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Abstract
Background: Advancement in gene profiling techniques makes it possible to measure expressions
of thousands of genes and identify genes associated with development and progression of cancer.
The identified cancer-associated genes can be used for diagnosis, prognosis prediction, and
treatment selection. Most existing cancer microarray studies have been focusing on the
identification of genes associated with a specific type of cancer. Recent biomedical studies suggest
that different cancers may share common susceptibility genes. A comprehensive description of the
associations between genes and cancers requires identification of not only multiple genes
associated with a specific type of cancer but also genes associated with multiple cancers.

Results: In this article, we propose the Mc.TGD (Multi-cancer Threshold Gradient Descent), an
integrative analysis approach capable of analyzing multiple microarray studies on different cancers.
The Mc.TGD is the first regularized approach to conduct "two-dimensional" selection of genes with
joint effects on cancer development. Simulation studies show that the Mc.TGD can more
accurately identify genes associated with multiple cancers than meta analysis based on "one-
dimensional" methods. As a byproduct, identification accuracy of genes associated with only one
type of cancer may also be improved. We use the Mc.TGD to analyze seven microarray studies
investigating development of seven different types of cancers. We identify one gene associated with
six types of cancers and four genes associated with five types of cancers. In addition, we also identify
11, 9, 18, and 17 genes associated with 4 to 1 types of cancers, respectively. We evaluate prediction
performance using a Leave-One-Out cross validation approach and find that only 4 (out of 570)
subjects cannot be properly predicted.

Conclusion: The Mc.TGD can identify a short list of genes associated with one or multiple types
of cancers. The identified genes are considerably different from those identified using meta analysis
or analysis of marginal effects.

Background
Microarrays have been extensively used to profile tissues
on a genome-wide scale. Genes identified from microar-
ray studies can be used as cancer markers for diagnosis,

prognosis prediction, and treatment selection. As an
example, microarray gene signatures have been used in
breast cancer and lymphoma clinical practices [1]. In this
article, we focus on microarray studies where gene expres-
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sions are measured along with certain cancer clinical out-
comes. The goal of such studies is to identify genes with
important impacts on the clinical outcomes of interest,
which may include risk of developing cancer, cancer sta-
tus, cancer survival, and response to treatment [2].

Analysis of cancer microarray data is challenging first
because of the high dimensionality of gene expressions. In
addition, unlike simple Mendelian diseases, development
and progression of cancer are affected by the joint effects
of multiple genetic defects. This in turn demands mode-
ling the joint effects of a large number of genes in a single
statistical model and makes analysis of one gene at a time
(i.e, marginal gene effects) suboptimal. Moreover, out of
a large number of genes surveyed, only a subset are cancer-
associated. To discriminate those cancer-associated genes
from noises, various filter, wrapper, and embedded statis-
tical methods have been developed [3].

In most existing studies, attentions have been focused on
analysis of a single dataset and identification of genes
associated with a single cancer clinical outcome. Consider
a hypothetical study where we are interested in identifying
genes associated with development of breast cancer.
Assume that there are five genes of interest: genes A-E. The
goal of most existing studies corresponds to the first col-
umn of Table 1, which is to distinguish between cancer-
associated genes A and B from noisy genes C, D, and E. In
this article, we refer to such a gene selection study as "one
dimensional". That is, selection is only carried out on the
genes.

All cancer cells share two essential characteristics: uncon-
trolled growth and local tissue invasion or metastasis. In
addition, there is strong evidence that certain cancers
share common susceptibility genes. Examples include the
BRCA1 and BRCA2 tumor suppressor genes, whose muta-
tions are associated with the inherited forms of both
breast and ovarian cancers [4]. Over-expression of the
HER-2 oncogene has been reported in 10-40% of primary
breast and ovarian tumors and is strongly associated with
a poor clinical prognosis [5]. Gene WWOX is a tumor sup-
pressor gene mutated in both breast and prostate cancers

[6]. Gene ADH is associated with development of lung
cancer and head/neck cancer [7,8]. The wound response
signature, which is a breast cancer prognostic gene signa-
ture, also has predictive power for prognosis of lung can-
cer and prostate cancer [9]. Simultaneously examining
multiple cancers and searching for their common
genomic basis will enable us to identify more essential
features of cancer and lead to a better understanding of
the subtle connections among different types of cancers
[10].

When studying a single type of cancer, genes can be cate-
gorized simply as either cancer-associated or not. Selec-
tion only needs to be conducted at the gene dimension.
When studying multiple cancers, the categorization
becomes more complicated. Consider the hypothetical
study presented in Table 1. Suppose that, in addition to
breast cancer, we are also interested in ovarian and lung
cancers. Among the five genes, gene A is associated with
all three types of cancers. Genes B and C are associated
with two types of cancers. Gene D is associated with only
one type of cancer, and gene E is not associated with any
of the three cancers. Examination of Table 1 suggests that
development of breast and ovarian cancers may share a
common genomic mechanism, which likely involves the
protein encoded by gene B. However, such a mechanism
may have no effect on development of lung cancer. When
multiple genes and multiple cancers are considered, selec-
tion needs to be carried out at two dimensions: (a) the
gene dimension. For each type of cancer, genes associated
with its development need to be identified. For example,
for ovarian cancer, this dimension of selection amounts to
differentiating genes A-C from genes D and E; and (b) the
cancer dimension. For each gene, we are interested in
identifying cancers it is associated with. For example, for
gene B, this dimension of selection amounts to differenti-
ating breast and ovarian cancers from lung cancer. Of
note, although there are studies investigating multiple
genes and multiple cancers, none of them formally con-
siders this as a two-dimensional selection problem.

Studies conducted to identify genes associated with mul-
tiple cancers include [11], where 218 tumor samples span-
ning 14 common tumor types and 90 normal tissue
samples were collected and analyzed to identify a gene sig-
nature that is differentially expressed in metastatic tumors
of diverse origins relative to primary cancers. A "support
vector machine + recursive feature elimination" approach
is proposed. Such an approach is limited to categorical
clinical outcomes. We note that the data structures and
scientific questions of interest in [11] and their counter-
parts in this article are significantly different. More specif-
ically, [11] has one multiclass classification problem,
whereas we have multiple binary classification problems.
Rhodes et al. [10] examined 21 cancer microarray datasets

Table 1: A hypothetical study.

Cancer Development
Gene Breast Ovarian Lung

A X X X
B X X
C X X
D X
E

"X" indicates an association between the corresponding gene and 
cancer development.
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spanning 12 distinct cancer types and identified a set of 67
genes that are universally activated in most cancer types
relative to normal tissues. The approach proposed in [10]
can only study the marginal effects of genes, whereas can-
cer development is associated with the joint effects of
multiple genetic defects. Segal et al. [12] pooled 1975
human DNA microarrays spanning 22 tumor types and
characterized gene expression profiles in tumors as a com-
bination of activated and deactivated modules. An
approach similar to the Fisher's meta analysis approach is
proposed, which can study the marginal effects of genes
only. Chan and Mousavi [13] proposed a stochastic Baye-
sian approach to identify susceptibility genes shared by
development of breast and ovarian cancers. The SHEBA
approach demands selection of closely related cancers.
Considering our limited knowledge of mechanisms
beneath cancer development, potential applications of
this approach can be limited. Yang et al. [14] analyzed 4
cancer prognosis studies involving breast cancer, leuke-
mia, and mesothelioma and identified 42 genes that show
consistent up- or down-regulation in patients with poor
disease outcomes. An extension of the approach in [10] is
considered, which can only study the marginal effects of
genes. Xu et al. [15] collected 26 cancer datasets across 21
major human cancer types and identified a common can-
cer signature consisting of 46 genes. The proposed TSPG
approach is limited to categorical clinical outcomes and
hard to be extended. Choi et al. [16] analyzed 10 gene
expression datasets from cancers of 13 different tissues
and constructed two distinct coexpression networks: a
tumor network and a normal network. This study focuses
on analyzing the pair-wise interactions between genes. Lê
Cao et al. [17] analyzed the NCI60 datasets, where the
transcriptome of 60 cancer cell lines was investigated. The
sparse partial least squares (sPLS) method was used,
which cannot be easily extended to other data setup/mod-
els.

Existing methods for analyzing multiple cancer microar-
ray datasets may have one or more of the following draw-
backs. First, attention has been focused on analyzing one
gene at a time (i.e, the marginal effects of genes). Examples
include [10,12,14,16] and others. Since development and
progression of cancer is caused by the joint effects of mul-
tiple genes, analyzing individual genes separately does not
make full use of information in data. In this study, we
include all genes in a single statistical model and account
for their joint effects. Second, the focus has been on iden-
tification of genes associated with all cancers being inves-
tigated. Such a strategy demands preselection of cancers
having a significantly overlapped genomic basis. For
example, in [13], only breast cancer and ovarian cancer -
which are known to share a common genomic basis - are
investigated. This strategy may have significant limita-
tions given the great heterogeneity among different can-

cers and our limited knowledge of cancer genomics. In
this study, we release this constraint, and allow the data to
reveal which cancers a particular gene may be associated
with. Third, multiple datasets are usually analyzed sepa-
rately. Then, summary statistics (for example p-values)
from analysis of each individual dataset are combined
using meta analysis methods to search for overlaps of
findings. Such an approach can be inefficient since micro-
array studies have small sample sizes, and analyzing each
individual dataset separately may have insufficient power
and may lead to high false positive and false negative
errors. Fourth, inefficient feature selection methods are
employed. For example, in [15], the number of cancer-
associated genes needs to be predetermined, and the heu-
ristic exhaustive search approach in [13] can accommo-
date only a small number of genes.

In this article, we propose a new statistical approach -
Mc.TGD (Multi-cancer Threshold Gradient Directed) - for
investigation of associations between multiple genes and
multiple cancers. The Mc.TGD is an integrative analysis
approach in which raw data from multiple studies are
pooled and analyzed. It differs significantly from meta
analysis methods, which analyze each dataset separately
and pool summary statistics. Unlike existing approaches,
the Mc.TGD can model the joint effects of multiple genes,
does not make assumptions on the genomic basis of can-
cers, uses effective gene selection techniques, and is
broadly applicable. In this article, we analyze studies
investigating the risk of developing cancer, which have
binary outcomes. The Mc.TGD can also be used to analyze
cancer microarray studies with survival, quantitative, and
categorical outcomes.

Results
Data collection
As shown in Table 2, we collect data from seven studies
conducted by different research groups who investigated
cancers of different tissues and used different profiling
platforms.

The normalized datasets have been downloaded from the
Stanford Microarray Database [18] and NCBI [19]. These
seven datasets have also been investigated in [16], where
three more datasets are analyzed. Including these three
additional datasets leads the number of genes measured
in all studies to decrease from 2207 to 371. To keep a rea-
sonable number of genes, only the seven studies described
in Table 2 are analyzed. Of note, although this study and
[16] analyze similar datasets, the two studies differ signif-
icantly in that ours analyzes multiple genes at a time and
seeks to identify those with important joint effects. In con-
trast, [16] analyzes one gene at a time. Thus, the two stud-
ies are not directly comparable. Rather, they investigate
different aspects of genes and complement each other.
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The following data processing is conducted for each data-
set separately. Negative values of Affymetrix measure-
ments are considered as missing. Genes with more than
70 missing values are filtered out. All of the expression
values are log 2 transformed. Each clone is mapped to a
UniGene accession based on UniGene build # 162. For
multiple clones matched to the same UniGene accession,
the one with the least missing values is chosen. Missing
measurements are imputed using the means of gene
expressions across samples. For each dataset, each gene
expression is normalized to zero mean and unit variance.
A consensus set of 2207 genes are identified.

For the breast, liver, lung and stomach cancer datasets, the
tumor sample sizes were much larger than the normal
sample sizes. We conduct the same selection as in [16],
which leads to an equal number of tumor and normal
samples.

Gene identification
We analyze the seven datasets using the Mc.TGD. With 5-
fold cross validation, (τ1, τ2, k) = (1.0, 0.85, 1311) are
selected as the optimal tuning parameters. Gene identifi-
cation results, including UniGene identifiers, gene names,
and estimated coefficients, are shown in the Additional
File 1. With the Mc.TGD approach, we conclude an asso-
ciation between a gene and cancer, if and only if a
nonzero estimated regression coefficient is observed. A
total of 60 genes are identified to be associated with one
or more types of cancers.

Gene MT1F (UniGene Hs.438737) is found to be associ-
ated with six types of cancers (all except breast cancer).
The MT1F gene belongs to the metallothionein (MT) fam-
ily, which encodes a family of cysteine-rich, low molecu-
lar weight proteins. Published studies on MT1F have
shown an association between this gene and a protective
effect against metal toxicity, involvement in the physio-
logic regulation of metals such as zinc and copper, and a
role in protection against oxidative stress. Since MTs play
an important role in transcription factor regulation, prob-
lems with MT function or expression may lead to cellular
changes that ultimately result in transformation to malig-
nant cells. Studies have found increased expressions of

MTs in cancers of the breast, colon, kidney, liver, lung,
nasopharynx, ovary, prostate, mouth, salivary gland, tes-
tes, thyroid, and urinary bladder. Early studies have also
found lower levels of MT expressions in hepatocellular
carcinoma and liver adenocarcinoma. Moreover, there is
evidence to suggest that higher levels of MT expressions
may lead to resistance to chemotherapeutic drugs. We
refer to [20-26] for studies that have identified MT1F as a
marker for various cancers. Although MT1F has been pre-
viously identified as a marker for breast cancer, our study
is unable to identify its association with breast cancer
using the data from [27]. There are multiple possible rea-
sons, including the small sample size, quality of data, and
possible limitations of the Mc.TGD.

Four genes are found to be associated with five types of
cancers. Gene Hs.15154 is sushi-repeat-containing pro-
tein, X-linked (SRPX). Its role in cancer development has
not been well investigated. Gene Hs.1560 is DNA cross-
link repair 1A (PSO2 homolog, S. cerevisiae) with official
symbol DCLRE1A. DNA interstrand cross-links prevent
strand separation, thereby physically blocking transcrip-
tion, replication, and segregation of DNA. DCLRE1A is
one of several evolutionarily conserved genes involved in
repair of interstrand cross-links [28]. It regulates BRCA1,
the obnoxious breast cancer susceptibility gene [29]. In
mice models, it has been shown that DCLRE1A co-regu-
lates with IGF-I. Suppression of IGF-I is associated with a
low incidence of kidney disease [30]. In addition, a signif-
icant association between DCLRE1A and the development
of lung cancer has been observed [31]. Gene Hs.418083
(official symbol RBP4) is retinol binding protein 4. This
protein belongs to the lipocalin family and is the specific
carrier for retinol in blood. It delivers retinol from the
liver stores to the peripheral tissues. RBP4 level can be
used as an index of cardiovascular disease risk in subclin-
ical hypothyroidism. Retinol binding protein 4 may con-
tribute to the pathogenesis of nonalcoholic fatty liver
disease in type 2 diabetics. Gene Hs.435330 (official sym-
bol KIAA0372) has not been well investigated.

In addition, 11 genes are found to be associated with four
types of cancers. 9, 18, and 17 genes are found to be asso-
ciated with three, two, and one types of cancers, respec-

Table 2: Description of datasets.

Tissue Reference Platform Normal Tumor

Breast Sorlie et al. (2001) [27] cDNA 13 13
Kidney Boer et al. (2001) [38] membrane 81 81
Liver Chen et al. (2002) [39] cDNA 76 76
Lung Bhattacharjee et al. (2001) [40] U95A 17 17
Pancreas Iacobuzio-Donahue et al. (2003) [41] cDNA 14 22
Prostate Singh et al. (2002) [42] U95A 50 52
Stomach Chen et al. (2003) [43] cDNA 29 29
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tively. Many of these genes have been previously
identified as cancer markers in independent studies.

Evaluation
We evaluate prediction performance of the Mc.TGD iden-
tified genes. Since we do not have independent studies
with comparable designs, we use the Leave-One-Out
(LOO) cross validation evaluation [32].

The LOO approach consists of the following steps: (a)
Subject j (= 1 ... nm) is first removed from study m (= 1 ...

M). Here M denotes the total number of studies and nm is

the number of subjects in study m; (b) The Mc.TGD esti-

mated regression coefficient  with the reduced data is

computed. To have a fair evaluation, we need to select a
new set of tuning parameters for the reduced data; (c) For

the removed subject, compute the risk score as ,

where zm, j is the vector of gene expressions for subject j in

study m; (d) Repeat Steps (a)-(c) over all studies and all
subjects; (e) For each subject, a predictive probability can
be computed using the logistic model; (f) Dichotomize
the predictive probabilities at 0.5 and make predictions.
Prediction performance can then be evaluated by compar-
ing predictive and observed cancer status.

With the LOO approach, only four subjects in the lung
cancer study are not properly classified, which leads to an
overall error rate of 0.7%. The LOO evaluation is cross val-
idation based. Since a new set of tuning parameters and
estimates are computed with each reduced data, the LOO
approach is expected to be relatively fair.

Meta analysis
For comparison, we consider the following meta analysis
approach. We first analyze each study separately using the
TGDR approach [33,34] and then search for genes that are
identified in multiple studies. This meta analysis
approach uses the voting method to combine analysis
results from multiple studies. We are aware that the TGDR
can be replaced by other regularization approaches. How-
ever, multiple studies have shown that it performs compa-
rably to other single-dataset approaches [33-35].
Furthermore, unlike other regularization approaches, the
TGDR has a thresholding framework similar to that of the
Mc.TGD and is therefore chosen for comparison.

With this approach, a total of 181 genes are identified to
be cancer-associated. However, only four genes are found
to be associated with two cancers. All the other genes are
found to be associated with only one type of cancer. Com-
pared to this approach, the Mc.TGD is able to take infor-
mation from multiple studies into consideration in gene

selection and thus is more effective in identifying genes
that are associated with multiple cancers.

Analysis of marginal associations
With the Mc.TGD, we describe effects of multiple genes
using a single statistical model and thus are able to
account for their joint effects. To provide a more compre-
hensive description of identified genes, we also conduct
the following analysis of marginal associations: (a) For
each gene in each study, we use the Wilcoxon rank-sum
test to compare gene expressions of cancer patients with
those of normal patients; (b) We then rank genes using
their p-values. The gene with rank 1 has the smallest p-
value. This approach shares similar spirits as those for
detection of differentially expressed genes in
[10,12,14,16].

genes identified with the Mc.TGD, we show their marginal
ranks in the Additional File 1. We found that genes iden-
tified as jointly associated with cancers not necessarily
have high marginal ranks. For example, gene MT1F is
identified to be associated with six types of cancers. How-
ever, its marginal ranks are only 532, 71, 54, 336, 25, and
28, respectively. This finding confirms the necessity of
identifying genes with joint effects beyond analysis of
marginal effects.

Discussion
When implementing the Mc.TGD, we focus on genes
measured in all studies. As an alternative, when different
studies have overlapped but different sets of genes, we can
impute gene expressions not measured as zero, and then
apply the Mc.TGD. An important objective of the Mc.TGD
is to identify genes associated with multiple or all cancers
investigated. The proposed analysis can be increasingly
unreliable as the number of overlapped genes decreases.
Focusing on genes measured in all studies may pose a lim-
itation to the proposed analysis. However, in the very near
future, when pangenomic arrays become routine, this lim-
itation may no longer be an issue.

The Mc.TGD analyzes multiple cancer microarray data-
sets. The final output may be unreliable if one or more
datasets have low qualities. In practical implementation,
careful inspection of each individual dataset is imperative.

In this study, we evaluate the identified genes in two dif-
ferent ways. First, for those identified to be associated with
six and five types of cancers, we manually search pub-
lished literature for existing evidences of them being asso-
ciated with cancer. Second, we use the LOO approach and
evaluate the overall prediction performance of the
Mc.TGD and identified genes. As one reviewer pointed
out, our evaluation is still far from complete. To fully eval-
uate the sixty identified genes, independent biomedical

βm
j−

′ −zm j m
j

, β
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studies may be needed, and that is beyond the scope of
this article.

In our data analysis, we focus on studies that investigate
the risk of developing cancer. Such studies have binary
outcomes and can be naturally described using logistic
models. As can be seen from the Methods section, the
Mc.TGD is also applicable to other cancer clinical out-
comes. More specifically, with continuous clinical out-
comes, we can use linear regression models. With
multiclass categorical outcomes, we can use generalized
liner models. With censored survival outcomes, we can
use the Cox proportional hazards model. Once statistical
models are specified, likelihood functions can be con-
structed, and the Mc.TGD can be employed.

Conclusion
A large number of cancer microarray studies have been
conducted to search for genes associated with develop-
ment and progression of various types of cancers. Com-
pared with genes associated with a single type of cancer,
genes associated with multiple cancers can represent the
more essential genomic features of cancer. In this article,
we propose Mc.TGD, an integrative analysis approach that
can pool and analyze raw data from multiple studies on
different types of cancers. Although there are other studies
investigating associations between genes and multiple
cancers, the Mc.TGD is the first embedded approach to
conduct "two-dimensional" selection and account for the
joint effects of genes in such selection. Compared with
existing approaches, the Mc.TGD can provide a much
more comprehensive description of gene effects on can-
cer.

Seven cancer microarray studies are analyzed. A total of
sixty genes are identified. For genes MT1F, DCLRE1A,
RBP4, and many others, the identified associations are
consistent with findings in the literature. For other genes,
such as SRPX and KIAA0372, more biomedical studies are
needed to fully understand their roles in cancer. The LOO
evaluation suggests satisfactory prediction performance,
which provides support for the identified associations.
Ideally, prediction evaluation using completely independ-
ent data is needed to confirm the findings. However, this
is beyond the scope of this article.

Methods
Our proposed approach for detecting genes associated
with multiple cancers consists of the following steps: (a)
With each dataset, model the joint effects of all genes on
cancer clinical outcome using a regression model; (b)
Since multiple datasets on multiple cancers are being
investigated, define the overall objective function, which
measures the overall association between genes and can-
cer clinical outcomes; and (c) Apply the Mc.TGD, which is

an iterative, two-dimensional selection approach. At each
iteration, for each gene, the Mc.TGD evaluates its overall
effect to determine if it is associated with any cancer, as
well as individual effects on each cancer to determine
which cancer type(s) it is associated with.

Data and model
Consider M > 1 studies that measure clinical outcomes of
possibly different cancers. For simplicity of notations,
suppose that the same set of d genes are measured in all M
studies. For the datasets presented in Table 2, M = 7 and d
= 2207. Let Y1,..., YM denote the cancer clinical outcomes,
and Z1,..., ZM denote the d gene expressions in study 1 ...
M. In this article, we study the risk of developing cancer,
where the outcome is the binary cancer status. In study m,
we use Ym = 1 or 0 to denote the presence or absence of
cancer.

For each individual dataset, we use the logistic regression
model to describe the effects of genes on the binary cancer

outcome. For study m, logit(P(Ym = 1|Zm)) = αm + βm,

where αm is the unknown intercept,  is the transpose

of Zm, and βm is the length d regression coefficient. Based

on a sample of nm iid observations, the log-likelihood

function is

. In what follows, the log-likelihood will be used as the
function to be maximized with the Mc.TGD and will be
referred to as the objective function.

Regularized gene selection
The Mc.TGD is an embedded approach, which embeds
selection in model fitting [3]. Selection amounts to prop-
erly estimating the regression coefficients in logistic mod-
els.

Let β = (β1,..., βM) be the d × M matrix of regression coef-
ficients. Denote R(β) = R1(β1) + ... + RM(βM) as the overall
objective function. Denote Δν as the small positive incre-
ment in the gradient searching. In our numerical imple-
mentation, we set Δν = 10-3. With fixed thresholds 0 ≤ τ1,
τ2 ≤ 1:

1. Initialize β = 0 component-wise.

2. Compute the d × M gradient matrix ,

where its (i, j)th element is . Here βi, j is the

ith element of βj.

′Zm

′Zm

R Y Ym m m j m
m Zm j m

m Zm j m
( ) log (,

exp( , )

exp( , )
β

α β
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3. Compute the length d cross-gene gradient G, where

its ith component is . Compute the

length d cross-gene thresholding vector TG, where its ith

component is TG, i = I(Gi ≥ τ1 × maxlGl).

4. For gene i = 1, ..., d, compute the length M cross-can-

cer thresholding vector , where its mth component is

 = I(|gi, m| ≥ τ2 × maxl|gi, l|).

5. Update βi, j with βi, j + Δν × gi, j × TG, i × .

6. Steps 2 to 5 are repeated k times, where k is deter-
mined with cross validation.

The Mc.TGD uses thresholding to remove noisy genes and
carry out gene selection. In Step 1, the Mc.TGD starts with
no genes identified as cancer-associated. In Step 2, the gra-
dients are computed. For each study, the gradients meas-
ure the strengths of associations between the genes and
cancer clinical outcomes. Genes with stronger associa-
tions will have larger gradients. To make different genes
comparable, their expressions have been normalized to
have unit variances. In Step 3, the cross-gene gradients
and the corresponding thresholding vector are computed.
In this step, the overall association of a gene with all the
cancer outcomes is measured. By introducing the thresh-
old, we compare one gene with the rest of the genes.
Genes with more combined strengths of associations with
all cancers will have the corresponding components of T
equal to one. In Step 4, for each gene, its gradients -
strengths of associations with individual cancer clinical
outcomes - are computed. By introducing the cross-cancer
thresholding vector, we can identify those cancers this
gene is associated with. In Step 5, the two thresholds are
combined, allowing the determination of not only
whether a particular gene is associated with any type of
cancer at all but also which specific cancer type(s) this par-
ticular gene is associated with. The estimate is updated if
and only if an association is observed. The iterations con-
tinue until terminated by cross validation.

To further illustrate, we consider the hypothetical study
presented in Table 1. Genes A-D are associated with one
or more types of cancers, whereas gene E is not. The cross-
gene gradients for genes A-D will be larger than that for
gene E. Thus, with the thresholding in Step 3, we are able
to discriminate gene E from others. Furthermore, consider
gene B as an example. Gene B is associated with develop-
ment of breast and ovarian cancer but not lung cancer.
The gradient for gene B in the lung cancer study will be
considerably smaller than those in the breast and ovarian

cancer studies. Thus, with the thresholding in Step 4, we
can identify gene B as a susceptibility gene for breast and
ovarian cancers but not for lung cancer. By combining
Steps 3 and 4, we are able to construct a complete descrip-
tion of gene effects as shown in Table 1.

Remarks: connections with existing methods
The Mc.TGD belongs to the family of embedded selection
methods [3]. It shares the "computing (gradients), search-
ing (for covariates that can increase value of the objective
function), and updating (estimates of selected covari-
ates)" framework with the gradient boosting and individ-
ual-dataset TGDR approaches [33,36]. Like many other
regularization methods, the Mc.TGD determines the exist-
ence of associations by examining the estimated regres-
sion coefficients. A nonzero estimated regression
coefficient indicates existence of an association, which is
equivalent to a thresholding approach with zero as the
threshold.

Among the many available selection methods, the TGDR
[33] and the MTGDR [37] have a statistical framework
closest to that of the Mc.TGD. More specifically, all three
methods are iterative and use the thresholding technique
for selection. The Mc.TGD significantly advances from the
TGDR by being able to analyze multiple datasets, whereas
the TGDR is a single-dataset method. Our numerical stud-
ies suggest that, analyzing individual datasets separately
using the TGDR and then combing the results using meta
analysis is suboptimal. Both the MTGDR and Mc.TGD can
analyze multiple datasets. However, only the Mc.TGD can
carry out two-dimensional selection. Compared with the
MTGDR, the Mc.TGD has the extra cross-cancer threshold-
ing (Step 4), which can identify cancer(s) a gene is associ-
ated with. Consider for example gene B in Table 2. With
the Mc.TGD, the estimated coefficient in the lung cancer
study will be exactly zero. Thus, we are able to conclude
that gene B is associated with breast and ovarian cancers
but not lung cancer. However, if the MTGDR is applied,
since it does not have the cancer-dimension selection, the
estimated coefficients in all three studies will be nonzero.
The Mc.TGD, MTGDR, and many other regularization
methods (for example penalization methods) use zero as
cutoff to determine existence of associations. So even
though the estimated coefficient for gene B in the lung
cancer study may be very small, we do not have the tech-
nique to determine that the observed small coefficient
does not represent a real association. This is the main rea-
son why the Mc.TGD is needed beyond the MTGDR. In
summary, we propose using the MTGDR when multiple
datasets are on the same cancer and have the same set of
susceptibility genes; In contrast, the Mc.TGD should be
adopted when multiple datasets are on different cancers
with different sets of susceptibility genes.
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Remarks: possible extensions
In this study, we use the Mc.TGD to analyze seven datasets
on seven different types of cancers. In other studies, it is
possible out of the multiple datasets, two or more have
similar designs (e.g., same cancer clinical outcome, same
set of genes, same platforms, comparable cohorts). Then
it may be reasonable to assume that the sets of identified
genes are identical across those studies. In that case, for
each gene, we can add an extra constraint to make compo-
nents of the cross-cancer thresholding vector correspond-
ing to those studies equal.

Tuning parameter selection
Consider the association table, which is a table similar to
Table 1 and the Additional File 1 and shows all the asso-
ciations between cancers and genes. When the table is
sparse, few genes are identified as cancer-associated; and
for a specific gene, associations with few cancers are iden-
tified. When the table is dense, more associations are
identified.

The Mc.TGD approach involves three tuning parameters:
k, τ1 and τ2, which jointly determine sparsity of the asso-
ciation table. More specifically, with fixed (τ1, τ2), the
table is sparse with small k and gets denser as k increases.
When (τ1, τ2) are small, the table can be dense even with
small k. In contrast, when (τ1, τ2) are close to one, the
table is sparse with small to moderate k, but eventually
becomes dense as k increases.

We select tuning parameters using V-fold cross validation
[36]. To facilitate computing, we search over the discrete
grid of τ1, τ2 = 1, 0.95, 0.9 ... 0.05, 0. We first randomly
partition each dataset into V nonoverlapping subsets with
equal sizes. Denote β-v as the Mc.TGD estimate of β based
on data without the vth subset of each dataset. The CV
objective function is defined as CV (k, τ1, τ2) = ∑v Rv(β-v),

where Rv is the overall objective function evaluated on the
vth subsets. Optimal tuning parameters are defined as (k,
τ1, τ2) that maximize the CV objective function.

Remarks: Why is cross validation needed
Although each Mc.TGD iteration increases value of the
overall objective function, the iteration needs to be termi-
nated within a finite number of steps. Otherwise, with the
number of genes larger than the sample size, there is a
possibility of overfitting, where value of the overall objec-
tive function goes to infinity. In addition, a larger value of
the overall objective function does not indicate a better
prediction performance of identified genes. Thus, we use
cross validation and choose the tuning parameters (partic-
ularly finite k) that maximizes the cross-validated predic-
tion.

Remarks: an ad hoc alternative
In some cases, researchers may have certain prior informa-
tion on sparsity of the association table. For example,
researchers may have an estimate of the number of cancer-
associated genes or only want to investigate a fixed
number of genes. Then, instead of using cross validation,
researchers may directly apply the Mc.TGD and terminate
the iteration once a certain number of genes are identified.

Parameter paths
To provide a graphic description of the Mc.TGD, we exam-
ine its parameter paths (estimates as a function of the
number of iterations). We simulate under Scenario 3 pre-
sented in Table 3. Two datasets are generated, both with
binary outcomes. In each dataset, there are 500 genes and
50 subjects with about an equal number of subjects hav-
ing Y = 1 and 0. Genes 1 to 10 are associated with the first
type of cancer, and genes 6 to 15 are associated with the
second type of cancer. The two types of cancers share 5
common susceptibility genes. The rest are noisy genes.

Table 3: Simulation study: mean counts based on 200 replicates.

Scenario # gene coef. Approach Pos. 1 Pos. 2 TP 1 TP 2 Overlap

1 20 0.25 Mc.TGD 13 12 10 10 5
TGDR 15 16 10 10 5

2 20 0.35 Mc.TGD 12 12 10 10 5
TGDR 14 14 10 10 5

3 500 0.25 Mc.TGD 28 27 9 10 5
TGDR 35 35 10 9 4

4 500 0.35 Mc.TGD 24 25 10 9 5
TGDR 34 34 10 9 5

5 1000 0.25 Mc.TGD 31 31 9 9 5
TGDR 39 38 9 9 4

6 1000 0.35 Mc.TGD 30 30 10 9 5
TGDR 37 38 10 9 5

Pos. 1 (2): number of genes identified to be associated with cancer 1 (2); TP 1 (2): number of true positives for cancer 1 (2); Overlap: number of 
genes identified to be associated with both cancers.
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The simulated datasets are analyzed with the Mc.TGD.
With five-fold cross validation, the optimal tuning (τ1, τ2,
k) = (0.9, 0.9, 1763). In Figure 1, we show the parameter
paths as a function of k for (τ1, τ2) = (0.9, 0.9), with the
vertical lines corresponding to k = 1763. For the purpose
of clarity, only parameter paths for genes #1, 6, 11, and 21
are presented.

As can be seen from Figure 1, parameter paths for different
genes are significantly different. In the upper-right panel,
we show the parameter paths for gene # 6, which is asso-
ciated with both types of cancers. We can see that the esti-
mated coefficients are nonzero for even very small k. In
the upper-left and lower-left panels, we show the parame-
ter paths for genes # 1 and 11, which are associated with
only one type of cancer. We can see that the estimated
coefficients are nonzero in only one study. In the lower-
right panel, for gene # 21, which is not associated with any
cancer, the estimated coefficients are zero. Since zero esti-
mates indicate no association, Figure 1 suggests that we
are able to correctly determine associations between mul-

tiple genes and multiple cancers by investigating proper-
ties of the Mc.TGD estimates or their parameter paths.

Simulation study
Simulations are conducted to evaluate performance of the
Mc.TGD. We assume that there are two studies on two dif-
ferent types of cancers. The benefit of simulating two stud-
ies is that the definition of associations between genes and
cancers is lucid. As shown in Table 3, we consider the fol-
lowing simulation settings (a) number of genes: 20, 500
and 1000; (b) sample size: we set sample size equal to 50
in each study; and (c) regression coefficients. For genes
associated with the outcomes, we set their regression coef-
ficients equal to 0.25 or 0.35, which correspond to two
different levels of signals. In addition, we set genes 1-10 to
be associated with the first type of cancer, genes 6-15 to be
associated with the second type of cancer, and the rest to
be noisy genes. Two types of cancers share 5 common sus-
ceptibility genes. We generate gene expressions to be mul-
tivariate normally distributed and marginally with zero
mean and unit variance. Expressions of genes i and j have

Parameter paths of the Mc.TGD estimatesFigure 1
Parameter paths of the Mc.TGD estimates.
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correlation coefficient 0.4|i-j|. We generate the probability
of cancer presence from the logistic regression model and
then the cancer status from a binomial distribution.
Under the present simulation settings, there are about
equal number of subjects with Y = 1 and Y = 0. We simu-
late 200 replicates and show the summary statistics in
Table 3. For comparison, we also consider the TGDR-
based meta analysis described in the Results section. This
approach is referred to as "TGDR" in Table 3.

With simulated data, we investigate how many genes are
identified to be associated with one or both types of can-
cers. We can see from Table 3 that (a) under all simulated
settings, the Mc.TGD is capable of identifying all genes
associated with both types of cancers; (b) for each type of
cancer, the Mc.TGD is capable of identifying a small
number of genes and the majority or all of cancer-associ-
ated genes; (c) performance of the Mc.TGD improves as
the number of genes decreases or as the signal (regression
coefficients) increases; and (d) compared to the TGDR,
the Mc.TGD has a lower false positive rate.

Authors' contributions
All authors were involved in the study design and writing.
SM and JH were involved in data analysis. All authors read
and approved the final manuscript.

Additional material

Acknowledgements
This study has been supported by LM009828, LM009754 and CA120988 
from the NIH USA (Ma and Huang) and the CTSA award from Yale YCCI 
(Ma). The authors would like to thank five anonymous reviewers for their 
constructive comments, which have led to significant improvement of the 
paper.

References
1. Rhodes D, Chinnaiyan AM: Bioinformatics strategies for trans-

lating genome-wide expression analyses into clinically useful
cancer markers.  Annals of the New York Academy of Sciences 2004,
1020:32-40.

2. Knudsen S: Cancer Diagnostics with DNA Microarrays Liss: Wiley; 2006. 
3. Ma S, Huang J: Penalized feature selection and classification in

bioinformatics.  Briefings in Bioinformatics 2008, 9:392-403.
4. Petrucelli N, Daly MB, Culver JOB, Feldman GL: BRCA1 and

BRCA2 hereditary breast/ovarian cancer.  GeneReviews 2007
[Http://www.ncbi.nlm.nih.gov/bookshelf/
br.fcgi?book=gene&part=brca1].

5. Puputti M, Sihto H, Isola J, Butzow R, Joensuu H, Nupponen NN:
Allelic imbalance of HER2 variant in sporadic breast and
ovarian cancer.  Cancer Genetics and Cytogenetics 2006, 167:32-38.

6. Qin H, Iliopoulos D, Semba S, Fabbri M, Druck T, Volinia S, Croce
CM, Morrison CD, Klein RD, Huebner K: A role of the WWOX
gene in prostate cancer.  Cancer Research 2006, 66:6477-6481.

7. Beckles MA, Spiro SG, Colice GL, Rudd RM: Initial evaluation of
the patient with lung cancer.  Chest 2003, 123:97S-104S.

8. Wang D, Ritchie JM, Smith EM, Zhang Z, Turek LP, Haugen TH: Alco-
hol dehydrogenase 3 and risk of squamous cell carcinomas of
the head and neck.  Cancer Epidemiology, Biomarkers & Prevention
2005, 14:626-632.

9. Cheang M, Rijn M van de, Nielsen TO: Gene expression profiling
of breast cancer.  Annual Review of Pathology: Mechanisms of Disease
2008, 3:67-97.

10. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D,
Barrette T, Pandey A, Chinnaiyan AM: Large-scale meta-analysis
of cancer microarray data identifies common transcriptional
profiles of neoplastic transformation and progression.  PNAS
2004, 101:9309-9314.

11. Ramaswamy S, Tamayo P, Rifkin R, Mukherjee S, Yeang CH, Angelo
M, Ladd C, Reich M, Latulippe E, Mesirov JP, Poggio T, Gerald W,
Loda M, Lander ES, Golub TR: Multiclass cancer diagnosis using
tumor gene expression signatures.  2001, 98:15149-15154.

12. Segal E, Friedman N, Koller D: A module map showing condi-
tional activity of expression modules in cancer.  Nature Genetics
2004, 36:1090-1098.

13. Chan C, Mousavi P: Discovery of gene expression patterns
across multiple cancer types.  IEEE 5th Symposium on Bioinformat-
ics and Bioengineering 2005:121-128.

14. Yang X, Bentink S, Spang R: Detecting common gene expression
patterns in multiple cancer outcome entities.  Biomedical Micro-
devices 2005, 7:247-251.

15. Xu L, Geman D, Winslow RL: Large-scale integration of cancer
microarray data identifies a robust common cancer signa-
ture.  BMC Bioinformatics 2007, 8:275.

16. Choi JK, Yu U, Yoo OJ, Kim S: Differential coexpression analysis
using microarray data and its application to human cancer.
Bioinformatics 2005, 21:4348-4355.

17. Lê Cao KA, Martin PGP, Robert-Graniê C, Besse P: Sparse canon-
ical methods for biological data integration: application to a
cross-platform study.  BMC Bioinformatics 2009, 10:34.

18. Stanford Microarray Database   [http://smd.stanford.edu/]
19. National Center for Biotechnology Information   [http://

www.ncbi.nlm.nih.gov/]
20. Jin R, Chow VT, Tan PH, Dheen ST, Duan W, Bay BH: Metal-

lothionein 2A expression is associated with cell proliferation
in breast cancer.  Carcinogenesis 2002, 23:81-86.

21. Lu D, Chen Y, Zhang X, Cao X, Jiang H, Yao L: The relationship
between Metallothionein-1F (MT1F0 gene and hepatocellu-
lar carcinoma.  Journal of Biology and Medicine 2003, 76:55-62.

22. Nguyen A, Jing Z, Mahoney PS, Davis R, Sikka SC, Agrawal KC, Abdel-
Mageed AB: In vivo gene expression profile analysis of metal-
lothionein in renal cell carcinoma.  Cancer Letters 2000,
160:133-140.

23. Somji S, Sens MA, Lamm DL, Garrett SH, Sens DA: Metallothionein
isoform 1 and 2 gene expression in the human bladder: evi-
dence for upregulation of MT-1X mRNA in bladder cancer.
Cancer Detection and Prevention 2001, 25:62-75.

24. Garrett SH, Sens MA, Shukla D, Flores L, Somji S, Todd JH, Sens DA:
Metallothionein isoform 1 and 2 gene expression in the
human prostate: downregulation of MT-1X in advanced
prostate cancer.  Prostate 2000, 43:125-135.

25. Li Z, Stonehuerner J, Devlin RB, Huang YC: Discrimination of
vanadium from zinc using gene profiling in human bronchial
epithelial cells.  Environmental Health Perspectives 2005,
113:1747-1754.

26. Yap Y, Zhang X, Smith D, Soong R, Hill J: Molecular gene expres-
sion signature patterns for gastric cancer diagnosis.  Computa-
tional Biology and Chemistry 2007, 31:275-287.

27. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie
T, Eisen MB, Rijn M van de, Jeffrey SS, Thorsen T, Quist H, Matese JC,
Brown PO, Botstein D, Eystein Lonning P, Borresen-Dale AL: Gene
expression patterns of breast carcinomas distinguish tumor
subclasses with clinical implications.  PNAS 2001,
98:10869-10874.

Additional file 1
Genes identified using the Mc.TGD. The additional file contains infor-
mation on all genes identified using the Mc.TGD: UniGene, gene names, 
and estimated regression coefficients.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-535-S1.XLS]
Page 10 of 11
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2164-10-535-S1.XLS
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15208181
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15208181
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15208181
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18562478
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18562478
Http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=gene&part=brca1
Http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=gene&part=brca1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16682283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16682283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16682283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16818616
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16818616
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12527569
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12527569
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15184677
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15184677
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15184677
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11742071
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11742071
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15448693
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15448693
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16133813
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16133813
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17663766
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17663766
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17663766
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16234317
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16234317
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19171069
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19171069
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19171069
http://smd.stanford.edu/
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11756227
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11756227
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11756227
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11053642
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11053642
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11270423
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11270423
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10754528
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10754528
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10754528
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16330358
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16330358
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16330358
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17631416
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17631416
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11553815
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11553815
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11553815


BMC Genomics 2009, 10:535 http://www.biomedcentral.com/1471-2164/10/535
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

28. Dronkert ML, de Wit J, Boeve M, Vasconcelos ML, van Steeg H, Tan
TLR, Hoeijmakers JHJ, Kanaar R: Disruption of mouse SNM1
causes increased sensitivity to the DNA interstrand cross-
linking agent mitomycin C.  Molecular and Cellular Biology 2000,
20:4553-4561.

29. Bae I, Fan S, Meng Q, Rih J, Kim H, Kang H, Xu J, Goldberg ID, Jaiswal
AK, Rosen EM: BRCA1 induces antioxidant gene expression
and resistance to oxidative stress.  Cancer Research 2004,
64:7893-7909.

30. Swindell WR: Gene expression profiling of long-lived dwarf
mice: longevity-associated genes and relationships with diet,
gender and aging.  BMC Genomics 2007, 8:353.

31. Frias C, Garcia-Aranda C, De Juan C, Moran A, Ortega P, Gomez A,
Hernando F, Lopez-Asenjo JA, Torres AJ, Benito M, Iniesta P: Tel-
omere shortening is associated with poor prognosis and tel-
omerase activity correlates with DNA repair impairment in
non-small cell lung cancer.  Lung Cancer 2008, 60:416-425.

32. Efron B, Tibshirani RJ: An Introduction to the Bootstrap Chapman & Hall/
CRC; 1994. 

33. Ma S, Huang J: Regularized ROC method for disease classifica-
tion and biomarker selection with microarray data.  Bioinfor-
matics 2005, 21:4356-4362.

34. Ma S, Song X, Huang J: Regularized binormal ROC method in
disease classification using microarray data.  BMC Bioinformatics
2006, 7:253.

35. Gui J, Li H: Threshold gradient descent method for censored
data regression with applications in pharmacogenomics.  Pro-
ceedings of Pacific Symposium on Biocomputing 2005, 10:272-283.

36. Hastie T, Tibshirani RJ, Friedman J: The Elements of Statistical Learning:
Data Mining, Inference, and Prediction Verlag: Springer; 2003. 

37. Ma S, Huang J: Regularized gene selection in cancer microar-
ray meta-analysis.  BMC Bioinformatics 2009, 10:1.

38. Boer JM, Huber WK, Sultmann H, Wilmer F, von Heydebrecl A, Haas
S, Korn B, Gunawan B, Vente A, Fuzesi L, Vingron M, Poustka A:
Identification and classification of differentially expressed
genes in renal cell carcinoma by expression profiling on a
global human 31,500-element cDNA array.  Genome Research
2001, 11:1861-1870.

39. Chen X, Cheung ST, So S, Fan ST, Barry C, Higgins J, Lai KM, Ji J,
Dudoit S, Ng IO, Rijn M Van De, Botstein D, Brown PO: Gene
expression patterns in human liver cancers.  Molecular Biology
of the Cell 2002, 13:1929-1939.

40. Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P, Ladd
C, Beheshti J, Bueno R, Gillette M, Loda M, Weber G, Mark EJ, Lander
ES, Wong W, Johnson BE, Golub TR, Sugarbaker DJ, Meyerson M:
Classification of human lung carcinomas by mRNA expres-
sion profiling reveals distinct adenocarcinoma subclasses.
PNAS 2001, 98:13790-13795.

41. Iacobuzio-Donahue CA, Maitra A, Olsen M, Lowe AW, van Heek NT,
Rosty C, Walter K, Sato N, Parker A, Ashfaq R, Jaffee E, Ryu B, Jones
J, Eshleman JR, Yeo CJ, Cameron JL, Kern SE, Hruban RH, Brown PO,
Goggins M: Exploration of global gene expression patterns in
pancreatic adenocarcinoma using cDNA microarrays.  Amer-
ican Journal of Pathology 2003, 162:1151-1162.

42. Singh D, Febbo PG, Ross K, Jackson DG, Manola J, Ladd C, Tamayo P,
Renshaw AA, D'Amico AV, Richie JP, Lander ES, Loda M, Kantoff PW,
Golub TR, Sellers WR: Gene expression correlates of clinical
prostate cancer behavior.  Cancer Cell 2002, 1:203-209.

43. Chen X, Leung SY, Yuen ST, Chu KM, Ji J, Li R, Chan AS, Law S, Troy-
anskaya OG, Wong J, So S, Botstein D, Brown PO: Variation in
gene expression patterns in human gastric cancers.  Molecular
Biology of the Cell 2003, 14:3208-3215.
Page 11 of 11
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10848582
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10848582
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10848582
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15520196
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15520196
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17915019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17915019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17915019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18077053
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18077053
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18077053
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16234316
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16234316
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16684357
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16684357
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19118496
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19118496
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11691851
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11691851
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11691851
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12058060
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12058060
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11707567
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11707567
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12651607
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12651607
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12086878
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12086878
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12925757
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12925757
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Data collection
	Gene identification
	Evaluation
	Meta analysis
	Analysis of marginal associations

	Discussion
	Conclusion
	Methods
	Data and model
	Regularized gene selection
	Remarks: connections with existing methods
	Remarks: possible extensions

	Tuning parameter selection
	Remarks: Why is cross validation needed
	Remarks: an ad hoc alternative

	Parameter paths
	Simulation study

	Authors' contributions
	Additional material
	Acknowledgements
	References

