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Abstract

Background: Gene expression microarrays and real-time PCR are common methods used to
measure mRNA levels. Each method has a fundamentally different approach of normalization
between samples. Relative quantification of gene expression using real-time PCR is often done using
the 27(-AACt) method, in which the normalization is performed using one or more endogenous
control genes. The choice of endogenous control gene is often arbitrary or bound by tradition. We
here present an analysis of the differences in expression results obtained with microarray and real-
time PCR, dependent on different choices of endogenous control genes.

Results: In complex tissue, microarray data and real-time PCR data show the best correlation
when endogenous control genes are omitted and the normalization is done relative to total RNA
mass, as measured before reverse transcription.

Conclusion: We have found that for real-time PCR in heterogeneous tissue samples, it may be a
better choice to normalize real-time PCR Ct values to the carefully measured mass of total RNA
than to use endogenous control genes. We base this conclusion on the fact that total RNA mass
normalization of real-time PCR data shows better correlation to microarray data. Because
microarray data use a different normalization approach based on a larger part of the transcriptome,
we conclude that omitting endogenous control genes will give measurements more in accordance
with actual concentrations.

Background

Real-time PCR is a sensitive method for expression analy-
sis widely used for both cell culture and complex tissues.
Relative quantification of mRNA levels using real-time
PCR data is commonly done using the 2*(-AACt) method
[1]. A central idea of this method is the use of an endog-
enous control for normalization, a so-called housekeep-
ing gene. The aim of this normalization is to correct for
different amounts of starting material of RNA or differ-

ences in the cDNA synthesis efficiency. Commonly used
selection criteria for housekeeping genes are genes with
the least amount of variance across all samples and genes
that show no trends of change in relation to sample
parameters of interest. However, because of lack of meth-
ods to determine low variance - other than real-time PCR
itself - the selection of endogenous controls often comes
precariously close to circular reasoning. Vandesompele
and coworkers have suggested methods to circumvent
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this, through the iterative calculation of pairwise correla-
tions with other potential endogenous control genes and
removal of the most deviating candidates [2].

To investigate the merit of these endogenous control
selection methods, we analyzed gene expression using dif-
ferent real-time PCR normalization setups and compared
it with gene expression obtained using the fundamentally
different approach of expression microarray measure-
ments. The method of real-time PCR is often used as a
gold standard with which to validate findings from
expression microarray experiments [3-5]. This view, that
real-time PCR is a gold standard, might be true when
looking at individual genes. However, the specific ques-
tion of between-sample normalization is usually covered
by measuring one or a few supposedly constant endog-
enous control genes. With microarrays, on the other hand,
the large number of measured genes in microarrays gives
a much broader base from which to address sample varia-
tion and normalization issues. We therefore propose to
investigate the specific issue of real-time PCR normaliza-
tion, using correlation to microarray data as our primary
metric.

Herein, we present an analysis of 87 human carotid
plaque samples, for which gene expression data have been
obtained with Affymetrix HG-U133 plus 2.0 arrays and
for 15 target genes using TagMan real-time PCR. The
plaque tissue is typically of a heterogeneous character,
containing diverse populations of leukocytes, endothelial
cells, and smooth muscle cells in various proportions.
Finding and validating a set of control genes that are sta-
ble across samples under these conditions is therefore
essential for accurate measurement of gene expression lev-
els.

Results and Discussion

Selection of endogenous control genes

We made a definition of established endogenous controls
as genes available commercially, such as from Applied
Biosystems. At the time of the analysis, they were: ACTB,
B2 M, GAPDH, GUSB, HPRT1, PGK1, PPIA, RPLPO, TBP,
and TFRC. From these, GAPDH, B2 M, PPIA, RPLPO, and
TBP were selected as endogenous control candidates. They
were selected, as described in methods.

The Ct value of each of these genes was submitted to the
geNorm plugin for investigation of the stability index. The
most stable gene pair was GAPDH and RPLPO. In order of
decreasing stability, they were followed by TBP, PPIA, and
B2 M. The exact definition of this method of classification
is further described by Vandesompele et al. [2]. Briefly, the
two most stable genes are identified by calculating expres-
sion ratios, over all samples, for all pairwise combinations
of genes. For each pair of genes, the standard deviation
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over all samples is calculated, and for each gene, the mean
of all standard deviations is calculated. Genes for which
this value is highest are iteratively eliminated--in other
words, the algorithm searches for genes that show the
same expression profiles across all samples.

Comparison of real-time PCR expression data with
microarray expression data

Real-time PCR data were obtained for 15 different genes
of interest in addition to the 5 candidate endogenous con-
trols. We compared the measurement of gene expression
using these two methods of quantification. For each gene,
this was done by creating a scatter plot, such as the exam-
ple shown in Figure 1. Scatter plots for all combinations
of genes, probe sets, and endogenous control combina-
tions are found in Additional file 1. Pearson correlation
coefficients were calculated for all of these combinations,
and a summary can be seen in Figure 2. This figure
prompts two discussions: a row-wise discussion of the dif-
ferences in correlations between different genes and a col-
umn-wise discussion of the differences in correlations
between different choices of endogenous controls.

Differences in correlations between genes

Some genes show good correlation between real-time PCR
measurements and microarray measurements, and others
do not. These differences can be explained biologically
and technically.

It was investigated whether there was any systematic tech-
nical bias of the real-time PCR-to-microarray correlation.
This was done by comparing the correlation metric to the
mean absolute expression level and the standard devia-
tion, both for microarray values and real-time PCR values.
This is shown as scatter plots in Additional file 2, and no
patterns could be identified.

Technical imprecision in individual measurements can
also be a problem. All microarray scans were subjected to
standard quality control measures, as detailed in the
methods section, in order to exclude problematic sam-
ples. For real-time PCR, replicate measurements can clar-
ify if deviance is a result of technical imprecision. A
technical variation threshold is described in methods. For
most genes, there were only a few measurements (< 10%)
with technical variation above this threshold. The excep-
tion was ALOX12, which had 69 samples with coefficients
of variance above this threshold. ALOX12 was present in
very low quantities, with a mean Ct of 37.08 (Additional
file 3). The discrepancy between measurements of this
gene is therefore concluded to be due to technical impre-
cision in real-time PCR, as it is reflected in the lack of cor-
relation between microarray and real-time PCR data. The
data are included in the analysis to show the effects of
technical imprecision, but its removal does not change the
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Figure |

Correlation between real-time PCR data and microarray data for EDNRA. Real-time PCR data has been analyzed
using the AACt method with GAPDH and RPLPO as endogenous controls. Microarray data are shown for each of the three
probe sets in EDNRA. The values were obtained using the Affymetrix Power Tools implementation of RMA normalization [8].
Exon location information for TagMan probes is from the Applied Biosystems webpage. Exon location for microarray probe
sets was obtained as described in methods.
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Summary of Pearson correlation coefficients between microarray data and real-time PCR data. The 32 possible
combinations containing one or more of 5 endogenous controls are shown as columns. All genes of interest are shown as
rows. The color scale for the correlation coefficient is shown below. Rows are sorted top to bottom by mean correlation
coefficient across all endogenous control combinations. Columns are sorted left to right by mean correlation coefficient across
all genes. As a simplification, microarray data for genes with more than one probe set are taken as the per-sample mean value
of all probe sets. Creating the same figure with values per probe set would give a figure with 34 rows (one for each probe set
in the genes of interest), with slightly different correlation coefficients but would not change the sorting of the columns overall.
Exact distribution using per-probe-set analysis can be extracted from Additional file |. Real-time PCR data on LOX and
ALOXI2 has large deviations on replicate values as described in the text and can be omitted without changing the results.

final conclusion, as specified in the sensitivity analysis in
the methods section. In addition to the threshold values
in the bottom of Additional file 4, we have included the
raw data from the real-time PCR measurements as Addi-
tional file 3. This threshold could possibly be used as a
measure of comparison for use in other experiments that
do not have microarray data to compare with.

Because of alternative splicing and the difference in probe
location for the two measurements, biological variability
can also explain differences in measurement techniques
for some genes. It is therefore not necessarily sufficient to
talk about measuring a particular gene with two methods;
the measurements should also be performed on the same
part of the gene. The locations of real-time PCR probes

and primers and of microarray probe sets are shown for
the examples of IGF1 and EDNRA in Figure 3. For all other
genes, the same plots are available in Additional file 4.
ENDRA shows a high degree of correlation, even though
different sections of the gene are measured with the two
techniques - the opposite is true for IGF1. For IGF1, alter-
native splicing is unlikely to be the reason behind the lack
of correlation, but unfortunately, for almost all other
genes (11 out of 15), the real-time PCR primers and
microarray probe locations are not in the same exon.
Without specific real-time PCR measurements of relevant
regions, it is therefore difficult to make a decisive conclu-
sion on the gene-wise differences in correlation between
microarray and real-time PCR. Focus shall therefore be on
the column-wise discussion, as follows.
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Figure 3

Correlation of microarray and real-time PCR measurements, stratified by location of probe for EDNRA and
IFGI. The x-axis gives the position of a probe along the length of the gene. The y-axis gives the Pearson correlation between
microarray probe set intensity and RPLPO-/TBP-normalized real-time PCR Ct value, both preprocessed as described in the
methods section. Microarray probe sets are shown at a height corresponding to their correlation, with one dot for each probe
in the set. Exact real-time PCR primer location is not available from Applied Biosystems, but the exon location of an assay is
given. The locations of them are therefore marked with a thick horizontal line at a fixed height on the plot. The exon-intron
architecture is indicated below the real-time PCR location. The value of the correlation is given in the first line below the plot.
In some cases, the microarray probes were not found to match in the gene sequence used. They are likely to be probe sets for
obsolete or alternative transcript isoforms. The correlation of these cases is indicated in the second line below the plot. The
third line below the plot specifies how many real-time PCR double measurements had coefficients of variance above the
threshold of 0.02. Additional file 4 contains this type of plot for all target genes. A figure similar to this, but using per-probe
microarray data, is provided as Additional file 5.

Differences in correlations between micorarray data and assumptions to get to this functional definition: 1) that
different real-time PCR normalizations there exist one or more genes for which the expression is
In Figure 2, the differences in correlations between differ-  at a sufficiently constant level to be proportional to the

ent choices of endogenous controls can be read in each  amount of cells across all samples; this is the assumption
column. As demonstrated, the best correlation between  behind the concept of endogenous control in AACt analy-
microarray and real-time PCR is, on average, obtained  sis; 2) that the overall distribution of the expression levels
when no endogenous control is used. The results obtained ~ of all genes is the same in all cells, across all samples; this
by using the geNorm method of Vandesompele et al.  is the assumption behind the quantile normalization,
ranks 13t (for the GAPDH/RPLPO/TBP combination) and ~ which is the normalization part of the RMA pre-process-
17th (for GAPDH/RPLPO) among all 32 possible combina-  ingalgorithm used for microarray analysis; and 3) that the
tions of one or more of 5 endogenous control genes. This  total concentration of RNA is the same in all cells across

is an unexpected result, and it prompts a thorough discus-  all samples; this is the assumption behind the "no endog-
sion of the assumptions behind normalizations of PCR  enous control" calculation of gene expression for real-
gene expression data. time PCR data. This assumption stems from the fact that

equal amounts of RNA were used in the sample prepara-
A functional definition of gene expression should be  tion for the real-time PCR measurements, and it could as
expressed in units of mRNA per cell or nucleic mnRNA con-  well be labeled "normalization to total RNA mass." It car-
centration or a similar measure, because this is the level at  ries the further assumption that the reverse transcription
which changes will affect the biology of the cell. In effect, ~ of the RNA to cDNA does not introduce a bias.
the methods we compare here all rely on one of three
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Conclusion

We here present gene expression measurements, obtained
with different methods, on the same set of RNA samples.
We analyze disagreements, which are of biological and
technical origin: technical imprecision will surely obstruct
data collection, but biological variation can also be
thought to interfere through alternative splicing mecha-
nisms. One finding is that introduction of housekeeping
genes in the calculation perturbs the data without improv-
ing measurements. It has previously been speculated that
normalizing to total RNA mass will produce better results
in complex tissue [6], and these results support that
notion.

The strength in our study is the high number of samples
for which transcript analysis has been made with both
real-time PCR and microarray. This in turns allow us to do
the analysis on a detailed level. We see clear advantages
with array analysis, because it has the total gene expres-
sion profile to normalize against. Therefore, the obtained
data seem more robust normalization-wise, compared
with real-time PCR. The advantages with real-time PCR
are the sensitivity and usually a more optimal and up-to-
date design of probe-primer pairs. The data, however,
seem to be distorted while going through an endogenous
control normalization procedure, either by a single house-
keeping gene used out of tradition by the research team or
by the geometric mean method, suggested by others [2].
While the bulk of the mass of total RNA is ribosomal RNA,
our results show that it might nonetheless carry fewer per-
turbations to use this value as is.

This conclusion is of course limited by the circumstances
in which we measure. One factor that is likely to be crucial
is the highly heterogeneous tissue in question. The
plaque-derived samples contain varying compositions of
different cell types, and this can cause problems when
assuming constant expression level of any gene across
many different cell types of highly varying transcriptomic
composition. The risk that cell composition changes in a
way that affects the rRNA-to-mRNA ratio is of course also
present, but the data show that at least in this data set, this
not the case.

Another factor that could be of interest to the conclusion
is the methods with which the cDNA for real-time PCR is
prepared. The RNA quality of all samples is carefully con-
trolled, and degraded samples are excluded. Furthermore,
the quantification system in use could possibly provide
for better precision than previously used spectrophotom-
eters.

http://www.biomedcentral.com/1471-2164/10/516

Methods

Ethics statement

Biobank materials were extracted after informed written
consent from all participants were obtained according to
the Declaration of Helsinki and approved by the ethical
committee of the Karolinska Institute, journal number 02-
147.

Sample preparation

All samples were part of the Biobank of the Karolinska
Carotid Endarterectomies (BiKE) cohort [7], which con-
sists of samples from 400 patients undergoing carotid
endarterectomy. Patients were 70.0 + 8.56 years, 28.9%
being females. Ten of the samples included in the analysis
were taken from healthy control tissue (iliaca and aorta).
Tissue samples were cryohomogenized using a Mikro Dis-
membrator S (B Braun Biotech International GmbH, Mel-
sungen, Germany), and cells were lysed with RLT buffer
(Qiagen, Valencia, CA, USA). Total RNA was isolated
using the RNeasy extraction kit (Qiagen). The optional
on-column DNase digestion step was included. RNA qual-
ity was assessed with a Bioanalyzer capillary electrophore-
sis system (Agilent Technology), and degraded samples
were excluded from further analysis. RNA concentration
was measured using a Nanodrop 1000 spectrophotometer
(Thermo Scientific).

Microarray measurements

Microarray hybridization and scanning were done at the
Karolinska Institute core facility for Bioinformatics and
Expression Analysis, using Affymetrix HG-U133 plus 2.0
type microarrays. One hundred seventeen of the samples
have been scanned on HG-U133 plus 2.0 microarrays. All
cel files were visually inspected for scratches and subjected
to the NUSE and RPE quality control algorithms available
from the affyPLM Bioconductor package. Cel files were
analyzed using Robust Multichip Average (RMA), as
implemented in the Affymetrix Power Tools 1.8.6 package
apt-probeset-summarize. Because the normalization is of
specific interest here, it will briefly be described. RMA, as
introduced by Irizarry et al. [8], includes a normalization
step, a background adjustment step, and a summarization
step. The normalization step, known as quantile normali-
zation, was introduced separately and consists of an algo-
rithm for normalizing a set of data vectors by giving them
the same distribution [9]. The normalized data are back-
ground-adjusted, and probe values are summarized per
probe set using a median polish function. Notably, the
data are log2-transformed in this process, which is done to
obtain a closer relation to mRNA concentrations as seen
in spike-in experiments and to provide more normal dis-
tributions for subsequent statistical analysis. The data in
Figures 2 and 3 are RMA-summarized. To check that back-
ground correction and summarization are not obscuring
results, an alternative analysis using probe level data that
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have only been quantile-summarized is available in Addi-
tional file 5. Furthermore, the entire analysis was repeated
with the same findings using three different microarray
pre-processing methods - the gcRMA, as implemented in
the Bioconductor package of the same name; the PLIER-
MM, as implemented in Affymetrix Power Tools; and the
model-based expression with invariant set normalization,
as implemented in dChip 2008 software [10]. Probe level
and probe set level microarray data have been provided as
Additional file 6

Real-time PCR measurement

Total RNA from 157 samples was reverse-transcribed
using SuperScript II reverse transcriptase (Invitrogen) and
random hexamers, using mastermix for all included sam-
ples in one batch. The same amount of total RNA was
used for each sample. The quantification was based on
Nanodrop 1000 spectrophotometer (Thermo Scientific)
measurements. TagMan probes and primers for all genes
mentioned were purchased as assay-on-demand (Applied
Biosystems). For each gene, PCR amplification was done
in four 96-well plates in a either a 7700 or a 7900 HT fast
real-time PCR system (Applied Biosystems). All samples
were measured in double. We defined a reasonable disa-
greement between replicates as a coefficient of variance of
0.02, because this was the value all measurements met on
the best plates. All endogenous controls except PPIA had
replicate values that were all below this threshold. PPIA
had 6 samples with a coefficient of variance above the
threshold. The summarized precision of other gene meas-
urements is specified in the bottom line of Additional file
4 and fully described in Additional file 3. All 96-well
plates included a commercial RNA standard to control for
systematic interplate variability. All real-time PCR analy-
ses were done using the AACt method with the mean of all
samples as calibrator and a specified set of endogenous
controls [1]. In the case of more than one endogenous
control, the geometric mean was used, as specified [2]. In
the case of no endogenous control, the first normalization
step was omitted, and a calibrator value of the mean of all
Ct values was subtracted from raw Ct values before calcu-
lating the power with two as base. Exact calculations can
be found in the included R-script in Additional file 7.

Selection of target genes and endogenous control genes

Endogenous control genes PPIA and B2 M were selected
arbitrarily for initial analysis. The remaining candidates
were selected based on 1) low coefficient of variance in
microarray data of a subset of the samples; 2) as low a cor-
relation as possible to clinical parameters that could be of
interest (symptom, diabetes, statins, time between symp-
tom and operation, HbAlc values, serum cholesterol);
and 3) mean expression level above some fraction of the
mean of all probe sets. Target genes were all measured as
part of nonrelated projects on the BiKE dataset and are

http://www.biomedcentral.com/1471-2164/10/516

therefore in this respect arbitrarily selected. The target
genes are not part of any common functional or cell type-
specific groups.

Exon location of microarray probe sets

To retrieve the exact location of each probe set, we per-
formed sequence matching of probe sequences with
sequences of the gene of interest. It was matched to the
sequence of the gene in question to give the position using
tools available in the GeneRegionScan package [11,12],
available from the Bioconductor repository [13]. Gene
sequences were downloaded from the UCSC genome
browser [14] human Mar. 2006 assembly. In cases with
more than one known isoform, preference was given to
the longest variant. UCSC ID-number for each sequence is
given in the top of each plot.

Sensitivity analysis

A sensitivity analysis, similar to the one performed by Qin
et al. [5], showed that systematic removal of single genes
did not affect final conclusions. No single gene changes
the fact that the omission of endogenous control pro-
duces the best correlation.

Authors' contributions

LF carried out the bioinformatical analysis and drafted the
manuscript. SK provided statistical feedback. HA helped
obtain the samples and measurements. AR, AG, and GB
conceived of the study and participated in its design and
coordination. All authors read and approved the final
manuscript.

Additional material

Additional file 1

scatter plots of real-time PCR and array data for all genes of interest.
The zip-file contains pdf files for each gene of interest. Each row in the pdf
file shows a probe set investigating the gene in question. Each column in
the pdf file shows different combinations of endogenous controls used for
preparing the real-time PCR data.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-516-S1.zip]

Additional file 2

investigations of systematic patterns of relation between SD, mean
and correlation metric. For the investigation of systematic bias of corre-
lation metric in relation to standard deviation and absolute expression.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-516-S2.pdf]
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Additional file 3

raw Ct values for all samples measured with real-time PCR. It con-
tains a sheet for each gene. The columns named Value 1 and Value 2 con-
tain raw Ct values of the data.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-516-S3.xlsx]

Additional file 4

Figure 3for all target genes. The figure text of Figure 3 applies here as
well.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-516-54.pdf]

Additional file 5

Figure 3, without probe set summarization. The figure text of Figure 3
applies here as well, with the only change being that microarray data were
not RMA-normalized. Instead, the quantile-normalized probe level values
were extracted using the GeneRegionScan package. Full details can be
found in the Additional file 7 script.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-516-S5.pdf]

Additional file 6

raw microarray data for target genes. Probe level data has been gener-
ated with a ReadAffy call on the cell files, followed by an exprs call for the
genes of interest on the generated AffyBatch. Probe set level data has been
generated using the RMA algorithm as implemented in Affymetrix Power
Tools.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-516-56.zip|

Additional file 7

R/Bioconductor script for obtaining all plots. The script needs a few pre-
requisites, such as array data and gene sequences, but given them it should
produce the exact same results as shown here. The content is plain text for-
mat, viewable with any text editor and runnable in R 2.8.0 [15].

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-516-S7.zip|
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