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Abstract
Background: The understanding of the biological function, regulation, and cellular interactions of the yeast
genome and proteome, along with the high conservation in gene function found between yeast genes and their
human homologues, has allowed for Saccharomyces cerevisiae to be used as a model organism to deduce biological
processes in human cells. Here, we have completed a systematic screen of the entire set of 4,733 haploid S.
cerevisiae gene deletion strains (the entire set of nonessential genes for this organism) to identify gene products
that modulate cellular toxicity to nickel sulfate (NiSO4).

Results: We have identified 149 genes whose gene deletion causes sensitivity to NiSO4 and 119 genes whose
gene deletion confers resistance. Pathways analysis with proteins whose absence renders cells sensitive and
resistant to nickel identified a wide range of cellular processes engaged in the toxicity of S. cerevisiae to NiSO4.
Functional categories overrepresented with proteins whose absence renders cells sensitive to NiSO4 include
homeostasis of protons, cation transport, transport ATPases, endocytosis, siderophore-iron transport,
homeostasis of metal ions, and the diphthamide biosynthesis pathway. Functional categories overrepresented
with proteins whose absence renders cells resistant to nickel include functioning and transport of the vacuole and
lysosome, protein targeting, sorting, and translocation, intra-Golgi transport, regulation of C-compound and
carbohydrate metabolism, transcriptional repression, and chromosome segregation/division. Interactome analysis
mapped seven nickel toxicity modulating and ten nickel-resistance networks. Additionally, we studied the degree
of sensitivity or resistance of the 111 nickel-sensitive and 72 -resistant strains whose gene deletion product has
a similar protein in human cells.

Conclusion: We have undertaken a whole genome approach in order to further understand the mechanism(s)
regulating the cell's toxicity to nickel compounds. We have used computational methods to integrate the data and
generate global models of the yeast's cellular response to NiSO4. The results of our study shed light on molecular
pathways associated with the cellular response of eukaryotic cells to nickel compounds and provide potential
implications for further understanding the toxic effects of nickel compounds to human cells.
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Background
The sequencing of the human and yeast genomes and the
high conservation in gene function found between yeast
genes and their human homologues has made Saccharo-
myces cerevisiae a fast and cost-efficient model organism to
deduce biological processes in human cells. Data from
genomic analysis of yeast transcriptional profiling, yeast
two-hybrid screen, cellular localization, and transcription
factor binding studies have provided a very thorough
understanding of the biological function and regulation
of the yeast genome and proteome, as well as allowed
computational methods to generate global models of the
cellular responses to environmental agents [1]. Deletion
mutations of S. cerevisiae constructed for ~6200 known
genes have identified ~4733 viable haploid gene-deletion
mutants [2-4]. Genome-wide phenotyping screens, that
screen deletion mutants of the entire set of nonessential
yeast genes, have been useful in the past to elucidate the
role of nonessential proteins in modulating toxicity after
exposure to DNA damaging agents and environmental
stressors [1,5-10]. Additionally, data from genomic phe-
notypic screens have allowed for the generation of cellular
recovery pathways by merging global phenotypic data
with global cellular localization and protein interactome
data [1]. This type of analysis has been a useful method to
shed light on previously little known molecular mecha-
nisms/pathways associated with the tolerance of eukaryo-
tic cells to toxic agents.

Nickel (Ni) is a toxic and carcinogenic metal widely used
in the production of coins, jewelry, stainless steel, batter-
ies, certain medical devices, carbon nanoparticles, and in
Ni refinery, plating and welding [11]. Occupational expo-
sure to nickel compounds has been associated with respi-
ratory distress and lung and nasal cancers [12]. Although
epidemiological, animal, and cell culture studies have
found nickel compounds to be carcinogenic [12-16], the
precise mechanism(s) of nickel carcinogenesis remains
unclear. Instead, numerous studies have implicated struc-
tural alterations in chromatin and epigenetic changes as
the primary events in nickel carcinogenesis [17-26].
Nickel compounds have also been shown to interfere with
cellular iron uptake and the function of enzymes contain-
ing iron in their active sites [27,28]. Other suggested
mechanisms of nickel carcinogenesis include the inappro-
priate activation of several cellular stress response path-
ways involving MAPKs, PI3K, HIF-1, NFAT, and NF-κB
(reviewed in [29].

We have completed a genome-wide phenotypic screen
with a library of the entire set of nonessential haploid Sac-
charomyces cerevisiae gene deletion strains to assess the role
of nonessential proteins in modulating toxicity upon
exposure to NiSO4. Using our yeast genetic screen we have
identified 149 genes whose gene deletion causes sensitiv-

ity to NiSO4 and 119 genes whose gene deletion confers
resistance. Pathways analysis with proteins whose absence
renders cells more sensitive and resistant to nickel identi-
fied a wide range of cellular processes engaged in the tox-
icity of S. cerevisiae to NiSO4. Functional categories
overrepresented with proteins whose absence renders cells
sensitive to NiSO4 include homeostasis of protons, cation
transport, transport ATPases, endocytosis, siderophore-
iron transport, homeostasis of metal ions, and the diph-
thamide biosynthesis pathway. Functional categories
overrepresented with proteins whose absence renders cells
resistant to nickel include functioning and transport of
the vacuole and lysosome, protein targeting, sorting, and
translocation, intra-golgi transport, regulation of C-com-
pound and carbohydrate metabolism, transcriptional
repression, and chromosome segregation/division. Seven
nickel toxicity modulating networks and ten nickel resist-
ance networks were identified. The biological function of
the nickel toxicity modulating networks and resistance
networks also highlight the pathways described above as
well as identify components of the alkaline phosphatase
pathway and THO nuclear complex as mediating sensitiv-
ity to nickel. Additionally, we studied the degree of sensi-
tivity or resistance of the 111 nickel-sensitive and 72
resistant strains whose gene deletion product has a similar
protein in human cells. In this study we suggest a possible
role of the evolutionarily conserved diphthamide biosyn-
thesis pathway as well as components of the outer kineto-
chore involved in chromosome segregation in mediating
toxicity of S. cerevisiae to nickel.

We have carried out a genomic phenotypic screen in order
to identify proteins in S. cerevisiae important for regulat-
ing cellular toxicity to nickel compounds and have used
computational methods to integrate the data and generate
global models of the yeast's cellular response to NiSO4.
The results of our study shed light on molecular pathways
important in the cellular response of S. cerevisiae to nickel
compounds and provide potential implications for fur-
ther understanding the toxic effects of nickel compounds
to human cells.

Results and Discussion
Identification of nickel-sensitive and resistant S. 
cerevisiae single gene deletion mutants
Nickel-sensitive and resistant strains were identified by
screening the BY4741 S. cerevisiae strain and all of its sin-
gle-gene deletion mutant derivatives corresponding to the
complete set of 4733 nonessential yeast genes with a low
(0.75 mM) and high concentration (1.25 mM) of NiSO4.
Three replicates of the whole screen were done with fresh
liquid master culture plates in 96 well plates. Strains were
grown for 60 hrs at 30°C and then digitally imaged for
analysis. Images of each plate were compiled and sensitive
and resistant mutant strains were visually identified (Fig-
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ure 1). Strains were labeled sensitive to NiSO4 if nickel
treatment inhibited its growth. Strains were labeled resist-
ant if nickel treatment did not inhibit its growth. This
analysis identified 149 genes whose gene deletion causes
sensitivity to NiSO4 and 119 genes whose gene deletion
confers resistance. A complete list of the yeast systematic
number of the proteins corresponding to the nickel-sensi-
tive and -resistant gene deletion strains identified in our
phenotypic screen is included in Additional file 1.

Functional categories overrepresented with proteins 
whose absence renders cells sensitive to NiSO4
In order to obtain a more complete understanding of the
cell's toxicity to nickel compounds and its mechanism(s)
for regulating toxicity we assessed the cells' global
response upon exposure to nickel. Functional categories
overrepresented in our list of proteins whose absence
renders cells sensitive or resistant to nickel were identified
using FunSpec. Table 1 lists the seven functional catego-
ries overrepresented with proteins whose absence renders
cells sensitive to NiSO4. MIPS functional categories over-
represented with mutants sensitive to nickel include
homeostasis of protons, cation transport, siderophore-
iron transport, homeostasis of metal ions (Na, K, Ca, etc),
transport ATPases, metabolism of secondary products
derived from L-lysine, L-arginine, and L-histidine, and
endocytosis. Note that some proteins are included in
more than one functional category because FunSpec does
not compensate for proteins in multiple categories.

Homeostasis of protons, cation transport, transport ATPases, and 
endocytosis
As is expected for cells treated with agents that are actively
internalized by the cell a number of deletion strains of
proteins involved in endocytosis exhibited sensitivity to
NiSO4 (Fth1, Rvs161, Cup5, Ypk1, Whi2) (Table 1). Pro-
teins in the proton homeostasis, cation transport, and
transport ATPases MIPS functional categories include sub-
units of the vacuolar-ATPase, Vma2p, Cup5p, Vma6p,
Stv1p, and Vph1p (Table 1). Vacuolar ATPases (V-
ATPases) are multi-subunit ATP-dependent proton
pumps that play an important role in the pH homeostasis
of various intracellular compartments and allow cellular
processes such as autophagy, endocytosis and intracellu-
lar transport to take place. It is not surprising that gene
deletion of proteins that function in vacuolar processes
renders cells more sensitive to nickel compounds since
genes involved in vacuolar organization and biogenesis
have been shown essential for the cell's viability in
response to metal exposure [30-32]. The vacuolar pH gra-
dient-driven system allows the penetration of nickel ions
into vacuoles and the formation of histidine-nickel ion
complexes sequester excess amounts of nickel ions into
vacuoles [31,33,34]. Sequestering metals into vacuoles

may be a fundamental process for S. cerevisiae in mediat-
ing resistance to metal toxicity.

Siderophore-iron transport and homeostasis of metal ions
The siderophore-iron transport MIPS functional category
includes Fth1p, a putative high affinity iron transporter,
Aft1p, a transcription factor involved in activating the
expression of target genes in response to cellular changes
in iron availability, and Fet3p, required for high affinity
iron uptake (Table 1). Nickel compounds have been
shown to interfere with iron uptake, deplete cellular iron
levels, and interfere with the function of enzymes that
require iron for their enzymatic activity [16,26]. Toxic
metal-induced iron depletion may be a common feature
of many toxic metals [31]. Because nickel ions, structur-
ally or chemically, resemble essential metal ions such as
zinc, copper, iron, and manganese, Ni+2 could compete
with and displace these metal ions from the cell [22].
Therefore, the sensitivity to nickel exhibited by deletion
strains of proteins involved in metal ion homeostasis,
such as, the putative magnesium transporter Mnr2p and
the Mac1 protein, a transcription factor involved in regu-
lation of genes required for high affinity copper transport,
is not surprising (Table 1).

Metabolism of secondary products derived from L-lysine, L-arginine, 
and L-histidine
The MIPS functional category metabolism of secondary
products derived from L-lysine, L-arginine, and L-histi-
dine includes the Jjj3 and Dph2 proteins (Table 1). Both
these proteins play an essential role in the biosynthesis of
diphthamide (DPH), an unusual amino acid formed by
the posttranslational modification of a conserved histi-
dine found in the translation elongation factor, eEF2 [35].
This modified amino acid is the target for ADP-ribosyla-
tion by the diphtheria toxin (DT). As a result, cells lacking
Jjj3 or other proteins involved in this pathway are tolerant
to DT. Although evolutionarily conserved, the biological
function of diphthamide within the activity of eE2F
remains elusive. Recent work has shown a requirement for
diphthamide in the maintenance of translational fidelity
by maintaining the correct reading frame during translo-
cation across the ribosome [36]. To our knowledge, the
diphthamide biosynthesis pathway has not been previ-
ously linked to nickel toxicity. Interestingly, the Jjj3 pro-
tein encompasses a J domain (region with homology to
the E. coli DnaJ protein). The J domain is characterized by
a highly conserved histidine-proline-aspartic acid (HPD)
tripeptide signature motif important for stimulation of
the ATPase activity of their Hsp70 partner [37]. Another
possibility is that its activity as chaperone to hsp90 con-
fers the Jjj3 deletion strain sensitive to NiSO4. Previous
evidence does suggest that induction of stress proteins
may play a role in the cellular response to heavy metal
exposure [38,39]. Our screen also identified the deletion
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S. cerevisiae genomic phenotypic screen with NiSO4Figure 1
S. cerevisiae genomic phenotypic screen with NiSO4. (A) Representative plate of the YPD-agar plates containing no 
NiSO4 (untreated), low (0.75), or high (1.25) concentration of NiSO4 spotted with 96 S. cerevisiae gene deletion mutant strains 
used in the genomic phenotypic screen. Dark blue, purple, yellow, light blue and pink squares identify the NiSO4-sensitive dele-
tion strains fob1Δ, ydr338cΔ, trp4Δ, gga1Δ, and eaf1Δ, respectively. Red and green squares identify the NiSO4-resistant deletion 
strains doa4Δ and ydr089wΔ, respectively. (B) Recompiled images of nickel-sensitive and resistant identified on the plate in A. 
doa4Δ and ydr089wΔ are examples of how Ni-resistant mutant strains were identified, whereas the colony of the control strain 
changed color from white to gray with increasing concentrations of NiSO4, the resistant strains did not. The Ni-sensitive 
strains fob1Δ, ydr338cΔ, trp4Δ, gga1Δ, and eaf1Δ exhibited more of a growth defect compared to the control strain even under 
low (0.75 mM) NiSO4 concentration.



BMC Genomics 2009, 10:524 http://www.biomedcentral.com/1471-2164/10/524
strain of Sse2p, a member of the heat shock protein 70
(HSP70) family, as sensitive to nickel (figure 2f).

Protein interactome analysis with proteins whose absence 
renders cells sensitive to NiSO4
The first nickel toxicity modulating network identified
includes the interaction between Rav1 (Yjr033C), a subu-
nit of the RAVE complex, that promotes assembly of the
V-ATPase holoenzyme (Vma2, Vph1, Stv1, Vma6) (figure
2a). Vma6 interacts with Ypr078C, a protein with a possi-
ble role in DNA metabolism and/or in genome stability,

Mrpl36, a mitochondrial ribosomal protein, and Rrd2, an
activator of the phosphotyrosyl phosphatase activity of
Pp2a, a peptidyl-prolyl cis/trans-isomerase that regulates
G1 phase progression, the osmoresponse, and microtu-
bule dynamics. Rrd2 also interacts with Lsm1, a protein
involved in the degradation of cytoplasmic mRNAs. Also
associated with the activation of the stress response is
Whi2p. A nickel toxicity modulating network was identi-
fied between Whi2p and Csr2, a nuclear protein proposed
to regulate utilization of nonfermentable carbon sources

Table 1: Functional categories overrepresented with proteins whose absence renders cells more sensitive to NiSO4.

MIPS Functional Category p-value In Category from Cluster # Nickel Toxicity Modulating Total in Category

homeostasis of proteins [34.01.01.03] 0.000556 VMA2 CUP5 RAV1 VMA6 STV1 
VPH1

6 47

cation transport (H+, Na+, K+, 
Ca2+, NH4+, etc.) [20.01.01.01]

0.0007315 VMA2 CUP5 TOK1 MNR2 VMA6 
STV1 VPH1

7 68

siderophone-iron transport 
[20.01.01.01.01.01]

0.002052 FTH1 AFT1 FET3 3 12

homeostasis of metal ions (Na, K, Ca 
etc.) [34.01.01.01]

0.006003 FTH1 CUP5 AFT1 TOK1 MNR2 
MAC1 FET3

7 98

transport ATPases [20.03.22] 0.00621 VMA2 CUP5 VMA6 STV1 VPH1 5 53
metabolism of secondary products 
derived from L-lysine, L-arginine and 
L-histidine [01.20.31]

0.006963 JJJ3DPH2 2 6

endocytosis [20.09.18.09.01] 0.009743 FTH1 RVS161 CUP5 YPK1 WHI2 5 59

Nickel toxicity modulating networks identified with proteins whose absence renders cells sensitive to NiSO4Figure 2
Nickel toxicity modulating networks identified with proteins whose absence renders cells sensitive to NiSO4. 
The yeast protein interactome consisting of 5,433 proteins, 14,656 protein-protein interactions, and 5,621 protein-DNA inter-
actions was compiled using the program Cytoscape. Proteins corresponding to nickel sensitive gene deletion strains were 
mapped onto the interactome and then filtered to identify connected groups of proteins (N => 2). Straight lines indicate pro-
tein-protein interactions and arrows indicate DNA-protein interaction.
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and endocytosis of plasma membrane proteins (figure
2c).

Deletion strains of Apl6p and Apm3p, subunits of the
yeast alkaline phosphatase pathway (AP-3 complex) that
functions in protein transport from the Golgi directly to
the vacuole without proceeding through an endosome
intermediate, exhibited nickel-sensitivity (figure 2b).
Deletion strains of components of the AP-3 complex have
been shown to be specifically associated with cellular sen-
sitivity to nickel [32]. It is unclear why gene deletion of
components of the alkaline phosphatase pathway renders
cells sensitive to nickel while deletion of components of
other transport pathways to the vacuole results in nickel-
resistance (discussed below).

The fourth nickel toxicity modulating network includes
the protein-DNA interaction between Nrg1 and Coy1
(Ykl179C) (figure 2d). Nrg1 is a transcriptional repressor
that mediates glucose repression and negatively regulates
a variety of processes including filamentous growth and
the alkaline pH response [40-43]. Coy1 (Ykl179C) is a
Golgi membrane protein, with similarity to mammalian
Casp, with a suggested role in intra-Golgi retrograde trans-
port. Coy1 physically interacts with Rad1, a single-
stranded DNA endonuclease subunit of Nucleotide Exci-
sion Repair Factor 1 (NEF1), homolog of human XP.
RAD1 interacts with Yhr033W, a putative protein of
unknown function. Because the biological function of
both Coy1 and Yhr033W is not well understood, the bio-

logical relevance of their interaction with Rad1 cannot be
explained at the moment. Interestingly, Rim101, whose
gene deletion strain is resistant to nickel (Table 2), has
been recently implicated in the control of cell wall assem-
bly and is a direct transcriptional repressor of Nrg1 [41].
Rim101 governs pH-dependent responses by repressing
Nrg1, and Nrg1p negatively regulates alkaline pH-
induced genes [41]. The deletion strain of Rim101 exhib-
its reduced nickel ion accumulation levels and is also
resistant to cadmium [31]. There is also a protein-DNA
interaction between Nrg1p and Ykl177W, a dubious open
reading frame.

A nickel toxicity modulating network was identified
between Ura7p and Swm1p (figure 2e) and the interac-
tion between Ctk1p and Sse2p (figure 2f). Ura7p is
involved in the final step in the de novo biosynthesis of
pyrimidines and Swmp1 is a subunit of the anaphase-pro-
moting complex, an E3 ubiquitin ligase that regulates the
metaphase-anaphase transition and exit from mitosis.
Ctk1p is the catalytic alpha subunit of the C-terminal
domain Kinase I (CTDK-1) involved in transcription and
pre-MNA 3'end processing, and translational fidelity and
Sse2p is a member of the heat shock protein 70 (hsp70)
family.

The last nickel toxicity modulating network is the interac-
tion between Hpr1 and Mft1 (figure 2g), components of
the evolutionarily conserved THO nuclear complex,
present in a larger complex, termed, TREX, and with com-

Table 2: Functional categories overrepresented with proteins whose absence renders cells more resistant to NiSO4.

MIPS Functional Category p-value In Category from Cluster # Nickel Toxoicity Modulating Total in Category

vacuolar/lysosomal transport 
[20.09.13]

<1e-14 VPS8 BSD2 STP22 VPS64 PEP7 
VPS3 VPS29 VPS35 VPS25 SNF7 
VTA1 VPS38 VPS36 VPS20 VPS75 
VPS27 TLG2 VMA4 VTS1 SNF8 
VPS28 BRO1 VPS30

23 153

protein targeting, sorting and 
translocation [14.04]

2.18e-13 VPS8 SEC66 BSD2 STP22 VPS64 
PEP7 VPS3 GOS1 VPS29 PEP8 
VPS35 VPS25 SNF7 VPS38 VPS36 
VPS75 VPS27 TLG2 RTG1 VPS5 
VPS17 SNX3 VTS1 SNF8 VPS28 
VPS30 TRE1

27 261

intra Golgi transport [20.09.07.05] 2.039e-05 GOS1 PEP8 VPS35 VPS36 VPS27 
VPS5

6 33

regulation of C-compound and 
carbohydrate metabolishm 
[01.05.25]

7.105e-05 TPS1 REG1 NGG1 SSN2 RTG2 
VPS25 SNF7 VPS36 RTG1 SNF8

10 126

vacuole or lysosome[42.25| 0.0001109 KCS1 DOA4 VTC1 VPS29 TLG2 
VAM10

6 44

transcription, repression 
[11.02.03.04.03]

0.0001137 RIM101 VPS25 VPS36 SFL1 SNF8 5 28

chromosome segregation/division 
[10.03.04.05]

0.003745 IML3 CHL4 MCM21 NNF2 CTF19 5 59

vesicular transport (Golgi network, 
etc.) [20.09.07]

0.008728 PMR1 VPS29 VPS17 VPS30 APL5 5 72
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ponents of the nuclear export machinery [44-48]. The
THO/TREX complex is functionally involved in mRNP
biogenesis and transport, required for transcriptional
elongation, and is a key player in the coupling of tran-
scription and RNA export [44-48]. Our finding that mem-
bers of the THO complex play a role in the toxicity of yeast
cells to NiSO4 is supported by a recent finding that
described the sensitivity of deletion strains of proteins
involved in nucleocytoplasmic transport (including pore
complex formation, and functionality) to both nickel and
cadmium [32]. The deletion strain of Mft1, a subunit of
the THO nuclear complex, was identified as the most sen-
sitive strain to nickel in our secondary validation screen
and the deletion strain of Hpr1 was identified as the six-
teenth most sensitive strain (Additional file 2). The exact
role that the nucleocytoplasmic transport process, more
specifically the THO complex, plays in nickel toxicity still
needs to studied.

Functional categories overrepresented and nickel 
resistance networks identified with proteins whose 
absence renders cells resistant to NiSO4
Functional categories overrepresented with proteins
whose absence renders cells resistant to nickel were iden-
tified using FunSpec (Table 2).

Vacuolar/lysosomal transport and function
A number of deletion strains whose gene deletion product
is a component of the multivesicular body sorting (MVB)
pathway were found resistant in our screen. The MVB sort-
ing pathway provides a mechanism for lysosomal degra-
dation of transmembrane proteins and plays a critical role
in a diverse range of processes, including growth factor
receptor down-regulation, antigen presentation, develop-
mental signaling, and the budding of enveloped viruses.
Three high molecular weight cytoplasmic complexes func-
tion in MVB sorting, the endosomal sorting complexes
(ESCRT) I, II, and III. The ESCRT-I complex (Vps23,
Vps28, and Vps37) recruited to endosomes by Vps27,
interacts with ubiquitinated proteins and initiates the
MVB sorting reaction [49]. The ESCRT-II complex (Snf8,
Vps36, and Vps25) functions downstream of ESCRT-I [50]
and then recruits the ESCRT-III subunits (Snf7, Vps20,
Vps2, and Vps24) to the endosome, where they oligomer-
ize to form the ESCRT-III complex [51]. ESCRT-III recruits
accessory factors such as Bro1, which in turn recruits Doa4
[52,53], the deubiquitinating enzyme that removes ubiq-
uitin from MVB target proteins before their sorting into
MVB vesicles. ESCRT-III also recruits the AAA-type ATPase
Vps4 that catalyzes the disassembly of the ESCRT machin-
ery and recycles the ESCRT complexes into the cytosol to
allow further rounds of target protein sorting [54]. The
importance of the MVB sorting pathway in the toxicity of
S. cerevisiae to nickel compounds is evident by the fact that
many deletion strains of members of this pathway were

found resistant to nickel in our screen. For example, mem-
bers of the ESCRT complexes I (Vps28), and Stp22 that
interacts with Vps28, II (Snf8, Vps36, Vps25), and III
(Snf7, Vps20) were found resistant to NiSO4 (Table 2).
Deletion strains of Bro1 and the ubiquitinating enzyme
Doa4 were also found resistant, as well as, Vta1, a protein
in the MVB pathway that regulates the activity of Vps4.
Additionally, two nickel resistance networks were identi-
fied in the MVB pathway (figure 3b and figure 3g). The
relationship between the toxicity of yeast cells and the
resistance of deletion strains of the MVB pathway to nickel
compounds is not clear. However, recently it was shown
that deletion strains of the MVB pathway (including Bro1
and Snf8) exhibited resistance to NiCl2 and a reduction in
intracellular nickel ion accumulation levels suggesting
that export and or reduced uptake may underlie the nickel
resistance displayed by these mutant strains [32,55].

Targeting, sorting, translocation of proteins and intra-Golgi transport
The gene product of deletion strains resistant to nickel
also included proteins targeted, sorted and translocated to
the Golgi (Table 2). For example, the Vps29, Vps35, Vps5,
Vps17 and Pep8 multimeric membrane-associated retro-
mer complex essential for endosome-to-Golgi retrograde
protein transport was identified as one of the nickel resist-
ance networks (figure 3e). Also involved in endosome-to-
Golgi protein transport is Snx3p, a sorting nexin, Vps27,
an endosomal protein required for recycling Golgi pro-
teins, components of t-SNARE (Tlg2p), v-SNARE (Vts1p
and Gos1p) and Pmr1, a high affinity Ca2+/Mn2+ P-type
ATPase required for Ca2+ and Mn2+ transport into the
Golgi (Table 2). The deletion strain of Pep7p, essential for
targeting of vesicles to the endosome and required for vac-
uole inheritance (Golgi to vacuole transport), compo-
nents of the CORVET complex (Vps8p and Vps3p),
required for localization and trafficking of the CPY sorting
receptor from late endosome to vacuole, and Vps38, that
functions in carboxypeptidase Y (CPY) sorting were also
found resistant to nickel (Table 3). The last nickel resist-
ance network indentified is the interaction between Vps8p
and Stp22p (figure 3j). Vps8 is a component of the COR-
VET complex required for CPY sorting receptor from late
endosome to vacuole and Stp22p is a component of the
ESCRT-1 complex in the MVB pathway (discussed above).
The interaction between Vps8p and Stp22p further vali-
dates our results of the involvement of components of the
MVB pathway and endosome to vacuole transport in
mediating the toxicity S. cerevisiae cells to nickel com-
pounds.

Transcriptional repression and regulation of C-compound and 
carbohydrate metabolism
The MIPS functional category, transcription repression,
includes Rim101p, Vps25p, Vps36p, Sfl1p, and Snf8p.
Rim101 is involved in cell wall construction and cellular
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response to pH changes (discussed above) (Table 2) [41].
Vps25, Vps36, and Snf8, components of the ESCRT-II
complex, are also involved in derepressing the expression
of glucose repressed genes. The ESCRT-II complex subu-
nits are the yeast orthologues of the human RNA polymer-
ase II elongation factor ELL associated proteins (EAPs)
that together with ELL form a 'holo-ELL complex' that
increases the catalytic rate of transcription elongation by
RNA polymerase II in vitro [56]. The possibility that the
ESCRT-II complex has acquired a nuclear function in
mammalian cells and lost its importance in membrane
trafficking has been postulated since it's believed that
these subunits might be dispensable for MVB sorting in
mammals [56,57]. Also resistant in our screen is the Sfl1
transcriptional repressor and activator of stress response
genes as well as the nickel resistance interaction network
involved in transcriptional regulation between
Ynl288Wp, Srb9p, and Sfl1p and the interaction between
Reg1p and Tps1p involved in carbohydrate metabolism
and stress response (figure 3c and figure 3i).

Chromosome segregation and division
Interestingly, components of the chromosome segrega-
tion/division MIPS functional category were found over-
represented in our list of nickel-resistant strains (Table 2,
figure 3a). These include: Ydr455Cp, Mcm21p, Mcm19p,
Chl4p, and Ctf19p, subunits of the outer kinetochore
required for choromosome stability that provide a link

between centromere DNA binding proteins of the inner
kinetochore and microtubule-binding proteins. To the
best of our knowledge, the subunits of the outer kineto-
chore have not been previously linked to nickel toxicity.
Additionally, a nickel resistance network was found
between Ygr089W, involved in chromosome segregation,
and Yel043W, a cytoskeletal protein (figure 3f).

Other nickel resistance networks identified include the
interaction between Ynl056W, Ynl099C, Siw14, and
Ycr095C, that plays a role in cell cycle arrest in response to
oxidative DNA damage (figure 3d), and the interaction
between Dal81, a positive regulator of genes in multiple
nitrogen degradation pathways, and Yhr011W, a probable
mitochondrial seryl-tRNA synthetase (figure 3h).

Functional categories overrepresented with proteins that 
have a similar human protein whose gene deletion renders 
cells sensitive or resistant to NiSO4
We further restricted our list of proteins whose absence
renders cells sensitive or resistant to nickel to only those
proteins that have a similar protein in human cells. A pro-
tein in human cells similar in amino acid sequence to the
yeast protein was identified for 68% of the proteins whose
gene deletion cause sensitivity or resistance to NiSO4.
Note that only the top scoring human protein was used.
This analysis identified 111 nickel-sensitive and 72 resist-
ant strains. To further study the degree of sensitivity or

Nickel resistance networks identified with proteins whose absence renders cells resistant to NiSO4Figure 3
Nickel resistance networks identified with proteins whose absence renders cells resistant to NiSO4. The yeast 
protein interactome consisting of 5,433 proteins, 14,656 protein-protein interactions, and 5,621 protein-DNA interactions was 
compiled using the program Cytoscape. Proteins corresponding to nickel resistant gene deletion strains were mapped onto the 
interactome and then filtered to identify connected groups of proteins (N => 2). Straight lines indicate protein-protein interac-
tions and arrows indicate DNA-protein interaction.
Page 8 of 14
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resistance of each deletion strain in our phenotypic
screen, the IC50 for each deletion strain was analyzed in a
secondary validation screen and the target strains were
arranged based on their degree of sensitivity to NiSO4.
Sensitivity increased with decreasing IC50 and resistance
increased with increased IC50. A list of proteins corre-
sponding to the nickel sensitive and resistant strains iden-
tified in our screen including yeast systematic number,
symbol, function, similar human protein and IC50 is
included in Additional file 2.

Functional categories overrepresented in the list of nickel-
sensitive and resistant deletion strains whose gene dele-
tion product has a similar human protein are provided in
Additional files 3 and 4. The five nickel toxicity modulat-
ing and four nickel-resistance networks are included in
Additional files 5 and 6. The cell cycle MIPS functional
category emerged as a category not previously identified
in our initial analysis of yeast proteins with and without
similar human proteins (Table 1). This category includes
the Pin4, Far7, and Far10 proteins (Additional file 3).
Pin4p, containing an RNA recognition motif, is involved
in normal G2/M cell cycle progression and is hyperphos-
phorylated in response to DNA damage [58]. Its human
homologue, the cleavage stimulation factor 64 kDa subu-
nit, tau variant, is also an RNA-binding protein phospho-
rylated upon DNA damage [59,60]. Far7p and Far10p
interact and have been shown to be involved in G1 cell
cycle arrest in response to pheromone [61]. The human
homologue of Far7, tpr, is involved in protein import into
the nucleus and is also phosphorylated upon DNA dam-
age [60,62]. The human homologue of Far10, the Centro-
mere protein F (CENP-F), is involved in chromosome
segregation during mitosis; CENP-F is hyperphosphor-
ylated during mitosis and upon DNA damage, and gradu-
ally accumulated during the cell cycle [60,63]. In general,
checkpoints control the ability of cells to arrest in a spe-
cific phase of the cell cycle in response to DNA damage or
other stresses, and allow the cell enough time to recruit
and activate repair machineries, and to repair the damage
before passing to the next cell cycle phase. Although Ni
(II) is a weak DNA-damaging agent, it has been shown to
interfere with nucleotide and base excision repair at low
noncytotoxic concentrations [64]. Additionaly, nickel-
induced effects on the cell cycle have been previously
reported [64-66]. Analysis of the cell-cycle effect of a 24 h
exposure to 1 mM NiCl2 in A549 cells indicated a loss in
the amount of cells in S phase and a corresponding
increase in the percentage of cells in G1 but no significant
change in cells in G2/M [65,66]. Because impairment of
protective mechanisms by nickel compounds and other
toxic metals may lead to increased toxicity and increased
risk of carcinogenesis, future investigations should focus
on the mechanism(s) by which nickel induces G1 cell
cycle arrest, for example, by inducing DNA damage or by

inhibiting DNA damage repair activity, or by both. As S.
cerevisiae has proven to be an excellent model organism,
and one in which parallel processes with homologous
gene products can be determined in mammalian cells,
future studies will examine the role that these human
homologues may play in regulating toxicity to nickel in
human cells. Additionally, we will examine if the path-
ways found overrepresented with those proteins whose
absence renders cells more sensitive or resistant to nickel
are also affected in human cells in response to nickel
exposure.

Conclusion
Genomic phenotypic screens have been useful in the past
to determine the role of nonessential proteins in modulat-
ing toxicity after exposure to an environmental agent [1,5-
10]. Here, we have screened a library of S. cerevisiae single-
gene deletion mutant strains corresponding to the com-
plete set of 4733 nonessential yeast genes with NiSO4 to
identify those strains most sensitive or resistant to nickel.
We have identified 149 genes whose gene deletion causes
sensitivity to NiSO4 and 119 genes whose gene deletion
confers resistance. Pathway analysis with the list of pro-
teins whose gene deletion causes sensitivity and resistance
to nickel identified a wide range of cellular processes
engaged in the toxicity of S. cerevisiae to NiSO4. Func-
tional categories overrepresented with proteins whose
absence renders cells sensitive to NiSO4 include homeos-
tasis of protons, cation transport, transport ATPases,
endocytosis, siderophore-iron transport, homeostasis of
metal ions, and the diphthamide biosynthesis pathway.
Functional categories overrepresented with proteins
whose absence renders cells resistant to nickel include
functioning and transport of the vacuole and lysosome,
protein targeting, sorting, and translocation, intra-Golgi
transport, regulation of C-compound and carbohydrate
metabolism, transcriptional repression, and chromosome
segregation/division. Seven nickel toxicity modulating
networks and ten nickel resistance networks were identi-
fied. The biological function of the nickel toxicity modu-
lating networks and resistance networks also highlight the
pathways described above as well as identify components
of the alkaline phosphatase pathway and THO nuclear
complex as mediating sensitivity to nickel. Additionally,
we studied the degree of sensitivity or resistance to nickel
of the 111 nickel-sensitive and 72 resistant strains whose
gene deletion product has a similar protein in human
cells.

Several genome-wide phenotypic screens have examined
the toxicity of S. cerevisiae to metal compounds
[30,32,55,67,68]. To date, one study has reported data
from a genomic phenotypic screen using NiCl2 and
another study screened a S. cerevisiae library with NiCl2
and measured the intracellular Ni ion levels of each dele-
Page 9 of 14
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tion strain in the library [32,55]. We found that 15% of
our sensitive strains and 31% of our resistant strains over-
lapped with those identified by Ruotolo et al. and 9% of
our sensitive and 13% of our resistant strains overlapped
with those identified by Eide et al. [32,55]. The small over-
lap found between our study and that of Ruotolo et al. and
Eide et al. could be due to the differences in the back-
ground of the strains used as well as the fact that while our
phenotypic screen was carried out using NiSO4, both
these screens were carried out using NiCl2. Also worthy of
note is that while our phenotypic study screened for
growth advantage and disadvantage under NiSO4 expo-
sure the Eide et al. identified gene deletion strains whose
intracellular Ni ion levels differed from the parental strain
but whose growth may or may not have been affected by
nickel exposure. In the past the overlap between data of
two different phenotypic screens has been between 10-
20% since screens are usually carried out in dissimilar
conditions and the sensitivity or resistance of strains to a
specific agent may be determined differently [69]. Apart
from the small overlap in strains found between our study
and that of Routolo et al., many of the same pathways
were found overrepresented in both studies. Ruotolo et al.
also reported a sensitivity to nickel exhibited by deletion
strains whose gene product is involved in the V-ATPase
and endocytosis, Golgi-to-vacuole transport, nucleocyto-
plasmic transport, and the alkaline phosphatase pathway
and a resistance to nickel by strains whose gene product is
involved in the MVB pathway, endosome transport, and
endosome-to-Golgi transport retrograde transport [32].

Data from phenotypic screens with metals has identified
several common pathways that modulate metal tolerance
in S. cerevisiae. As is the case with nickel, deletion strains
of V-ATPase subunits and vacuolar transport and function
have been found sensitive to cadmium, mercury, arsenite,
cobalt, zinc, and iron [32]. The vacuole appears to be a hot
spot for metal toxicity since vacuolar transport allows
metal sequestration in the vacuole preventing damage to
the cell and may be important for processing and traffick-
ing of response proteins and removing damaged proteins.
Nucleocytoplasmic transport, iron transport, and Golgi-
to-vacuole transport may also be hot spots for metal tox-
icity since deletion strains of proteins involved in these
pathways were also found sensitive to cadmium [32].
Chelating metals, sequestering metals into vacuoles, and
reducing cellular stress are fundamental processes for
mediating resistance to metals by S. cerevisiae [30].

Metal-specific responses in mediating toxicity of S. cerevi-
siae to an exogenous agent have also been reported
[30,32,55,67,68]. For example, mutants sensitive to
nickel are significantly enriched in stress-related transcrip-
tion regulation, tubulin folding, signal transduction, the
secretory pathway and response to stimulus while

mutants sensitive to cadmium are enriched in cell surface
receptor linked signal transduction, morphogenesis, chro-
matin modification, glutathione biosynthesis and DNA
damage [30]. A metal-specific response identified in both
our study and that of Ruotolo et al. is the resistance of
deletion strains of components of the MVB pathway
(ESCRT complexes) to nickel. It is unclear at the moment
why deletion of components of the ESCRT complex
render cells resistant to nickel but sensitive to other metals
such as cobalt and cadmium [32]. Another nickel-specific
response identified in both the Ruotolo et al. study and
our study is the sensitivity of deletion strains of compo-
nents of the alkaline phosphatase pathway. It is also
unknown why deletion of components of the alkaline
phosphatase pathway renders cells sensitive to nickel
while deletion of components of other transport path-
ways to the vacuole results in nickel-resistance. However,
our most interesting findings are the increased sensitivity
of deletion strains of components of the diphthamide
biosynthesis pathway to nickel and the resistance of dele-
tion strains of proteins involved in chromosome segrega-
tion and division. The results of this study suggest a
possible role of the evolutionarily conserved diphthamide
biosynthesis pathway as well as components of the outer
kinetochore involved in chromosome segregation in
mediating nickel toxicity in S. cerevisiae.

We have undertaken a whole genome approach in order
to further understand the mechanism(s) regulating the
cell's toxicity to nickel compounds and have used compu-
tational methods to integrate the data and generate global
models of the yeast's cellular response to NiSO4. Future
studies will focus on determining if the gene product of
the nickel sensitive and resistant strains regulates the level
of nickel ions within the cell. We would also like to deter-
mine if the same pathways identified in mediating toxicity
of S. cerevisiae to nickel also play a role in regulating the
toxicity of human cells to nickel compounds.

Methods
S. cerevisiae genomic phenotypic screen with NiSO4
Genomic phenotyping with the S. cerevisiae strain BY4741
and single-gene deletion mutant derivatives correspond-
ing to the nonessential yeast genes was performed as pre-
viously described [1,5]. Briefly, 96-well master plates
containing individual deletion strains were grown in 150
μl of YPD (10 g yeast extract, 20 g peptone, 20 g dextrose,
20 g agar/liter), containing G418 at 200 μg/ml. Settled
cells in each position of the 96-well plate were resus-
pended with 60 μl bursts of forced air from a Hydra liquid
handling apparatus (Robbins Scientific), and then using
the Hydra, 1 μl samples were spotted simultaneously onto
an agar-containing plate. NiSO4 was purchased from
Sigma. Plates containing up to 96 strains were tested
under the following conditions: no treatment, 0.75 mM
Page 10 of 14
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(low concentration) and 1.25 mM (high concentration)
NiSO4. Strains were grown for 60 hrs at 30°C and then
imaged with AlphaImager software (Alpha Innotech Cor-
poration, San Leandro, CA). The screen was performed in
triplicate with fresh liquid cultures. Sensitive and resistant
strains were identified by visual inspection of the images.
Strains were labeled sensitive to NiSO4 if nickel treatment
inhibited its growth. Strains were labeled resistant if
nickel treatment did not inhibit its growth. The single
gene deletion of random strains was verified using a
standard genomic DNA PCR protocol with primers flank-
ing 100 bp upstream of the transcriptional start site and
100 bp downstream of the stop site of the specific gene
knocked out. This confirmed that strains in the library
contain a single gene deletion knockout and had not been
contaminated with other strains.

Secondary screen
A secondary screen of those strains identified in the pri-
mary screen whose gene deletion product have a protein
in human cells similar in amino acid sequence was per-
formed by calculating the Inhibitory Concentration (IC50)
of each individual deletion strain to NiSO4 using the
Graph Pad Prism 5 software. Briefly, 96 well plates con-
taining individual deletion strains were grown in 200 μl of
YPD media containing G418 at 200 μg/ml and increasing
doses of NiSO4. The concentrations of NiSO4 used in the
secondary screen were: no treatment, 0.375 mM, 0.75
mM, 1.0 mM, 1.25 mM, and 2.5 mM NiSO4. The cultures
were incubated at 30°C for 20 h. Growth of each strain
after treatment was monitored by measuring the cell den-
sity at 590 nM using the Perkin Elmer HTS 7000 Bio Assay
Reader. The IC50 is defined as the concentration of NiSO4
that inhibits 50% of the growth of each individual strain
compared to the growth of that strain under no treatment.
Similar proteins between S. cerevisiae and humans were
identified using the BLAST program available from the
National Center for Biotechnology Information [70]. The
S. cerevisiae protein sequence was used to query the trans-
lated nucleotide database specific to humans. Note only
the top scoring human protein was used.

Data analysis
The program FunSpec was used to identify those func-
tional categories overrepresented with our list of proteins
whose absence renders cells sensitive or resistant to nickel.
Our list of the gene deletion products sensitive and resist-
ant to nickel were input into FunSpec, and FunSpec, based
on prior knowledge, integrates the data and provided a
summary of the MIPS functional categories overrepre-
sented in the list [71]. The p-values in FunSpec represent
the probability that the intersection of a given list with
any functional category occurs by chance. Interactome
analysis was done using the program Cytoscape. S. cerevi-
siae protein interaction information was downloaded

from the Database of Interacting Proteins (DIP). Protein-
DNA interactions were derived from a previously pub-
lished study [72]. Protein-protein interaction information
was imported into Cytoscape for network visualization
and subnetwork filtering. Filtering was performed by
highlighting Ni-toxicity modulating proteins and their
associated protein-protein and protein-DNA interactions
[73-75].
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Additional file 1
Proteins corresponding to the gene product of the S. cerevisiae NiSO4-
sensitive and resistant gene deletion strains. The table includes the yeast 
systematic number of the 149 S. cerevisiae proteins whose gene deletion 
causes sensitivity to NiSO4 and 119 proteins whose gene deletion causes 
resistance.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-524-S1.XLS]

Additional file 2
Proteins corresponding to the gene product of the S. cerevisiae NiSO4-
sensitive and resistant gene deletion strains. The table includes the yeast 
systematic number, symbol, function, and human homologue to the pro-
tein corresponding to the gene product of NiSO4 sensitive and resistant 
gene deletion strains identified in our screen. The list is arranged from 
lowest to highest IC50. Sensitivity to NiSO4 increases with decreasing IC50 

and resistance increases with increasing IC50.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-524-S2.XLS]
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Additional file 3
Functional categories overrepresented with proteins (that have a sim-
ilar human protein) whose absence renders cells more sensitive to 
NiSO4. Functional categories overrepresented with proteins whose 
absence renders cells sensitive to nickel were identified using FunSpec.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-524-S3.PPT]

Additional file 4
Functional categories overrepresented with proteins (that have a sim-
ilar human protein) whose absence renders cells more resistant to 
NiSO4. Functional categories overrepresented with proteins whose 
absence renders cells resistant to nickel were identified using FunSpec.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-524-S4.PPT]

Additional file 5
Nickel toxicity modulating networks identified with proteins (that 
have a similar human protein) whose absence renders cells more sen-
sitive to NiSO4. The yeast protein interactome consisting of 5,433 pro-
teins, 14,656 protein-protein interactions, and 5,621 protein-DNA 
interactions was compiled using the program Cytoscape. Proteins corre-
sponding to nickel sensitive gene deletion strains were mapped onto the 
interactome and then filtered to identify connected groups of proteins (N 
=> 2). Straight lines indicate protein-protein interactions.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-524-S5.JPEG]

Additional file 6
Nickel resistance networks identified with proteins (that have a simi-
lar human protein) whose absence renders cells more resistant to 
NiSO4. The yeast protein interactome consisting of 5,433 proteins, 
14,656 protein-protein interactions, and 5,621 protein-DNA interactions 
was compiled using the program Cytoscape. Proteins corresponding to 
nickel resistant gene deletion strains were mapped onto the interactome 
and then filtered to identify connected groups of proteins (N => 2). 
Straight lines indicate protein-protein interactions and arrows indicate 
DNA-protein interaction.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-524-S6.JPEG]
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