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Abstract

Background: Cyst nematodes are devastating plant parasites that become sedentary within plant
roots and induce the transformation of normal plant cells into elaborate feeding cells with the help
of secreted effectors, the parasitism proteins. These proteins are the translation products of
parasitism genes and are secreted molecular tools that allow cyst nematodes to infect plants.

Results: We present here the expression patterns of all previously described parasitism genes of
the soybean cyst nematode, Heterodera glycines, in all major life stages except the adult male. These
insights were gained by analyzing our gene expression dataset from experiments using the
Affymetrix Soybean Genome Array GeneChip, which contains probeset sequences for 6,860 genes
derived from preparasitic and parasitic H. glycines life stages. Targeting the identification of
additional H. glycines parasitism-associated genes, we isolated 633 genes encoding secretory
proteins using algorithms to predict secretory signal peptides. Furthermore, because some of the
known H. glycines parasitism proteins have strongest similarity to proteins of plants and microbes,
we searched for predicted protein sequences that showed their highest similarities to plant or
microbial proteins and identified 156 H. glycines genes, some of which also contained a signal
peptide. Analyses of the expression profiles of these genes allowed the formulation of hypotheses
about potential roles in parasitism. This is the first study combining sequence analyses of a
substantial EST dataset with microarray expression data of all major life stages (except adult males)
for the identification and characterization of putative parasitism-associated proteins in any parasitic
nematode.
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Conclusion: We have established an expression atlas for all known H. glycines parasitism genes.
Furthermore, in an effort to identify additional H. glycines genes with putative functions in
parasitism, we have reduced the currently known 6,860 H. glycines genes to a pool of 788 most
promising candidate genes (including known parasitism genes) and documented their expression
profiles. Using our approach to pre-select genes likely involved in parasitism now allows detailed
functional analyses in a manner not feasible for larger numbers of genes. The generation of the
candidate pool described here is an important enabling advance because it will significantly facilitate
the unraveling of fascinating plant-animal interactions and deliver knowledge that can be transferred
to other pathogen-host systems. Ultimately, the exploration of true parasitism genes verified from
the gene pool delineated here will identify weaknesses in the nematode life cycle that can be

exploited by novel anti-nematode efforts.

Background

Heterodera glycines, the soybean cyst nematode, is a devas-
tating pathogen of soybean production. Upon hatching as
second-stage juveniles (J2), these nematodes migrate
through the soil as infective ]2, invade roots of soybean
plants to become parasitic J2, and move intracellulary
through the root tissue until they reach the vicinity of the
vascular system, where they become sedentary and induce
the formation of a feeding site, the syncytium [1-3]. H. gly-
cines completely depends on syncytia for nutrition. Fol-
lowing the development through two more juvenile stages
(J3, J4), the nematodes reach adulthood. While adult
females remain sedentary, adult males regain motility and
leave the root to fertilize females, whose posterior bodies
have broken out of the root into the rhizosphere during
the course of growth and development. Ultimately, the
females die and their body walls harden to protect the
eggs, which are mostly retained in utero, until the environ-
ment is favorable again for a new generation of nema-
todes to hatch [1,4].

Secreted proteins are key molecular interfaces between
parasite and host and enable H. glycines to infect soybean
plants, which results in an estimated annual damage of
$800 million to soybean production in the USA alone [5].
More specifically, secretory proteins that are produced in
three large esophageal gland cells (one dorsal and two
subventral) and that are injected into host plant cells
through the nematode's hollow mouth spear, the stylet,
are thought to allow H. glycines to migrate through plant
tissue by softening and degrading cell walls and to induce
and maintain a feeding site, the syncytium, which consists
of modified fused host plant root cells. Many genes are
involved in adapting cyst nematodes to a parasitic life
style. However, only genes whose products are expressed
in the nematode secretory glands and are injected into the
host cells through the stylet (i.e., parasitism proteins) are
called parasitism genes, which in turn have been termed
parasitome in their entirety [6-8]. Previous studies in cyst
nematodes (Heterodera spp. and Globodera spp.) identified
genes encoding cell wall-degrading and -softening

enzymes like beta-1,4-endoglucanase [9,10], pectate lyase
[11,12], a putative arabinogalactan endo-1,4-beta-galac-
tosidase [13] and an expansin [14] as members of the par-
asitome. Apart from genes related to cell wall
modifications, other genes whose products likely alter the
normal host cell physiology to establish and maintain a
syncytium belong to the parasitome, e.g., chorismate
mutases [15,16], ubiquitin extension proteins [16,17], as
well as S phase kinetochore-associated protein 1 (SKP1)
and RING-like proteins [16]. While a few more parasitism
proteins have similarity to known proteins, like the
venom allergen-like proteins [18] or a chitinase [19], for
most H. glycines parasitism proteins no clear function can
be ascribed [16], although it has been shown that some
are imported into plant cell nuclei [20]. To date, more
than sixty parasitism genes have been identified in H. gly-
cines. Most likely, however, the H. glycines parasitome is
even larger. Furthermore, there may be proteins produced
in organs/tissues other than the esophageal glands or pro-
teins released by means other than the signal peptide-
dependent secretory pathway that play critical roles in
mediating cyst nematode parasitism. While secretory
parasitism proteins that are released into plant host tissue
are key factors to understand host-parasite interactions,
many secretory proteins exist that do not leave the body of
the nematode. These secretory proteins are involved in a
vast array of non-parasitic signaling events within the
nematode and can be found for example in the extracellu-
lar matrix, intestinal lumen, cuticle or neuronal synapse.

Previous studies leading to the identification of parasitism
genes in cyst nematodes were based on cloning
approaches of single genes [10,11,14,15,17] or exploited
smaller scale cDNA libraries constructed from microaspi-
rated gland cell contents [16,21,22]. However, larger scale
genomic approaches offer an additional avenue to iden-
tify more genes with putative functions in parasitism.
While studies to characterize the overall gene expression
of parasitic nematodes based on expressed sequence tags
(ESTs) have become relatively common in recent years
[e.g., [23-32]], very few reports dealt specifically with ESTs
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of genes that code for secretory proteins [13,33,34], and
none combined expression analyses of all genes with
detailed sequence mining approaches.

We previously reported the expression profiling of all
7,530 H. glycines probesets on the Affymetrix Soybean
Genome Array GeneChip representing up to 6,860 unique
cyst nematode genes throughout the major life stages
from embryonated eggs to the adult female stage [35]. The
same Affymetrix GeneChip was used recently to study the
expression patterns of a small subset of parasitism genes
in a few juvenile life stages of H. glycines as well as of soy-
bean genes during the infection process [36] and to survey
the development of feeding cells in soybean plants [37].
We generated the necessary cDNA libraries and ESTs that
allowed the design of these 7,530 H. glycines probesets
from stage-specific soybean cyst nematode libraries
including not only eggs and infective J2, but also the hard-
to-isolate parasitic stages (J3, J4, adult females) that only
form inside the soybean root. This latter aspect is particu-
larly important for the research reported here because sed-
entary endoparasitic nematodes like the cyst nematodes
do not produce and/or secrete the vast number of parasit-
ism proteins until they have invaded their host plants.
Consequently, previous approaches that are based on pre-
parasitic juvenile worms and that do not include the par-
asitic stages are liable to miss the truly interesting proteins
that the nematode only releases when in contact with its
host cell deep inside the plant root. In this current paper,
we have analyzed our previously deposited microarray
data set [35] with a distinct focus on parasitism and host-
parasite interactions. The primary goal of the research pre-
sented here was to use critical high throughput criteria dis-
cernable from gene sequence and expression
characteristics to identify additional proteins that can rea-
sonably be expected to function during parasitism. This
pre-selection is an enabling discovery for further, more in-
depth functional work to unravel cyst nematode parasit-
ism. To this end, a rigorous examination of all 7,530 H.
glycines probesets represented on the Affymetrix Soybean
Genome Array GeneChip allowed us to identify a pool of
633 H. glycines genes that encode putative secretory pro-
teins and of 156 H. glycines genes that are conserved in
microbes or plants but that have significantly less similar-
ity to sequences from the non-parasitic nematodes
Caenorhabditis elegans and Caenorhabditis briggsae. We pro-
vide here for the first time an analysis of the expression
profiles of these genes, as well as of all previously
described parasitism genes, in all major life stages of H.
glycines excluding adult males. Together, the gene pool
identified here represents a promising starting point to
search for previously uncharacterized genes with func-
tions in parasitism and for H. glycines genes that poten-
tially were acquired by horizontal gene transfer, a
mechanism by which parasitic nematodes are believed to
have obtained a subset of parasitism genes [10,38]. In
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summary, this project represents a functional genomic
analysis of available cyst nematode data targeting phy-
tonematode parasitism.

Results

Known H. glycines parasitism genes show two different
developmental expression patterns

During the generation of the Affymetrix Soybean Genome
Array GeneChip the previously identified 66 H. glycines
parasitism genes [10,12,16,21,22] were grouped by the
manufacturer into 46 contigs, which are represented by 62
probesets on the GeneChip (some contigs have multiple
probesets) (Additional file 1). Using our previously
described Affymetrix microarray data set, which encom-
passes all life stages of H. glycines except adult males [35],
we determined the developmental expression patterns of
all 62 probesets representing these 46 contigs. All of the
parasitism gene probesets displayed significant expression
changes during the H. glycines life cycle at a false discovery
rate (FDR) of 5%. We performed statistical analyses as
described in Methods for all parasitism gene probesets,
which identified two clusters based on gene expression
patterns (Figure 1). H. glycines parasitism genes either
reached a maximum mRNA abundance in infective J2,
remained steady until parasitic J2 and dropped off steeply
thereafter (Cluster 1) or they reached a maximum in their
mRNA expression levels in parasitic J2 and then fell stead-
ily after the J3 stage (Cluster 2). The gland-specific expres-
sion patterns of these genes have been determined in
previous studies [16,21,22]. Apart from very few excep-
tions, parasitism genes expressed in the subventral glands
of the nematode fell into Cluster 1, whereas parasitism
genes from the dorsal gland could be grouped into Cluster
1 or Cluster 2 (Additional file 1). The majority of H. gly-
cines parasitism genes, particularly those expressed in the
dorsal esophageal gland, were novel and did not share
similarities with any known sequences. Therefore, the
expression profiles obtained here are important tools to
infer putative protein functions judging from the time
points at which these genes are upregulated. Genes that
are important during host invasion and early sedentary
phases, which includes the early events of syncytium
induction (i.e., infective J2/parasitic J2), should be repre-
sented in Cluster 1, because this cluster showed an expres-
sion maximum in these two stages (Figure 1). Genes that
are relevant during later stages of parasitism like the later
stages of syncytial development, syncytium maintenance
and feeding, are expected in Cluster 2, whose members
were expressed at a relatively high level also in late stages
(J3, J4, adult females). However, it was remarkable that
such diverse proteins as secreted cellulases and pectate
lyases with an obvious role in plant cell wall degradation
(i.e., during early phases of parasitism) had a strikingly
similar expression pattern to genes encoding secretory
proteins that are believed to influence the host cell's phys-
iology (e.g., chorismate mutases, ubiquitin extension pro-
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Temporal expression patterns of H. glycines parasit-
ism gene probesets. All 62 H. glycines parasitism gene
probesets were differentially expressed (FDR 5%) over the
entire life cycle and were grouped into two clusters. The
average expression pattern of each cluster is represented by
a bold line.

teins) or for which no function during parasitism can be
ascribed yet (e.g., chitinase, venom allergen proteins). The
expression profiles of these genes showed a clear down-
regulation after the parasitic J2 stage, which is the begin-
ning of the sedentary phase of the nematode and of
feeding site development. Furthermore, those parasitism
genes that were upregulated in later life stages did not
match any other known sequences, apart from two excep-
tions: annexin and a cellulose-binding protein (Addi-
tional file 1). Annexins bind to calcium-dependent
phospholipid membranes, and while their role during
parasitism remains unknown, the cellulose-binding pro-
tein binds to a plant pectin methylesterase and functions
in cell wall modifications during syncytium development
[39].

In addition to analyses of gene expression changes
throughout the whole life cycle, in which each life stage
was compared to all others, we also performed statistical
analyses to identify gene expression changes in consecu-
tive life stages to isolate specific shifts in gene expression.
The results of these studies showed that most parasitism
genes were differentially expressed when eggs were com-
pared with infective J2 as well as when infective J2 were
compared with parasitic J2. All of these differentially
expressed genes were upregulated (Table 1). This pattern
drastically changed from parasitic J2 to J3, where only a
smaller subset of genes was differentially expressed and,
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interestingly, these were all down-rather than upregu-
lated.

H. glycines genes for secretory proteins frequently are
novel sequences and change expression with the onset of
parasitism

To identify new H. glycines genes that are potentially
involved in host-parasite interactions we identified all
genes that encode secretory proteins. Specifically, we
searched for signal peptide-coding regions in the consen-
sus sequences of all 7,530 H. glycines probesets on the
Affymetrix Soybean Genome Array GeneChip as
described in Methods. This analysis identified 633 unique
H. glycines genes that encode proteins with a putative sig-
nal peptide but lack a transmembrane helix and have an
open reading frame (ORF) of at least thirty amino acids
after the predicted signal peptide cleavage site (Additional
file 2). However, it can be assumed that H. glycines pos-
sesses more gene products with signal peptides than we
could detect here because a significant portion of ESTs
lacks a complete 5'-end so that no signal peptide-coding
region could possibly be identified. All known parasitism
genes are included in these 7,530 probesets, and our
detection protocol for secretory protein coding genes re-
identified all but seven of the known sixty-six parasitism
genes analyzed here, giving a re-discovery rate of 89%. The
probesets of genes that were missing did not meet all of
our stringent selection criteria.

Because most parasitism proteins have no database hits to
known proteins, we determined whether the signal pep-
tide-encoding genes identified here differ in their likeli-
hood of having database matches compared to other
genes. For this purpose, we conducted BLASTX searches of
all 6,860 unique H. glycines genes underlying the 7,530
probesets of the Affymetrix GeneChip against the non-
redundant GenBank database. We found that 52.8%
(334/633) of the gene products predicted to be secreted
had matches when using a cutoff value of 1e-05 (Addi-
tional file 2). Similarly, 58.5% (3,644/6,227) of the gene
products not thought to be secreted had matches. Even
though this difference of 5.7% is relatively small, we
found a significant difference when the relative BLASTX
scores were compared. Out of all 6,860 unique genes,
3,978 had matches, and resulted in a median BLASTX
score of 310 (min 41, max 5,249). Using only the 334
gene products of secreted candidates, the median BLASTX
score was reduced to 129 (min 27, max 3,299), which sug-
gests that as was the case for previously reported parasit-
ism genes, our newly identified cohort of secretory
proteins containing potential parasitism proteins evolved
more rapidly than non-secreted sequences.

To analyze with which organisms H. glycines signal pep-
tide-bearing proteins share conservation, we sorted the
top BLASTX hits meeting a cutoff of 1e-05 by organism
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(Figure 2). Approximately 26% (166 genes) of the 633 H.
glycines genes with putative signal peptide-coding regions
matched Caenorhabditis elegans or Caenorhabditis briggsae
sequences, followed by 12% that matched other H. gly-
cines genes and 7% that aligned best with sequences from
animals other than nematodes. However, 147 out of the
total 166 Caenorhabditis matches represented unknown or
hypothetical proteins and, similarly, 47 out of 78 H. gly-
cines sequences were novel, i.e., they did not share similar-
ity with other known sequences.

Using statistical analyses, all Affymetrix probeset expres-
sion profiles obtained for the 633 signal peptide-encoding
genes separated into nine expression clusters (Figure 3) as
described in Methods. When all experimental data, i.e.,
expression data throughout all life cycle stages, were taken
into consideration, 94% of these probesets were differen-
tially expressed (FDR 5%) during the life cycle. When con-
ducting statistical analyses of expression data for
consecutive life stages in pairwise comparisons, we deter-
mined that 49% of the Affymetrix probesets representing
the 633 secretory protein genes were differentially
expressed (FDR 5%) during the transition from eggs to
infective J2. Similarly, 48% of these Affymetrix probesets
were differentially expressed from infective ]2 to parasitic
J2 and 33% from parasitic J2 to ]J3. The fewest significant
changes (10%) occurred between J3 and J4, followed by
the comparison between J4 and adult females (20%)
(Table 1). Taken together, the clusters for overall differen-
tially expressed probesets as well as the stage by stage
comparisons showed that the strongest expression
changes in genes that code for secretory proteins took
place at the transitions into and out of the infective J2
stage, which marks the preparations for host invasion and
a parasitic lifestyle.

Identification and expression profiling of H. glycines genes
that are conserved in microbes or plants

Previous studies showed that a substantial proportion of
the known cyst nematode parasitism proteins share a high
degree of similarity with bacterial [10,11,13] and fungal
[11-13] proteins and not to the non-pathogenic
Caenorhabditis spp. These observations led to the sugges-
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tion that certain nematode genes that are important for a
parasitic relationship with the host might have been
acquired by horizontal gene transfer from microbes
[7,10,38]. Further studies demonstrated that other cyst
nematode secretory proteins with potential involvement
in parasitism have a striking similarity to plant proteins
[15,16,40,41], which could hint at mimicry of plant regu-
latory proteins by cyst nematodes to alter the physiology
of the host. Therefore, we identified H. glycines proteins
that showed significant sequence similarity with microbe
or plant proteins by manually sorting the results of the
BLASTX searches of all 6,860 H. glycines genes against the
non-redundant GenBank database mentioned above. We
isolated all matches to proteins from plants, microbial
phytopathogens/phytosymbionts  (termed phytomi-
crobes here), soil-living microbes and other microbes. A
counter-selection protocol ensured that highly conserved
sequences that are present in diverse organisms (including
Caenorhabditis spp.) were removed in order to discard
sequences that are unlikely to be involved in parasitic rela-
tionships (see Methods). These analyses revealed that,
using our criteria, 29 H. glycines protein sequences were
conserved in plants, 41 in microbial phytomicrobes, 33 in
soil-living microbes, and 53 in other microbes, resulting
in a total of 156 such proteins (Additional files 3, 4, 5, 6).
For example, we identified a plant-like H. glycines gene
whose translated product had similarity to beta-amylase
from Arabidopsis (HgAffx.12554.1), which is interesting
because genes encoding beta-amylases have so far only
been found in microbe and plant genomes, but not in ani-
mals. Furthermore, we found H. glycines genes whose
products were similar to a potato protein induced in the
feeding site (giant-cells) of the root-knot nematode (Mel-
oidogyne) (HgAffx.13422.1), or were involved in RNA
interference (RNAi) like a Zwille/Pinhead-like protein
from rice (HgAffx.13330.1). Phytomicrobe-like H. glycines
sequences matched sugar metabolizing enzymes from
Agrobacterium tumefaciens, e.g., mannitol-2-dehydroge-
nase (HgAffx.18502.1) and sucrose hydrolase
(HgAffx.9663.1, HgAffx.12954.1), as well as enzymes like
glutamine synthetase (HgAffx.18955.1) and phosphori-
bosyltransferase (HgAffx.23512.1) or aldose-1-epimerase
(HgAffx.18360.1) from Mesorhizobium to name just a few.

Table I: Summary of parasitome, signal peptide-encoding and plant or microbe-like H. glycines genes.

H. glycines contigs Contigs Probesets Differentially expressed probesets total (up/downregulated)**

overall life cycle egglinf)2 inf)2/par)2 par)2/)3 J3/)4 JAIF
Secretory protein 633 686 646 337 (213/124) 335 (186/149) 224 (55/169) 69 (41/28) 136 (41/95)
coding*
H. glycines parasitome 46 62 62 39 (34/5) 34 (30/4) 34 (0/34) 2 (0/2) 3 (0/3)
Plant-like 29 30 18 2 (0/2) 4 (4/0) 1 (1/0) 0 2 (0/2)
Phytomicrobe-like 41 43 28 16 (9/7) 7 (5/2) 3(172) 5 (5/0) 3(172)
Soil microbe-like 33 40 25 Il (4/7) 7 (413) 3(172) 0 4 (4/0)
Other microbe-like 53 63 39 I'1(5/6) 14 (11/3) 5 (2/3) 0 5 (0/5)
*As defined in Methods
*FDR 5%
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Figure 2
BLASTX hits of H. glycines putative secretory protein
encoding genes separated by organism group.

It is particularly interesting to discern if these H. glycines
genes potentially are secreted from the nematode. There-
fore, we examined how many of these H. glycines genes
were part of the secretome identified in this study. Of the
29 plant-conserved H. glycines genes, three encoded a
putative signal peptide. Similarly, four of those conserved
in phytomicrobes, four of those conserved in soilmi-
crobes and four in other microbes (Additional file 7) con-
tained signal peptide sequences. However, these predicted
proteins did not necessarily meet all our other, more strin-
gent criteria. E.g., some proteins did have a putative trans-
membrane helix or did have less than 30 amino acids after
the predicted signal peptide cleavage site (see Methods).
Also in these analyses, one needs to remember that a sig-
nificant portion of the ESTs lacks a complete 5'-end so
that no signal peptide-coding region could possibly be
detected. Additional file 7 shows the overlap between H.
glycines contigs identified as parasitism genes, secretory
protein-encoding or plant/microbe-like. Interestingly,
some of those H. glycines genes that did fulfill all our cri-
teria for secreted plant-like proteins matched for example
plant genes encoding histone deacetylase 2 from Arabi-
dopsis (HgAffx.19783.1) or the Meloidogyne-induced
giant-cell protein-like protein from potato
(HgAffx.13422.1). H. glycines proteins with similarity to
microbial gene products that passed our signal peptide
selection process matched among others a flavin adenine
dinucleotide (FAD)-linked oxidase from Arthrobacter
(HgAffx.18477.1), histidine triad nucleotide-binding
family protein 1 (HIT1) from Chaetomium globosum
(HgAffx.11878.1) or a hypothetical protein from Gib-
berella zeae (HgAffx.17226.1). To our knowledge, none
of these genes encode proteins with signal peptides in the
respective plant or microbe species to which the H. gly-
cines sequences matched.

We further grouped all identified plant- and microbe-like
H. glycines genes represented by their respective probesets
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into distinct expression clusters (Additional files 8, 9, 10,
11). In order to identify specific shifts in gene expression,
we performed pairwise comparisons of consecutive life
stages of H. glycines for genes that were conserved in
plants, phytopathogens/phytosymbionts, soilmicrobes
and other microbes regardless of whether we could find a
signal peptide-encoding sequence or not. The results of
these analyses are summarized in Table 1. It is evident that
the vast majority of these probesets was differentially
expressed when eggs were compared with infective J2 and
infective J2 with parasitic J2 and that up- and downregu-
lated probesets were represented in about equal propor-
tions in these two stage-wise comparisons. This means
that these plant and microbe-like H. glycines genes are
strongly regulated at the onset of parasitism.

H. glycines encodes signal peptide-bearing gene products
with similarity to plant histone deacetylase

Histone modifications are an important regulatory ele-
ment in gene expression [42]. We found here a H. glycines
histone deacetylase-2 (HDA2) probeset
(HgAffx.19783.1.S1_at) with an Arabidopsis HDA2
(AAM34784.1) as best BLASTX match for its consensus
sequence, rather than a homologous gene in nematode
species, including the fully sequenced C. elegans or C.
briggsae genomes. Interestingly, this H. glycines HDA2 has
a putative signal peptide and lacks a transmembrane
helix, which makes it a putatively secreted protein. To our
knowledge, there are no prior reports of signal-peptide-
containing histone deacetylases. Cyst nematodes like H.
glycines are known to possess plant-like proteins with sig-
nal peptides that are normally not secreted in plants or
other organisms, e.g., SKP1 or chorismate mutases [7].
Hence, a secreted Arabidopsis-like histone deacetylase
would be an exciting new example of how cyst nematodes
could modify gene expression of plants by altering the
epigenome of their host cells.

To analyze this H. glycines gene product further, we con-
structed a multiple alignment and a phylogenetic tree for
the translated Affymetrix consensus sequence of this
probeset (HgAffx.19783.1.51_at) and HDA2 homologs of
selected plant and nematode species using CLUSTAL W
[43]. It can be clearly seen that the H. glycines HDA2 is not
only more similar to Arabidopsis HDA2, but to other
plant HDAZ2s as well, and that the respective homologs of
other nematode species are very different from plant
HDAZ2s (Figure 4, Additional file 12).

H. glycines probes cross-hybridize with Phytophthora
sojae or Glycine max probesets

In addition to the 7,530 probesets corresponding to H.
glycines mRNAs, the Affymetrix Soybean Genome Array
GeneChip contains 37,500 probesets for soybean (Glycine
max) mRNAs and 15,800 probesets for mRNAs of Phytoph-
thora sojae, an oomycete pathogen of soybean plants. We
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Figure 3
Temporal expression patterns of probesets for predicted H. glycines secretory protein encoding genes. All 646
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nal peptide cleavage site and no predicted transmembrane helix were differentially expressed (FDR 5%) over the entire life
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found 576 G. max and 134 P. sojae probesets that hybrid-  (BLASTX, BLASTN against non-redundant GenBank;
ized strongly and repeatedly to H. glycines probes in three ~ BLASTN against dbEST_other database) detected only a
independent experiments (Additional files 13, 14) and  negligible number of Caenorhabditis hits and did not lead
that showed differential expression (Figures 5, 6). A vari-  to matches for cyst nematode sequences, but primarily
ety of BLAST searches of cross-hybridizing probesets  soybean and oomycete or fungus sequences as best hits
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(data not shown). These results indicate that the cross-
hybridizing probesets in all likelihood originated from
soybean plants and P. sojae and were not H. glycines con-
taminations in cDNA libraries of these two organisms
because we did not find a single hit with a bona fide H. gly-
cines database entry, which otherwise would have to have
occurred. The possibility of falsely annotated H. glycines
ESTs can be ruled out based on the same results. To deter-
mine whether in fact there are highly conserved cyst nem-
atode sequences that could cross-hybridize with gene
sequences of soybean or P. sojae, we conducted BLASTN
searches of the cross-hybridizing soybean and P. sojae
probesets against an in-house database of all cyst nema-
tode (Heterodera spp. and Globodera spp.) sequences. Of
576 soybean probesets, 119 (20.7%) indeed matched
known cyst nematode genes and of 134 P. sojae probesets
12 (9.0%) in fact had matches with known Heterodera
spp. or Globodera spp. genes (Additional files 13, 14). In
other words, in all likelihood, sequence conservation was
responsible for the observed cross-hybridization results.

To complement the BLAST searches of the cross-hybridiz-
ing soybean and P. sojae probesets, we used InterProScan
[44] to identify known protein domains. We found 336
soybean probesets that aligned to 207 unique InterPro
domains and 83 P. sojae probesets that aligned to 70
unique InterPro domains, respectively. A summary of the
25 most abundant InterPro domains for both organisms
can be viewed in Table 2.

Taken together, the soybean and P. sojae probesets that
surprisingly cross-hybridized with H. glycines probes
potentially provide a lead to an additional set of nema-
tode genes from which novel parasitism-associated genes
can be isolated and confirmed. Ultimately, this aspect can
be advanced further only with a future release of a com-
plete H. glycines genome sequence, because the recent dep-
osition of a large number of genome fragments did not
allow an exhaustive and conclusive analysis (data not
shown).

Discussion

Here we have presented the results of an extensive in silico
study aiming at the identification of a group of H. glycines
genes that is enriched in genes with potential functions
during host-parasite interactions. This is the first study
combining microarray data of all major life stages (except
adult males) and exhaustive sequence analyses for the
identification of parasitism-associated proteins in any
parasitic nematode. Our findings now enable more
detailed studies to identify true parasitism genes among
the individual candidate genes identified here, which
would not have been feasible for larger data sets.

It has been widely assumed that cyst nematode parasitism
genes have well-defined roles in early and late stages of
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the infection process, and our findings of two distinct
expression clusters representing early or late upregulation
for all known parasitism genes support this. When com-
paring the temporal expression patterns of H. glycines gene
groups identified here, it became evident that certain
expression clusters showed profiles that were similar to
those of known parasitism genes. Specifically, Cluster 1 of
the currently known parasitome (Figure 1) (i.e., early
upregulation) was strikingly similar to Cluster 3 of the
secretome identified by us here (Figure 3), while Cluster 2
of the parasitome (i.e., late upregulation) was mirrored by
Cluster 1 of the secretome, Cluster 1 of plant-like H. gly-
cines genes (Additional file 8) and Cluster 5 of soilmi-
crobe-like H. glycines genes (Additional file 10). The H.
glycines genes represented in these clusters might be partic-
ularly promising candidates for future studies aiming at
the verification of their roles in parasitism. Alternatively,
Clusters 2 and 4 of the secretome might be of interest
because the genes in these groups were strongly upregu-
lated in very late parasitic stages (post-J3). These clusters
might harbor novel parasitism-associated genes that are
very different from the currently known parasitome,
which is biased towards early stages of parasitism.

It has been suggested that nematode proteins that enter
the secretory pathway evolve more rapidly than those that
do not and hence are less likely to match sequences of
other organisms [33]. Even though the difference we
found in the number of genes with BLASTX hits between
all H. glycines genes represented on the Affymetrix micro-
array and those with a predicted signal peptide was rela-
tively low, we identified a significant difference in the
relative distribution of BLASTX scores. This means that
our results support previous findings and a model in
which nematode secretory proteins evolve more rapidly
than other gene products. None of the libraries used here
was based on splice leader 1 (SL1) sequences, which tend
to be skewed towards shorter sequences [24], such that no
bias towards complete 5'-ends (and hence signal pep-
tides) was possible in the data analyzed here.

Some of the known parasitism proteins showed similari-
ties to plant or microbe sequences [10-12,14,16], and in a
closely related nematode species additional genes with
similarity to nitrogen-fixing soil bacteria, collectively
called rhizobia, could be identified [38]. It has been sug-
gested that microbial genes might have been acquired by
horizontal gene transfer [10,38] and that plant-like genes
might have evolved in the nematode for mimicry of plant
proteins and interference with plant signaling pathways
[7,40,41]. For all of these genes to have any effect in a par-
asitic relationship between host and parasite, they need to
be secreted. Hence, we were interested in analyzing
whether H. glycines genes represented on the Affymetrix
Soybean Genome Array GeneChip with similarity to
microbes or plants might encode signal peptide-bearing

Page 8 of 17

(page number not for citation purposes)



BMC Genomics 2009, 10:58

Mt
At

CLUSTAL W phylogenetic tree for HDA2 homolog
sequences. Including H. glycines (Hg) Affymetrix consensus
sequence for probeset HgAffx.19783.1.SI_AT; C. elegans
(Ce) Wormbase entry CE01472; Trichinella spiralis (Ts)
ES567375; Globodera rostochiensis (Gr) AW506399; Arabidop-
sis thaliana (At) AAM34784.1; Medicago truncatula (Mt)
EV261025; Lotus japonicus (Lj) BW625394.

proteins. If so, these genes would be interesting candi-
dates for further studies as they might be involved in para-
sitism. Particularly intriguing examples were genes
encoding proteins for which secretion would not be
expected in plants or microbes, but for which homolo-
gous sequences in H. glycines possessed a signal peptide-
encoding region. For example, we found two H. glycines
genes (HgAffx.19783.1, HgAffx.19046.1) with similarity
to Arabidopsis histone deacetylase 2 (AAM34784.1) and
Arabidopsis RNA polymerase II transcription factor
(NP_175948.1), none of which are secreted in Arabidop-
sis, but both contained a signal peptide in H. glycines
(Additional file 12). Given the fact that these proteins had
higher similarity with plant proteins than with homologs
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in the fully sequenced C. elegans or C. briggsae genomes,
secretion of these proteins into host plants and a role in
parasitism seems very likely and warrants further experi-
ments. It has been demonstrated that histone modifica-
tions are involved in gene regulation [42] so that a
secreted Arabidopsis-like histone deacetylase would be an
exciting example of how cyst nematodes could modify
gene expression of their host plants and mimic plant pro-
teins to interfere with the physiology of the host. It has
been shown that in Arabidopsis, histone acetylation is
involved in vernalization [45], is responsive to light [46],
and that histone deacetylase 19 (HDA19) can be induced
by wounding, pathogen attack and plant hormones [47].
Furthermore, overexpression of HDA19 resulted in
increased pathogen resistance [47]. What role a secreted
H. glycines histone deacetylase might have during the
infection process remains elusive at this point.

As stated earlier, the sequences upon which the Affymetrix
GeneChip is based are mostly ESTs, which frequently are
incomplete at their 5'-ends, which is the location of the
signal peptide-encoding sequence. Consequently, we
expect that more of the plant and microbe-like H. glycines
genes encode secretory proteins than we were able to
identify. On the other hand, not all of the H. glycines pro-
teins that matched plant or microbe sequences and that
did have a signal peptide are necessarily secreted into the
environment (i.e., the host plant) but are rather involved
in processes within the nematode. Further experimental
studies are needed to localize the putative secretory pro-
teins identified here in the nematode either by in situ
hybridizations or immune localizations. Also, it needs to
be noted that certain proteins can be secreted even with-
out a canonical N-terminal signal peptide [48], which
adds an additional layer of complexity to the study of cyst
nematode parasitism.

Our findings of H. glycines genes with similarity to plant
or microbe sequences identified here do not imply that all
these genes have been acquired by horizontal gene trans-
fer or have evolved to mimic host proteins. The set of
genes identified here is rather meant as a first step to iden-
tify a pool of candidates from which true parasitism-
related genes can be isolated from highly conserved, but
not parasitism-related ones, in the future. Interestingly,
recent studies have demonstrated that cellulase genes
must have been present in an ancient ancestor of bilate-
rian animals [49,50] and, therefore, may not have been
acquired by nematodes through horizontal gene transfer.

A direct demonstration of H. glycines genes that are con-
served in microbes and plants could be seen in the P. sojae
and soybean probesets of the Affymetrix Soybean
Genome Array GeneChip to which H. glycines probes
cross-hybridized in our experiments. While many of the
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Figure 5

Temporal expression patterns of cross-hybridizing soybean probesets. We identified 576 soybean probesets that
cross-hybridized to H. glycines probes. These probesets were grouped into nine expression clusters. The average expression

pattern of each cluster is represented by a bold line.

genes had highly conserved functions like DNA-binding
domains, sodium symporters or zinc fingers, others could
possibly be involved in parasitic relationships between H.
glycines and soybean plants. Interestingly, cross-hybridiz-
ing G. max probesets matched ten distinct H. glycines
sequences that were derived from esophageal gland cell

c¢DNA libraries, and P. sojae matched two, respectively
(Additional files 13, 14). The respective H. glycines genes
are of unknown function, such that a putative role in para-
sitism is speculative at this point. It is extremely unlikely
that the cross-hybridizing probesets are caused by con-
taminating soybean or oomycete nucleic acids. For one,
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Temporal expression patterns of cross-hybridizing P. sojae probesets. We identified 134 P. sojae probesets that
cross-hybridized to H. glycines probes. These probesets were grouped into eight expression clusters. The average expression

pattern of each cluster is represented by a bold line.

even if there were plant material left after our nematode
isolations, the amounts would be so minute that repeat-
edly strong signals at about the same level and same
developmental stage of the nematode in the different
experiments performed by us are highly unlikely. Even
more compellingly, we harvested H. glycines eggs in a very

pure state and infective J2 stages from hatch chambers, a
plant-free environment. Both stages show strong expres-
sion signals for many soybean probesets. Since our BLAST
searches described in Results ruled out the possibility of
falsely annotated nematode sequences in P. sojae or soy-
bean cDNA libraries, we believe that the strong expression
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Table 2: The 25 most abundant InterPro domains for G. max and P. sojae probesets that cross-hybridized with H. glycines probes.

G. max

InterPro domain Number of probesets

P. sojae

InterPro domain Number of probesets

Ubiquitin IPR000626 16
Extensin-like protein IPR003883 9
Glutamine amidotransferase IPR0O00583 9
ATP-sulfurylase IPR002650 8
Histone-fold IPR009072 6
Zinc finger, C2H2-type IPRO07087 6
Major intrinsic protein IPR0O00425 5
EGF-like region IPRO13032 5
DNA-binding WRKY IPR003657 4
Cytochrome c oxidase IPR000883 4
Cupredoxin IPR008972 4
Bet v | allergen IPR0O009 16 3
Chlorophyll A-B binding protein IPROO1344 3
Orn/DAP/Arg decarboxylase 2 IPR000183 3
No apical meristem (NAM) protein  IPR00344| 3
IQ calmodulin-binding region IPRO00048 3
Zinc finger, RING-type IPRO0O 1841 3
BURP IPR004873 3
Ribosomal protein L7Ae/L30e/ IPR004038 3
S12e/Gadd45

UspA IPR0O06016 3
Ribosomal protein L32e IPROOI5 15 3
Dehydrin IPRO00 167 3
Thioredoxin-like fold IPRO12336 3
Thiamine pyrophosphate enzyme IPROI1766 3
DNA photolyase IPROO5 101 2

Sugar transporter superfamily IPR0O05829 3
EGF-like region IPRO13032 3
Peptidase S8 and S53 IPR000209 2
HMG-I and HMG-Y, DNA-binding IPR000637 2
TonB box, N-terminal IPROI0916 2
Penicillin-binding protein IPRO12338 2
Rhodopsin-like GPCR superfamily  IPR000276 2
DEAD/DEAH box helicase IPRO01410 2
Prefoldin IPR009053 2
Helix-turn-helix, Fis-type IPRO02197 2
Zinc finger, C2H2-type IPRO07087 2
Ctr copper transporter IPR007274 |
Glycoside hydrolase IPROO1764 |
Zinc finger, RING-type IPROOI841 |
Protein prenyltransferase IPR002088 |
Whey acidic protein IPR0O08197 |
Histone-fold IPR009072 |
Ribosomal protein L10 IPRO01790 |
Major facilitator superfamily IPROI 1701 |
MFS_I

Phosphotransferase KptA/Tptl IPR002745 |
Regulator of chromosome IPR0O00408 |
condensation

Inositol 1, 3, 4-trisphosphate 56- IPR008656 |
kinase

Serine carboxypeptidase IPRO0O1563 |
Na+ solute symporter IPRO01734 |
Fructose-bisphosphate aldolase IPRO00741 |

*As defined in Methods
*FDR 5%

signals for cross-hybridizing soybean and P. sojae
probesets must originate from homologous genes in H.
glycines.

Conclusion

In summary, we have identified a novel pool of putative
parasitism-associated genes, a significant proportion of
which, we hypothesize, will turn out to have parasitic
functions after functional assays have been performed. We
also raise the possibility that H. glycines might have
acquired many more genes through horizontal gene trans-
fer and might mimic many more plant proteins, all of
which could be involved in parasitism, than previously
thought. Using powerful genomic tools, this study has
reduced the total number of 6,860 currently known H. gly-
cines genes to a pool of 788 candidate genes, from which
additional true parasitism genes can be identified in
future studies. The identification of these candidate genes
is a very significant advance for the field, but also of broad
interest for pathogen-host research in general because this
new pool of genes will help unravel sophisticated plant-
animal interactions leading to a successful parasitic rela-
tionship and deliver knowledge that can be transferred to

other pathogen-host systems. Ultimately, the verification
of true parasitism genes from the pool of candidate genes
isolated here and their subsequent functional characteri-
zation will identify weaknesses in the nematode life cycle
that can be targeted in novel anti-nematode efforts.

Methods

Nematode cultivation

The microarray data analyzed here is based on our previ-
ously published experiments [35]. Briefly, for that study,
we planted forty pots of Kenwood 94 soybean seed under
greenhouse conditions in three replications and all nema-
todes used within a given replication were from the same
experimental setup and the same batch of eggs. Two weeks
after planting, each pot was inoculated with 15,000~
20,000 H. glycines strain OP-50 [51] infective J2. The inoc-
ulum was collected from 4 day old hatch chambers, each
containing about two million H. glycines OP-50 eggs.
From the same batch of eggs used in the hatch chamber,
50,000 eggs were collected and flash frozen in liquid
nitrogen, for use as the egg stage hybridization probe.
After four days, an aliquot of 50,000 hatched infective J2
was flash frozen in liquid nitrogen, for use as the infective
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]2 stage probe. The remainder of hatched infective ]2 was
divided among the forty pots for seedling inoculation.
Four days after infection, parasitic J2 were collected from
twelve pots. Eight days after infection, another twelve pots
were harvested for collection of J3 juveniles and fourteen
days after infection, a further ten pots were used to collect
J4 juveniles. Finally, twenty-one days after infection, the
final six pots were harvested for collection of adult
females.

RNA extraction and GeneChip hybridization

All data analyzed here is based on our previous results
[35]. For that study, frozen nematode tissue was disrupted
with frozen zirconia beads (BioSpec Products, Bartlesville,
OK) in a beadbeater (BioSpec Products, Bartlesville, OK).
RNA was isolated using the Versagene kit (Gentra Systems,
Minneapolis, MN) as described [35]. RNA quality and
concentration of each sample were determined by RNA
Nanochip on a 2100 Bioanalyzer (Agilent Technologies
Inc, Palo Alto, CA) and by a NanoDrop spectrophotome-
ter (NanoDrop Technologies, Wilmington, DE). Standard
procedures for reverse transcription and labeling of the
probes and for hybridization and scanning of the Gene-
Chips were followed by the Iowa State University Gene-
Chip Facility.

Design of microarray experiments and GeneChip data
analysis and validation

For our previous study [35], from which the microarray
data analyzed here has been drawn, we measured expres-
sion using 18 Affymetrix Soybean Genome Array Gene-
Chips (3 replications x 6 life stages) using a randomized
complete block design with replications as blocks. In that
study, the Affymetrix signal data were transformed with
the natural log (In) and normalized by median centering
prior to the analysis. The normalized data for each gene
were analyzed separately using a standard linear model
with fixed effects for replications and stages. To test for a
difference in expression between life stages for each
probeset, we performed F tests, which resulted in p-values.
A g-value was calculated for each p-value following [52]
and was used to maintain approximate control of the false
discovery rate (FDR) at 5% by declaring g-values at or
below 0.05 significant. For a detailed description of bio-
logical sample preparation, RNA extraction and experi-
mental design see our previous study [35] and [53].

Clustering was implemented to group the observed
expression patterns of differentially expressed genes. We
estimated the mean normalized expression level for each
probeset in all six life stages. The resulting six estimated
values were standardized to have mean 0 and standard
deviation 1 within each probeset. The Euclidian distance
between any pair of standardized expression profiles was
used as a measure of dissimilarity in all clustering algo-
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rithms. This approach considers genes with similar expres-
sion patterns to be close in six-dimensional space and is
equivalent to using (1-r)°-5 as the measure of dissimilarity,
where 1 is the Pearson correlation coefficient between
non-standardized expression profiles. All clusters and
related figures were generated using the free open-source
statistical software package R. Hierarchical agglomerative
clustering using average linkage to measure the dissimilar-
ity between clusters was carried out using the R function
hclust from the R cluster library.

The microarray data used here has been validated in our
previous study [35] by quantitative real-time PCR (qRT-
PCR). For that study, we examined the expression patterns
of six genes representing different expression patterns for
each of the five consecutive pairs of life stages (egg/infec-
tive J2, infective J2/parasitic ]2, parasitic J2/]3, J3/J4, J4/
female), totaling thirty different genes. The template used
for the qRT-PCR was the same biological material used for
the microarray hybridizations, and the reactions were per-
formed in technical triplicates. As detailed in [35], we
found qualitative agreement for 28 out of 30 tested genes
between our GeneChip and qRT-PCR results.

Identification of signal peptide-encoding H. glycines genes
The nucleotide consensus sequences of all 7,530 H. gly-
cines probesets (freely available at Affymetrix [54]) were
translated into the three forward reading frames (for sense
or S1 probesets) or into the three reverse reading frames
(for antisense or Al probesets). Additionally, all nucle-
otide probeset consensus sequences were translated
beginning with the first and second start codons, so that
for each probeset up to five translations were generated.
All translations were then analyzed for the presence of a
signal peptide using SignalP 3.0 [55]. Only those transla-
tions were kept for which the C-score, Y-max, S-max, S-
mean and D-score of the SignalP neural network output
were positive and for which the SignalP hidden Markov
model predicted a signal peptide. We then filtered these
translations and kept only those that had at least thirty
amino acids after the predicted signal peptide cleavage
site. The signal peptides of these translations were cleaved
off and the remaining amino acid sequences were checked
for the presence of transmembrane helices with the
TMHMM software [56]. All translations for which a trans-
membrane helix was predicted were removed. Probeset
nucleotide consensus translations that passed this identi-
fication protocol were sorted into probesets, from which
a final number of genes was determined by taking
probeset variants as designed by Affymetrix into account.

Identification of cross-hybridizing soybean and P. sojae
probesets

Soybean and P. sojae probesets were considered as cross-
hybridizing if their respective signal intensities were called
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‘present’ by Affymetrix' GCOS software (Affymetrix, Santa
Clara, CA) in all three replications.

BLAST searches

All 6,860 unique Affymetrix H. glycines gene sequences
(contigs) were aligned against the non-redundant Gen-
Bank database (downloaded November 2005) using the
following parameters in BLASTX with a post-processing
cutoff value of 1e-05: filter = seg, Icfilter, W=4, T =20, E
=100, B = 25, V = 25, topcomboN = 1, golmax = 10. For
Additional data file 1, all H. glycines parasitism gene
nucleotide sequences (as found in GenBank) were aligned
against the non-redundant GenBank database using
standard NCBI BLASTX parameters with a post-processing
cutoff value of le-15 (dated March 2008). To analyze
cross-hybridizing G. max and P. sojae probesets, the
respective Affymetrix probeset nucleotide sequences were
aligned against the non-redundant GenBank database
(downloaded December 2005) using the following
parameters in BLASTX with a post-processing cutoff value
of 1e-10: filter = seg, Icfilter, W=4, T=20, E= 100, B=10,
V = 10, topcomboN = 1, golmax = 10. Additionally, the
same G. max and P. sojae probeset sequences were aligned
against the non-redundant GenBank database (down-
loaded February 2006) using the following parameters in
BLASTN with a post-processing cutoff value of 1e-05: M =
1, N =-1, Q = 3, R = 3, Icmask, golmax = 10, topcomboN
= 1, filter = seg, B = 100, V = 100, as well as against the
‘est_other' database of dbEST (all ESTs other than human
and mouse, dated May 12, 2006) using the following
parameters in BLASTN with a post-processing cutoff value
of 1e-05: M =1,N =-1, Q = 3, R= 3, lcmask, golmax = 10,
topcomboN = 1, filter = seg, and against an in-house cyst
nematode nucleotide database (dated March 2006) [35]
using the following parameters in BLASTN with a post-
processing cutoff value of 1e-05:M=1,N=-1,Q=3,R=
3, lemask, golmax = 10, topcomboN = 1, filter = seg, B =
20,V =20.

Identification of plant- or microbe-like H. glycines
sequences

BLASTX search results (cutoff value 1e-05) of 6,860
Affymetrix contigs against the non-redundant GenBank
database were manually sorted into best matches to
sequences from plants, phytopathogens/phytosymbionts,
soil-living microbes and 'other' microbes. As a counter
selection, all matches were removed from further analyses
for which a Caenorhabditis spp. hit was within 15% of the
BLAST score of the best plant or microbe alignment.

InterProScan analyses

InterProScan was run using InterPro data files dated
November 2005 (iprscan_PTHR_DATA_12.0.tar). Inter-
ProScan translated all 576 cross-hybridizing soybean and
all 134 cross-hybridizing P. sojae probesets in six frames
and then ran its suite of domain finding tools. We

http://www.biomedcentral.com/1471-2164/10/58

required a minimum translation length of 20 amino acids
to be considered by InterProScan, and we used the EGC.0
translation table. Due to the six frames translation, each
probeset typically had several alignments amongst the sig-
nificant open reading frames (ORFs) found in the transla-
tion. We kept, as representative of each probeset, the
single longest aligning ORF that contained an InterPro
domain, even though InterProScan may have found sev-
eral ORFs for each probeset with alignments to some
domain or motif. Results were parsed into files represent-
ing expression clusters.

Sequence alignment and phylogenetic tree for HDA2
sequences

CLUSTAL W [43] was used to align selected HDA2
sequences and to construct a phylogenetic tree. For the
phylogenetic tree, the 'neighbor joining' output format
from CLUSTAL W was chosen and the 'correct distances'
and 'ignore gaps' options were turned off.

Data

All Affymetrix Soybean Genome Array GeneChip raw and
normalized data files analyzed here were deposited previ-
ously in the MIAME-compliant ArrayExpress database
[57] by these authors [35] and are freely available under
accession number E-MEXP-1110.
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Additional material

Additional file 1

H. glycines parasitome. Excel file showing H. glycines parasitome mem-
bers, their contigs, probesets, expression cluster membership, mean expres-
sion data and q values.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-58-S1.xls]
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Additional file 2

H. glycines secretome. Excel file showing H. glycines secretome members
identified here, their contigs, probesets, expression cluster membership,
mean expression data and q values.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-58-S2 xls]

Additional file 3

Plant-like H. glycines genes. Excel file showing H. glycines plant-like
contigs, probesets, expression cluster membership, mean expression data
and ¢ values.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-58-S3.xls]

Additional file 4

Phytomicrobe-like H. glycines genes. Excel file showing H. glycines
phytopathogen- and phytosymbiont-like contigs, probesets, expression clus-
ter membership, mean expression data and g values.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-58-S4 xls]|

Additional file 5

Soilmicrobe-like H. glycines genes. Excel file showing H. glycines
soilmicrobe-like contigs, probesets, expression cluster membership, mean
expression data and q values.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-58-S5 xls]

Additional file 6

'Other' microbe-like H. glycines genes. Excel file showing H. glycines
‘other' microbe-like contigs, probesets, expression cluster membership,
mean expression data and q values.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-58-S6.xls]

Additional file 7

H. glycines parasitism-associated candidate genes. Excel file showing
the combined H. glycines genes identified (pooled from additional files 1,
2,3,4,5,6).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-58-S7 xls]

Additional file 8

Expression patterns of plant-like H. glycines genes. TIFF file showing
temporal expression patterns of H. glycines probesets with highest simi-
larity to plant sequences. All H. glycines probesets encoding plant-like
proteins were grouped into five expression clusters. The average expression
pattern of each cluster is represented by a bold line.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-58-S8.iff]

Additional file 9

Expression patterns of phytomicrobe-like H. glycines genes. TIFF file
showing temporal expression patterns of H. glycines probesets with high-
est similarity to phytopathogen and phytosymbiont sequences. All H. gly-
cines probesets encoding phytopathogen- and phytosymbiont-like proteins
were grouped into six expression clusters. The average expression pattern
of each cluster is represented by a bold line.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-58-89.tiff]

Additional file 10

Expression patterns of soilmicrobe-like H. glycines genes. TIFF file
showing temporal expression patterns of H. glycines probesets with high-
est similarity to soilmicrobe sequences. All H. glycines probesets encoding
soilmicrobe-like proteins were grouped into six expression clusters. The
average expression pattern of each cluster is represented by a bold line.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-58-510.tiff]

Additional file 11

Expression patterns of 'other' microbe-like H. glycines genes. TIFF file
showing temporal expression patterns of H. glycines probesets with high-
est similarity to sequences from 'other' microbe sequences. All H. glycines
probesets encoding 'other' microbe-like proteins were grouped into six
expression clusters. The average expression pattern of each cluster is repre-
sented by a bold line.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-58-S11.tiff]

Additional file 12

HDA2 multiple alignment. PDF file showing CLUSTAL W multiple
alignment for HDA2 homolog sequences, including H. glycines (Hg)
Affymetrix consensus sequence for probeset HgAffx.19783.1.S1_AT; C.
elegans (Ce) Wormbase entry CE01472; Trichinella spiralis (Ts)
ES567375; Globodera rostochiensis (Gr) AW506399; Arabidopsis
thaliana (At) AAM34784.1; Medicago truncatula (Mt) EV261025;
Lotus japonicus (Lj) BW625394. The putative signal peptide-encoding
sequence for the H. glycines HDA2 is underlined.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-58-S12.pdf]

Additional file 13

Cross-hybridizing Glycine max probesets. Excel file showing cross-
hybridizing G. max probesets, expression cluster membership, mean
expression data and q values.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-58-S13.xls]

Additional file 14

Cross-hybridizing Phytophthora sojae probesets. Excel file showing
cross-hybridizing P. sojae probesets, expression cluster membership, mean
expression data and q values.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-58-S14 .xls]
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