two
yeasts, S. cerevisiae and S. pombe. Among 71 methylations
predicted by the guide snoRNAs in N. crassa , 32 represent
the most highly conserved modifications shared by the
multicellular fungi and the yeasts, and 31 (43.7%) are
modifications that have not yet been reported in other
fungi when compared with the two unicellular yeasts(Fig-
ure 7). In the yeasts, only ten and eight methylations are
S. cerevisiae-specific and S. pombe-specific, respectively.
Our results imply a more complex modification pattern in
multicellular fungi than in unicellular yeasts. They also
reveal the high diversity of post-transcriptional modifica-
tion of RNAs in the fungus kingdom as it has been shown
that about 40% of methylations are species-specific in a
protozoan Trypanosoma [17]. The species-specific modifi-
cations highlight the different modification patterns and
their peculiar importance. Although eliminating a single
modification does not have a dramatic effect on the ribos-
ome [44], loss of three to five modifications in an inter-
subunit bridge of the ribosome (helix 69) impairs growth
and causes broad defects in ribosome biogenesis and
activity [45]. On the other hand, early studies have dem-
onstrated that ribosome modifications play roles in deter-
mining antibiotic resistance or sensitivity [15,46]. Thus
the species-specific modifications have potential use in
finding therapeutic targets for prevention and treatment
of diseases caused by some eukaryotic pathogens.

Another interesting observation in this study was the pres-
ence of duplexes between box C/D snoRNAs and tRNAs
(tRNATrp and tRNALeu from N. crassa Database). Duplexes
between tRNA and snoRNAs have been also found in C.
elegans [24] and recently in Plasmodium falciparum [47].
tRNA modification guided by snoRNAs has been also
reported in Archaea [23]. This study provides for the first
time a prediction of fungal snoRNAs and their potential

target sites in tRNAs, although these remain to be con-
firmed by further experiments.

Structural and functional evolution of snoRNAs in fungi
Our study demonstrates the extensive separation and
recombination of functional regions occurring during the
evolution of snoRNA genes in fungi. For instance, the
CD5 snoRNA in N. crassa possesses two conserved guiding
elements. In S. cerevisiae, however, the conserved function
of CD5 is executed by two independent snoRNAs, snR72
and snR78, with a single functional element [48] (Figure
8). This suggests that CD5 may have evolved as a double-
guide snoRNA through recombination of two different
halves of two ancestral single-guide snoRNAs. The other
possibility is that a gene duplication of a double-guide
snoRNA gene in S. cerevisiae led to specialization of each
paralog to only target one modification site followed by
loss of the other guide element for both paralogs. Another
example is CD50 and CD51 that carry a conserved guiding
function for U24 and U24b in S. pombe, respectively. In
contrast, the U24 in S. cerevisiae has two guiding func-
tions. Comparative analyses revealed that the structure
and function of U24 are well conserved among the bud-
ding yeast and the flowering plants A. thaliana and rice,
but the homologues of the S. cerevisiae U24 exist as two
independent snoRNAs in other distant eukaryotes, such as
human and mouse [49]. This suggests that U24 snoRNA
gene has evolved in two pathways, with one leading to a
dual functional snoRNA gene and the other separating the
guiding functions and giving rise to two independent
snoRNA genes.

It has been demonstrated the reciprocal evolutionary
change between snoRNA complementary region and their
rRNA target sequence in plants and nematodes[9,24]. Our
analyses indicate that co-evolution between snoRNAs and
rRNAs exists widely in N. crassa (Figure 9) and plays an
important role in preservation of phylogenetic conserved
methylated sites of rRNAs which is essential for protein
synthesis.

RIP may impact on the generation of snoRNA isoforms by 
gene duplication and transposition
SnoRNA gene isoforms or variants exist widely in diverse
organisms, particularly in plants. For example, 97 box C/
D snoRNAs with a total of 175 different gene variants were
identified in the A. thaliana genome [50], and 346 gene
variants encoding 120 box C/D snoRNAs were found in
Oryza Sativa [9]. Compared with the plant snoRNAs, only
a paucity of yeast snoRNA paralogs was detected because
of a relatively small compact genome (~12 Mb for S. cere-
visiae). The N. crassa genome (~ 40 Mb) is three-fold larger
than that of the yeast; however, most snoRNA genes in
this species are singleton. Why are the snoRNA genes
devoid of isoforms in the N. crassa genome? It is known
that a mutagenic process termed repeat-induced point

Venn diagram of the relationship of methylations in three fungiFigure 7
Venn diagram of the relationship of methylations in 
three fungi. The number of each part of the methylations is 
shown. Abbreviation: N.c, N. crassa; S. c, S. cerevisiae; S. p, S. 
pombe.
Page 8 of 13
(page number not for citation purposes)



BMC Genomics 2009, 10:515 http://www.biomedcentral.com/1471-2164/10/515
mutation (RIP) has a profound impact on N. crassa
genome evolution, which has greatly slowed the creation
of new genes through genomic duplication and resulted
in a genome with an unusually low proportion of closely
related genes [51]. Of the predicted 10082 protein-coding
genes, only six pairs (12 genes) share >80% nucleotide or
amino-acid identities in their coding sequences [36]. RIP
identifies duplications that are greater than ~400 bp (~1
kb in the case of unlinked duplications) and induces C:G
to T:A during the sexual cycle [52,53]. Early studies have
provided clear evidence of retrotransposons inactivated
by RIP [54,55]. The analysis of the N. crassa genome
sequence also revealed a complete absence of intact
mobile elements [36]. Therefore the creation of new genes
including snoRNA genes or their host genes through gene
duplication and transposition seems to be impeded. It has
been proposed that most, if not all paralogs in N. crassa
duplicated and diverged before the emergence of RIP [51].
We have identified three U3 snoRNA gene variants,
NcU3A, NcU3A-2 and NcU3A-3 in N. crassa (37). The

sequence analysis revealed that these molecules have
undergone nucleotide substitutions rather than RIP
according to the calculation method previously reported
[36]. In the case of CD46A and CD46B, we speculate that
the two snoRNA gene isoforms may have duplicated and
diverged before the emergence of RIP.

Alternative splicing in the expression of non-coding RNA 
genes with introns
It is well known that alternative splicing is an important
and widespread process where one gene produces more
than one type of mRNA which is then translated into dif-
ferent proteins in multicellular organisms [56]. Bioinfor-
matic analysis indicates that 35-65% of human genes are
involved in alternative splicing, which contributes signifi-
cantly to human proteome complexity [57,58]. However,
alternative splicing is rarely reported for non-coding RNA
genes which encode multiple introns. In this study, we
identified several alternative splicing events that occurred
in the processing of RNA precursors transcribed from the
snoRNA gene cluster I and II of N. crassa. It has been
reported that the mouse gas5 gene, a non-coding RNA and
snoRNA host gene, had four alternative splicing tran-
scripts [43]. Although different in snoRNA composition,
the snoRNA gene clusters in N. crassa are most like UHG
genes resembling gas5. Our results show that alternative
splicing occurs frequently in the expression of snoRNA
host genes in lower eukaryotes. This lends support to the
concept that alternative splicing may be an ancient mech-
anism in regulating the expression of both protein-coding
and non-coding RNA genes with introns. More work is
necessary to elucidate the biological significance of the
alternative splicing in the expression of non-coding RNA
genes.

Conclusion
In this study, we report the first extensive identification of
box C/D and box H/ACA snoRNAs from the filamentous
fungus N. crassa using a combination of computational
and experimental method. The repertoire characteristics,
targets, genomic organization and the unique function of
the N. crassa snoRNA genes were extensively compared

Alignment of homologous snoRNAs from three multicellular fungi and two yeastsFigure 8
Alignment of homologous snoRNAs from three multicellular fungi and two yeasts. Conserved box elements are 
bold and boxed regions denote antisense elements. Stars indicate conserved nucleotides. Sp, S. pombe; Sc, S. cerevisiae; An, 
Aspergillus niger; Mg, Magnaporthe grisea; Nc, N. crassa .

Coevolution between snoRNAs and their targetsFigure 9
Coevolution between snoRNAs and their targets. A. 
Nucleotides of box C/D snoRNAs in the complementary 
region were changed in coordination with its target rRNA 
maintaining phylogenetical conservation of rRNA methylated 
sites. B. Nucleotides changed in box H/ACA snoRNAs 
respond to specific changes in the 18S rRNA of N. crassa . 
The nucleotides marked by black dot represent the 2'-O-
methylation. Basepairs changed are indicated by arrows.
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with those of potential orthologues in close and distant
organisms such as S. pombe, S. cerevisiae, A. niger, M. grisea,
A. thaliana and H. sapiens . Our results improve annota-
tion of snoRNA genes in the N. crassa genome, an impor-
tant model filamentous fungus, and provide insights into
the characteristics and evolutionary significance of the
snoRNA genes in the fungus kingdom.

Methods
Strains and Media
The N. crassa wild-type strain (As 3.1604, purchased from
the China General Microbiological Culture Collection
Center) was used for the construction of the cDNA library
and all RNA analyses. The strain was grown in PSA
medium (2% sucrose, 20% extract of potato) at 30°C. The
Escherichia coli strain TG1 grown in 2YT (1.6% Bacto tryp-
tone, 1% yeast extract, 0.5% NaCl) liquid or solid
medium was used for cloning procedures.

Construction and screening of cDNA library
We prepared total RNA from N. crassa culture according to
the guanidine thiocyanate-phenol-chloroform procedure
described by Chomoczynski et al [59]. Small RNA (~20
μg) was fractionated by 50% PEG-8000 and 0.5 M NaCl.
The construction of cDNA library were performed as
described previously with minor modifications (see Addi-
tional file 6) [60]. After randomly sequencing clones, we
employed dot hybridization to screen the colony PCR
products with P47 and P48 as described by Liu et al. [37]
We sequenced clones exhibiting the lowest hybridization
signal.

Computational identification of box C/D snoRNA genes
Genomic sequences of N. crassa [36] available at http://
www.broad.mit.edu/annotation/genome/neurospora/
Home.html (N. crassa assembly 7) were downloaded and
searched for potential box C/D snoRNAs target rRNA/
snRNA using snoscan [12] with default parameters. Meth-
ylated sites prepared for the snoscan included the con-
served methylated nucleotides of S. cerevisiae (yeast
snoRNA database), H. sapiens (snoRNA-LBME-db), and D.
melanogaster [32]. The snoscan results were processed by
an in-house developed perl program for candidate selec-
tion. A sequence with the following characteristics was
considered as candidate: ① box C motif bit score ≥ 7.48,
box D motif bit score ≥ 8.05, ✍ the guide bit score ≥ 18.65,
the guide sequence and the target sequence can form a
concatenated 10 bp duplex with at most 1 GU pair
allowed, or can form a concatenated 9 bp duplex with
high GC content. ③ if the guide region is adjacent to the
D' box, the length of spaces between box C and guide
sequence must be ≤ 20 bp. If the guide region is adjacent
to the D box, the length of spaces between box C and
guide sequence must be between 40 and 85 bp. ④ total
sequence length between 75 bp and 130 bp, total overall
bit score ≥ 20. The candidates within CDS region pre-

dicted by Broad/Whitehead Institute automatic gene call-
ing software (a combination of manual annotation,
FGENESH, GENEID, and GENEWISE) [36] were removed.
The BLAST program [61] was used to search gene variants
of all novel snoRNA genes to establish the snoRNA gene
isoforms. About 1 kb of flanking sequences of the snoRNA
gene candidates was searched further for possible box C/
D snoRNA genes and additional non-canonical C/D gene
candidates.

Northern blot analysis
An aliquot of 30 μg total RNA was separated by electro-
phoresis on an 8% polyacrylamide gel containing 8 M
urea and electrotransferred onto nylon membrane
(Hybond-N+; Amersham) using semi-dry blotting appa-
ratus (BioRad). After immobilizing RNA using a UV cross-
linker, northern blot hybridization was performed as pre-
viously described [49].

Reverse transcription and mapping of ribose methylation
Reverse transcription was carried out in a 20 μl reaction
mixture containing 15 μg of total RNA and a correspond-
ing 5'-end-labeled primer. After denaturation at 65°C for
5 min and then cooling to 42°C, 200 units of M-MLV
reverse transcriptase (Promega) were added and extension
carried out at 42°C for 1 hour. The cDNA was separated
on an 8% polyacrylamide gel (8 M urea) and then ana-
lyzed with an imager.

The mapping of rRNA methylated sites was determined by
primer extension at low dNTP concentrations as described
previously [40,62]. Briefly, the N. crassa 18S and 26S
rDNA were amplified by PCR with the primer pair
Nc18SF/Nc18SR and Nc26SF/Nc26SR, respectively, and
then cloned into the pMD-18T vector (Takara). The plas-
mid DNA insert was directly sequenced with the same
primer used for reverse transcription and run in parallel
with the reverse transcription reaction on an 8% polyacr-
ylamide gel (8 M urea).

RT-PCR analysis
15 μg of total RNA was reverse transcribed with 200 U of
M-MLV reverse transcriptase (Promega) using the box C/
D snoRNA gene cluster specific reverse primers (see Addi-
tional file 7) in a 20 μl reaction mixture as described
above for reverse transcription and mapping of ribose
methylations. The negative RT control was carried out
without M-MLV reverse transcriptase. We designed two
specific antisense oligonucleotides: the first reverse primer
used in the reverse transcription reaction overlaps the last
several nucleotides of the second reverse primer used in
the PCR reaction to help avoid non-specific PCR products.
After 1 h at 42°C, 2 μl of RT reaction was used for PCR
amplification with the second reverse primer and the cor-
responding forward primer (see Additional file 7) in a
final volume of 20 μl. The positive PCR control was per-
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formed on N. crassa genomic DNA with the same pair of
primers. Negative PCR control was performed on 2 μl of
the negative control RT reaction with the same pair of
primers. The PCR program: 30 cycles of denaturation (30
s, 94°C), annealing (30 s, 50-55°C), and extension (1-2
min, 72°C), following by a final extension (10 min,
72°C). The PCR product was purified from a 1.5% agar-
ose gel with the QIAquick Gel extraction Kit (QIAGEN)
and cloned into pMD-18T vector (Takara) and trans-
formed into the strain TG1 of E. coli . Positive clones were
subsequently chosen for sequencing.

Oligonucleotides
Oligonucleotides used for construction of the cDNA
library, northern blot analyses of novel snoRNAs and the
primers for reverse transcription and RT-PCR experiments
are not shown (see Additional file 7).

Database accession numbers
The sequences of all snoRNAs determined in this work
have been deposited in the GenBank Nucleotide
Sequence Databases under accession numbers EU780925
- EU780999 and EU526091-EU526095.
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