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Abstract

Background: Ribonucleotide reductases (RNRs) catalyse the only known de novo pathway for

deoxyribonucleotide synthesis, and are therefore essential to DNA-based

ribonucleotide reduction has a single evolutionary origin, significant differences between RNRs
nevertheless exist, notably in cofactor requirements, subunit composition and allosteric regulation.
These differences result in distinct operational constraints (anaerobicity, iron/oxygen dependence
and cobalamin dependence), and form the basis for the classification of RNRs into three classes.

Description: In RNRdb (Ribonucleotide Reductase database), we have collated and curated all
known RNR protein sequences with the aim of providing a resource for exploration of RNR
diversity and distribution. By comparing expert manual annotations with annotations stored in
Genbank, we find that significant inaccuracies exist in larger databases. To our surprise, only 23%
of protein sequences included in RNRdb are correctly annotated across the key attributes of class,
role and function, with 17% being incorrectly annotated across all three categories. This illustrates
the utility of specialist databases for applications where a high degree of annotation accuracy may
be important. The database houses information on annotation, distribution and diversity of RNRs,
and links to solved RNR structures, and can be searched through a BLAST interface. RNRdb is

accessible through a public web interface at http://rnrdb.molbio.su.se.

Conclusion: RNRdb is a specialist database that provides a reliable annotation and classification
resource for RNR proteins, as well as a tool to explore distribution patterns of RNR classes. The
recent expansion in available genome sequence data have provided us with a picture of RNR
distribution that is more complex than believed only a few years ago; our database indicates that
RNRs of all three classes are found across all three cellular domains. Moreover, we find a number

of organisms that encode all three classes.
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Background

Ribonucleotide reductases (RNRs) form a universal
enzyme family that catalyse the reduction of ribonucle-
otides to their corresponding deoxyribonucleotides. Ribo-
nucleotide reduction provides the sole biological means
for de novo synthesis of the building blocks of DNA, mak-
ing it an essential cellular function. Sequence and struc-
tural data indicate that ribonucleotide reduction has
evolved only once during evolution [1,2] and all RNRs
make use of a common thiyl radical-based mechanism for
catalysis [3].

In spite of the early evolutionary origins of ribonucleotide
reduction, the modern diversity of RNRs is characterised
by distinct biochemical routes to radical generation [4-6].
Three classes of RNR have been described on this basis,
and each operates under a specific set of biochemical and
environmental conditions (Table 1). Class I RNRs contain
either a diiron centre that, via oxygen-mediated oxidation,
generates a protein-based tyrosyl radical as a prerequisite
to catalysis, or a Mn!V-Felll metal centre that substitutes for
the tyrosyl radical. Consequently, class I RNR activity is
dependent on the availability of molecular oxygen. Class
IT enzymes generate a radical via cleavage of vitamin B,,
coenzyme (5'-deoxyadenosylcobalamin) and operate
independent of oxygen. Class III enzymes also acquire a
radical via cofactor cleavage (S-adenosylmethionine).
Whereas class II RNRs must cleave and regenerate adeno-
sylcobalamin with every round of catalysis, in class III
RNRs the radical generated by cofactor cleavage (by action

Table I: General characteristics of RNR classes
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of an activase protein) is subsequently maintained as a
stable protein-based glycyl radical. The glycyl radical of
class III RNR is sensitive to oxygen; exposure results in
enzyme destruction through backbone cleavage. Conse-
quently, class Il enzymes are inactivated even under
microaerophilic conditions. For comprehensive reviews
of the biochemistry of ribonucleotide reduction, see [3-6].

Given that the propensity to synthesise deoxyribonucle-
otides is essential for DNA replication, the operational
differences between classes of RNR suggest that the type of
RNR any given organism carries will have an impact on
the environmental conditions in which that organism can
grow and reproduce. The effect on the biochemistry of
ribonucleotide reduction of environmental parameters
such as iron-, cobalt- and oxygen-availability may thus
impact our understanding of the adaptability of microor-
ganisms to a range of environments. An overview of the
distribution and diversity of RNR classes -- particularly
among microbes -- is therefore of interest in delimiting
environmental range. To facilitate progress in these areas,
we have established the Ribonucleotide Reductase data-
base (RNRdb), a manually annotated and curated data
source for annotation and comparative investigations cen-
tred on RNR biology.

Construction and content of RNRdb

RNRdb is implemented using a relational database with
an HTML user interface, and is available at http://
rnrdb.molbio.su.se. The different proteins in RNRdb are

Class | Class Il Class Il
Operation Aerobic Oxygen independent Anaerobic
Structure a, B,y o or o, a,
Subunit names la: NrdA, NrdB Nrdj NrdD

|b: NrdE, NrdF specific activase: NrdG
Radical/cofactor Tyrl22 (in B) AdoCbl Gly580 (in o)
Reductant la: Thioredoxin/Glutaredoxin Thioredoxin Formate

Ib: NrdH-redoxin
In archaea Limited distribution Yes Yes
In bacteria Yes Yes Yes
In eukaryotes Yes Limited distribution Limited distribution
In viruses? Yes Bacteriophage; one eukaryotic virus Bacteriophage

The catalytic subunits, NrdA, NrdE, Nrd) and NrdD are homologous, as are the two different class | radical generating subunits, NrdB and NrdF.
The class Il activase, NrdG, is not homologous to any other RNR subunit. Residue numbering refers to the Escherichia coli K12 class | radical
generating subunit and the Bacteriophage T4 class Ill enzyme sequences respectively. Adapted from [2].

23RNR genes are only found in some dsDNA viruses.
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denoted Nrd with appropriate suffixes (Tables 1, 2),
according to the common nomenclature for the corre-
sponding genes in bacteria and archaea; when applicable
synonymous names are specified for each entry. NrdA and
NrdB denote the components of the class Ia RNR, where
NrdA contains the active site region and binding sites for
allosteric effectors, and NrdB carries the stable tyrosyl rad-
ical. NrdB proteins with a Mn!V-Fe!ll metal centre substi-
tuting the role of the tyrosyl radical [7,8] are denoted
NrdBPhe or NrdBleu, The RNR components of class Ib are
NrdE with the active site and allosteric binding regions
and NrdF with the stable tyrosyl radical. In addition, class
Ib operons code for Nrd], a flavoprotein, and often NrdH,
a specific physiological reductant for the class Ib RNRs [9-
12]. Class II RNRs are denoted Nrd]. The class III RNR
proper is denoted NrdD. This RNR requires a specific acti-
vase, an iron-sulphur protein denoted NrdG [13] that
belongs to the radical SAM protein family [14]. A majority
of bacteria, and some archaea, encode the global regulator
NrdR [15] that controls the transcription/translation of
different RNR genes [16,17] (Table 2).

The database was initially populated using manually col-
lected and curated data, and is expanded and maintained
as follows: Profile hidden markov models (HMM) [18]
are generated, using HMMER [19], from alignments of
known RNR sequences in the database, representing

http://www.biomedcentral.com/1471-2164/10/589

date protein sequences are then retrieved from GenBank
using HMMER. Candidate sequences are filtered for dupli-
cations and manually checked before incorporation into
RNRdb (Fig. 1). Manual curation is performed by aligning
candidates to known experimentally annotated RNR
sequences (a procedure for which there is theoretical prec-
edent [20]), to ensure only full-length sequences possess-
ing all key sequence motifs are inserted. NrdH and NrdG
candidates pose special problems; NrdH because it is less
than 100 residues and has striking similarities to thiore-
doxins/glutaredoxins [9,10], and NrdG because it is a
member of the highly conserved radical SAM family [14]
and often confused with pyruvate formate-lyase activating
enzyme. For this reason an NrdH candidate is only
accepted if located close to other class Ib members (NrdE,
NrdF, or Nrdl). Likewise, an NrdG candidate is only
accepted if located close to NrdD, or when this criterion is
not valid only the highest scoring NrdG candidate is
accepted for an organism with an existing NrdD entry.

The alignment of candidates to known experimentally
annotated RNR sequences also provides an initial indica-
tion of potential presence of self-splicing introns and
inteins in the RNRs. Putative intein sequences within can-
didate RNR sequences are manually curated with the aid
of the BLAST function of the InBase database (The Intein
Database and Registry, http://www.neb.com/neb/

known sequence diversity for each RNR protein. Candi-  inteins.html) [21]. Candidate selfsplicing intron
Table 2: Distribution of RNR proteins

Class Subunit2  Archaea  Archaeal viruses Bacteria Bacteriophages Eukaryotes Eukaryotic viruses Totals
la NrdA 8 2 893 39 188 124 1254
NrdB 8 2 910 47 247 140 1354
Ib NrdE 605 7 612
NrdF 647 8 655
NrdH 393 7 400
Nrdl 633 5 638
Il Nrd) 62 4 702 18 7 794
n NrdD 49 950 30 8 1037
NrdG 48 923 21 992
All classes NrdR 6 1268 1274
Totals 181 8 7924 182 450 265 9010

Distribution of RNR classes and NrdR regulator among cellular domains and viruses.
2 Protein roles for subunits are catalytic component (NrdA, NrdE), radical harbouring component (NrdB, NrdF), reductant (NrdH), flavodoxin
component (Nrdl), core enzyme (Nrd), NrdD), activase (NrdG), and transcriptional regulator (NrdR).
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RNRdb pipeline. RNRdb is loaded from upstream data-
bases (see text for details) using a semi automated pipeline.
Before inclusion, each sequence is manually vetted.

sequences are identified within RNR genes by manual sec-
ondary structure folding of the presumed intronic RNA
according to the conventional folding suggested by Cech
etal. [22].

Instead of using a release scheme for database content, the
database is continuously updated with new sequences. In
contrast, the database user interface is under a release
scheme, and is currently at version 1.3. On each page, the
date when data was last inserted or corrected is displayed
together with the version number of the interface. At the
time of writing (July 2009), the database contains over
2000 cellular organisms and viruses and over 9000 pro-
tein sequences (Table 2). The main sequence data source
is GenBank, but this is augmented at times with other data
sources when quality sequences are available that have
not yet been uploaded to GenBank. At the time of writing,
we have downloaded and screened additional sequence
data from the Joint Genome Institute http://

http://www.biomedcentral.com/1471-2164/10/589

www.jgi.doe.gov/, the Broad Institute  http://

www.broad.mit.edu/ and the University of Tokyo Cyanid-
ioschyzon merolae Genome Project database http://mero

lae.biol.s.u-tokyo.ac.jp/ in addition to data from Gen-
Bank.

Structures for representatives for all RNR proteins except
the class III activase, NrdG, and the regulatory protein
NrdR, have been solved. RNRdb contains annotations and
descriptions for all published RNR structures, together
with links to the structure files in Protein Data Bank http:/
/www.rcsb.org/pdb/.

Each RNRdb entry contains the full amino acid sequence
and cross-references to the source databases for sequence
and protein structure information, as well as genomic
location, when known. In addition to the classification of
each sequence (by class and subunit), additional
attributes are listed, which enables retrieval of proteins
with solved structures, experimentally derived mutational
data (including the corresponding PubMed references),
and presence of intervening self-splicing sequences, i.e.
group I and II introns and inteins; these are cross refer-
enced when applicable. The system for managing
attributes is flexibly implemented, allowing new classifi-
cation attributes to be added during curation.

Each sequence is linked to a source organism or virus
record, which in turn is linked to its full NCBI taxonomy
hierarchy allowing filtering of sequences based on taxon-
omy (see below). Organisms and viruses with fully
sequenced genomes are labelled, making it possible to
establish whether, for any given organism, the list of
annotated RNRs is based on complete or incomplete
genome sequence data. RNRdb also contains information
about genomes that lack RNRs (determined through can-
didate screening of complete genome sequences, as
described above). As of July 2009 there are only five such
cases among cellular organisms, three bacteria (Borrelia
burgdorferi [23,24], Buchnera aphidicola str. Cc [25] and
Ureaplasma urealyticum [26,27]) and two eukaryotes (Enta-
moeba histolytica [28,29] and Giardia lamblia [30,31]).
These are all parasites or obligate intracellular endosymbi-
onts, and absence of RNRs indicates that all must rely on
salvage of hostderived deoxyribonucleotides.

Utility of RNRdb

Motivation for building a specialist RNR database

There are numerous large-scale sequence databases that
provide annotations and classifications of proteins and
protein families. In some cases, the process of annotation
is approached systematically [32-34] while in others, e.g.
GenBank, annotations are made by those depositing
information, using a variety of methodologies. Specialist
databases, in contrast, can serve to collate all available
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information on a given protein or protein family, and are
small enough to allow detailed, expert curation. It is for
these reasons that we were originally motivated to build
RNRdb. That said, there is only any real value in such an
endeavour if expert curation results in significant
improvements in accuracy over existing resources. To this
end, we compared our annotations to those recorded in
GenBank entries for all sequences in RNRdb on the basis
of the following criteria: RNR class (I, I or III), protein
role (subunit identity -- as detailed in Table 1, with the
additional inclusion of NrdG, NrdH, NrdI & NrdR pro-
teins), general function (i.e. involved in ribonucleotide
metabolism) and identification of the ATP cone [35],
where present. We found that GenBank annotations are
surprisingly inaccurate (Table 3). Only 23% of entries in
RNRdb were correctly annotated by class, role and func-
tion, and 17% of sequences included in RNRdb on the
basis of manual curation are incorrectly annotated for all
criteria. In addition, over 100 group I introns and ca 80
inteins have been manually curated from the entries. This
serves to highlight the potential value of manual curation,
given the complexities of annotation [20,36]. While man-
ual curation is not infallible (see previous section), we
nevertheless believe that our annotations are significantly
improved over existing publicly available annotations.

Querying RNRdb

The RNRdb homepage contains tabs to a short introduc-
tion on RNRs ("About RNRs"), a glossary, and a list of key
literature references ("Bibliography"). We have focused

Table 3: RNR annotation

http://www.biomedcentral.com/1471-2164/10/589

the user interface of the database on tools for exploration
of RNR diversity and distribution and to serve as an anno-
tation resource for specialists. There are four main access
points to RNR sequences in the database:

i) The "RNRs by organism" page presents the entire data-
base in tabular format. By scrolling down the page or
using the browser to search for text strings, the user can
explore the distribution of RNRs in the three cellular
domains as well as among viruses. Proteins with addi-
tional attributes (solved structure, mutagenised forms,
selfsplicing introns and inteins) and fully sequenced
genomes are indicated by red superscript abbreviations;
clicking on these superscripts links to explanations. Fol-
lowing an organism or protein hyperlink presents the user
with all RNR sequences for that organism or the chosen
protein respectively, together with classification informa-
tion and cross-references to other databases.

ii) The "Search" page enables searches of the database at
any taxonomic level, ranging from all cellular domains
and viruses down to single species. Furthermore, organ-
isms possessing or lacking particular RNR classes and/or
the NrdR regulator can be retrieved. It is also possible to
retrieve proteins with specific annotated attributes (e.g.
inteins) or to restrict the search to completely sequenced
genomes. All three aspects of searches can also be com-
bined, allowing searches for, e.g., enterobacterial class I
RNRs for which solved structures exist.

Correct class Correct role Correct function Single domain N Percent
Yes Yes Yes NA 1702 23
Yes No Yes NA 569 8
No Yes NA NA 2339 32
No No Yes NA 1185 16
No No Almost? NA 196 3
No No No Yes 105 |
No No No No 1155 16

Sums 7251 100

GenBank definitions of proteins in RNRdb. Four different aspects of RNR functional annotation have been investigated: RNR class, protein role
(subunit identity), general function (involved with ribonucleotides) and single domain identification (the ATP cone [35] that regulates activity in
many enzymatic subunits). Only NCBI entries for full-length sequences were used, and nine sequences that were difficult to classify were excluded.

NA, not applicable.

a Proteins annotated such that they contain the string "ribonucl” for all RNR proteins, or "repressor" for NrdR, but not a full description of the
function such that they would classify as correctly functionally annotated, have been classified as almost correctly annotated with respect to

function.
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iii) The "BLAST" [37] page permits searches of RNRdb
using either protein (blastp) or DNA sequence (blastx)
data. The BLAST search interface can be used to annotate
unknown sequences, or to investigate annotations in
other databases.

iv) The "Statistics" page provides tabulated summaries of
RNR distribution across the three cellular domains, and
DNA viruses, both for complete genomes and for the
entire database (Table 2 and 4). For complete genomes,
all combinations of RNR classes are summed for each
domain (likewise viruses) and across domains; clicking
on sums generates a detailed list of species and proteins
(e.g. archaea carrying class II and class IIT RNRs).

To facilitate data acquisition for comparative analyses,
sequences (including those returned by a specific search)
can be downloaded in FASTA or NEXUS format via the
protein detail pages. Subsets of sequence data from
returned searches or from the "RNRs by organism" page
can also be selected manually via checkboxes and down-
loaded as above.

Discussion

Our knowledge of the distribution of ribonucleotide
reductases has expanded rapidly over the last few years.
Until recently, the distribution of the three classes was
considered rather limited, and, as a domain, only bacteria
were thought to possess the full gamut of classes. Class I
RNRs were thought to be absent from archaea, and no
sequences for classes II and III were known from eukaryo-
tes. While whole genome data have expanded this picture,

Table 4: RNR distribution

http://www.biomedcentral.com/1471-2164/10/589

annotations in other public databases (mainly GenBank)
are often uninformative as regards RNR class and subunit
type (meaning that this has to be checked manually)
(Table 3). Moreover, a number of genomes carry clear
misannotations, and protein family databases do not
always correctly categorise RNRs. Searching Pfam [32], for
instance, returns adequate descriptions of two of the struc-
tural domains ("ATP cone" and "Glycine radical") of the
Escherichia coli K12 catalytic subunit class III protein, but
no family or structural domain with clear reference to
RNRs. Searching with the E. coli K12 class Ia catalytic sub-
unit protein sequence and the Thermotoga maritima class 11
protein sequence returns in both cases the "Ribonucle-
otide reductase, all-alpha domain" and the "Ribonucle-
otide reductase, barrel domain" family. It is thus difficult
to tell from Pfam searches that the class III sequence is an
RNR and that the class I and class II sequences are from
different classes. Although other protein family databases
have broader coverage (e.g. Pfam [32], InterPro [33] and
PhyloFacts [34]), our approach with HMM profiles fol-
lowed by manual curation yields more accurate descrip-
tions (unpublished observations).

RNRdD thus offers a first clear overview of the distribution
of the three classes of ribonucleotide reductase. The data
curated in RNRdb make it clear that all three classes of
ribonucleotide reductase are found in all three organismal
domains. Around half of all sequenced species carry genes
for only one class of RNR, but among those with more
than one RNR class, two eukaryotes, one archeon, and 54
(7.5%) of the fully sequenced bacterial genomes harbour
genes for all three RNR classes (Table 4). The varying envi-

Combination Archaea Archaeal viruses  Bacteria Bacteriophages Eukaryotes Eukaryotic viruses  Totals
| 0 0 211 18 56 8l 366

Il 20 | 87 14 | 0 123

I 15 0 I | 0 0 27

[+ 2 0 82 0 2 | 87

1+ 0 0 222 14 | 0 237

11+ 15 0 47 0 0 0 62
I+1+11 [ 0 54 0 2 0 57
None 0 0 3 0 2 0 5
Totals 53 I 717 47 64 82 964

Combinations of RNR classes in the cellular domains and viruses. This table only contains data from fully sequenced genomes. We have exhaustively

verified absence of RNRs in organismal, but not in viral genomes.
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ronmental and biochemical conditions under which each
class of RNR can synthesise deoxyribonucleotides (Table
1), the complex distribution of the three classes across
genomes, and the frequent presence of more than one
complete set of RNR genes per genome suggests a role for
horizontal gene transfer in forming this distribution. Evo-
lutionary genomic analyses support this view (Lundin et
al., in prep.).

Conclusion and future directions

The diverse distribution of ribonucleotide reductases was
poorly appreciated prior to the genomic era in biological
research. Prior to the establishment of RNRdb this infor-
mation was difficult to navigate due to incomplete and
misleading annotation regarding class membership and
subcomponent information in databases. We demon-
strate that manual curation of protein sequences leads to
significant improvements over existing annotations, and
that there is therefore value in generating such annotation
sets. Indeed, there are ongoing efforts to try and integrate
such approaches to large-scale annotation [38].

Our plans for the next major release of the database,
RNRdb 2.0, include tools to enable users to explore
sequence diversity within the components of different
RNR classes. Specifically, we are developing tools to com-
plement the current BLAST search feature with a service
that matches user submitted sequences to our set of HMM
profiles, allowing a more precise and fine-grained annota-
tion.

Interestingly, ribonucleotide reductases are the most
abundant enzyme family identified in metagenomic
sequencing projects [39], and the potential utility of relat-
ing the biochemical attributes of RNRs to environmental
parameters such as oxygen levels or iron availability is
clear. RNRdb 2.0 will therefore also include sequences
from environmental samples and other sources where the
identity of the organism cannot be established. Our vision
for RNRdb 2.0 is a database where the user can explore
sequence space to analyse not only which classes exist in
different taxa, but also in which organisms and environ-
ments subtypes of RNR genes occur. We will continue to
expand the content and scope of RNRdb, in order to fur-
ther deepen our understanding of this fascinating enzyme,
and to explore its utility in the metagenomic analyses of
diverse microbial environments.

Availability and requirements
RNRdb is freely available at http://rnrdb.molbio.su.se.
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