
BioMed CentralBMC Genomics

ss
Open AcceResearch article
Filling gaps in PPAR-alpha signaling through comparative 
nutrigenomics analysis
Duccio Cavalieri*†1, Enrica Calura†1, Chiara Romualdi2, 
Emmanuela Marchi1, Marijana Radonjic3,4, Ben Van Ommen3,4 and 
Michael Müller4,5

Address: 1Department of Pharmacology, University of Firenze, Firenze, Italy, 2Department of Biology, University of Padova, Padova, Italy, 3TNO 
Quality of Life, BU Biosciences, the Netherlands, 4Nutrigenomics Consortium, Top Institute Food and Nutrition, Wageningen, the Netherlands 
and 5Division of Human Nutrition, Nutrition, Metabolism and Genomics group, Wageningen University, the Netherlands

Email: Duccio Cavalieri* - duccio.cavalieri@unifi.it; Enrica Calura - enrica.calura@unifi.it; Chiara Romualdi - chiara.romualdi@unipd.it; 
Emmanuela Marchi - emanuela.marchi@unifi.it; Marijana Radonjic - marijana.radonjic@tno.nl; Ben Van Ommen - ben.vanommen@tno.nl; 
Michael Müller - michael.muller@wur.nl

* Corresponding author    †Equal contributors

Abstract
Background: The application of high-throughput genomic tools in nutrition research is a widespread practice.
However, it is becoming increasingly clear that the outcome of individual expression studies is insufficient for the
comprehensive understanding of such a complex field. Currently, the availability of the large amounts of
expression data in public repositories has opened up new challenges on microarray data analyses. We have
focused on PPARα, a ligand-activated transcription factor functioning as fatty acid sensor controlling the gene
expression regulation of a large set of genes in various metabolic organs such as liver, small intestine or heart.
The function of PPARα is strictly connected to the function of its target genes and, although many of these have
already been identified, major elements of its physiological function remain to be uncovered. To further
investigate the function of PPARα, we have applied a cross-species meta-analysis approach to integrate sixteen
microarray datasets studying high fat diet and PPARα signal perturbations in different organisms.

Results: We identified 164 genes (MDEGs) that were differentially expressed in a constant way in response to a
high fat diet or to perturbations in PPARs signalling. In particular, we found five genes in yeast which were highly
conserved and homologous of PPARα targets in mammals, potential candidates to be used as models for the
equivalent mammalian genes. Moreover, a screening of the MDEGs for all known transcription factor binding sites
and the comparison with a human genome-wide screening of Peroxisome Proliferating Response Elements
(PPRE), enabled us to identify, 20 new potential candidate genes that show, both binding site, both change in
expression in the condition studied. Lastly, we found a non random localization of the differentially expressed
genes in the genome.

Conclusion: The results presented are potentially of great interest to resume the currently available expression
data, exploiting the power of in silico analysis filtered by evolutionary conservation. The analysis enabled us to
indicate potential gene candidates that could fill in the gaps with regards to the signalling of PPARα and, moreover,
the non-random localization of the differentially expressed genes in the genome, suggest that epigenetic
mechanisms are of importance in the regulation of the transcription operated by PPARα.
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Background
The availability of public gene expression repositories,
such as GEO [1] and ArrayExpress [2] has opened up new
challenges on microarray data analyses, especially in the
field of data integration and meta-analysis [3-6]. Meta-
analysis, defined as the analysis of multiple gene expres-
sion datasets concerning a common biological problem,
is performed to confirm, strengthen and complete the
results obtained by single studies and to find common
pathways altered in specific physiological or pathological
conditions. Pivotal studies of this type have been per-
formed on cancer [4] and have recently demonstrated
their capability of retrieving much more relevant informa-
tion than single experiment datasets [5,6]. In this study,
we used a meta-analysis approach to investigate gene reg-
ulation and biological processes involved in response to
high fat diet and under control of peroxisome-prolifera-
tor-activated receptor alpha (PPARα). As demonstrated by
Bünger et al. the most of the nutritional science papers
usually use transcriptome analysis merely as screening
tool in order to focus the study on a single gene or on a
pathway. On the one hand this type of approach simpli-
fies the findings and their validations, but in the other
hand miss the opportunity to observe the complete pic-
ture and infer the mechanism underlying the observations
[7,8]. It is becoming increasingly clear that rather than
reducing the information the challenge is now to fill gaps
integrating information coming from genome-wide data,
especially in nutrigenomics field.

Lipids serve as membrane constituents and supply and
storage of energy. The related fatty acids are precursors of
a wide range of bioactive molecules. They have the ability
to regulate a wide variety of cellular processes through the
induction of changes in gene expression. Indeed, fatty
acids and some oxygenated derivates are ligands able to
activate a class of transcription factors, called peroxisome-
proliferator-activated receptors (PPARs), key regulators in
energy storage and metabolism. PPARs (PPARα, PPARγ
and PPARβ/δ) belong to a superfamily of nuclear hor-
mone receptors that share a common action mechanism:
the formation of heterodimers with the nuclear receptor
RXR and the consequent binding to cis-element of pro-
moter of a target gene.

PPARα is expressed primarily in metabolic tissues (brown
adipose tissue, liver, kidney) but elevated levels are also
present in the digestive (jejunum, ileum, colon, gall blad-
der) and cardiopulmonary (aorta, heart) systems, and
plays a central role in almost all aspects of fatty acid catab-
olism in particular in the liver. Recent studies demonstrate
that the role of PPARα is not limited only to metabolism
but it also acts in many processes like inflammation [9],
immunity [10], cardiovascular disease [11] and cancer
[12], leading to the concept of an expanded activity of the
nuclear receptor on more than one process. Lemay and

Hwang in 2006 scanned the whole human genome using
a PPRE matrix designed through the analysis of all known
PPRE. The research was limited to conserved elements, as
in space, evaluating neighbouring nucleotide, as in time,
considering the sequence of different species, giving us a
list of predicted PPAR targets [13]. Our study comple-
mented the genome-wide analysis conducted to date by
adding a meta-analysis performed across species of
expression data related to PPARα signaling. Publicly avail-
able gene expression studies selected for our meta-analysis
included experiments addressing molecular response to
high fat diet, PPARα activation by various stimuli and
gene expression in PPARα knock-out performed in a
number of organisms and different array platforms. The
comparison of gene expression across species (Homo sapi-
ens, Mus musculus, Rattus norvegicus and Saccharomyces cer-
evisiae) is based on the known evolutionary conserved
regulatory mechanism responsive to fatty acid-rich diet. In
S. cerevisiae the homologous of mammalian PPARα-RXR
is Pip2p-Oaf1p [14]. These two proteins form a het-
erodimer that activates the transcription of genes directly
involved in peroxisome proliferation and fatty acid
metabolism in response to a nutritional input [15]. Tak-
ing advantage of functional evolutionary constraints,
comparison across species has potential to improve the
comprehension of the biological mechanisms in response
to fatty acid-rich diet suggesting novel candidate genes
involved in PPARα signaling. Due to the evolutionary
conservation, findings resulting from a cross-species anal-
ysis are expected to bring forward processes and genes that
are most relevant for the studied condition. In addition,
the discovery of novel PPARα targets homologous from
yeast to human allows characterization of these genes in
model organisms and extrapolation of the findings to the
human situation.

In this study we provide a list of homolog genes subjected
to comparable stimuli, showing significant changes in
expression levels after changes in PPARα activity. Thus,
taking advantage of all datasets available on PPAR signal-
ing and high fat diet, our study offers a comprehensive
overview of the key pathways and cellular processes regu-
lated by PPARα. We identified a series of chromosomal
regions in the mouse genome specifically enriched by
PPARα related genes suggesting common regulatory
mechanisms. Finally we provide a useful method and
interesting information to identify new target genes inte-
grating the results of our work on gene expression with
those previously obtained by Lemay et Hwang on PPRE
sequence [13].

Methods
Data collection
Array Express [16] and GEO [1] databases were used to
select expression datasets suitable for the meta-analysis.
Only datasets with CEL files for Affymetrix and raw inten-
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sity data for the other technologies have been taken into
account. Additional datasets were selected to test the
results of our work.

The data collection consisted of 16 datasets, that could be
divided into three separate groups: (i) experiments on rat,
mouse and human hepatocytes, where PPARα signaling is
activated treating cells with WY14643, (ii) experiments in
which PPARα signaling is completely inhibited using
mouse PPARα knockout, (iii) experiments in which the
organism under study were fed with high fat diet, compre-
hensive of the Saccharomyces cerevisiae dataset performed
in our laboratory. On the whole, we included in the anal-
ysis 202 hybridizations (see Table 1 for details).

Additional datasets were selected to test the results of our
work. (see Table 2 for details). The validation set was com-

posed of one dataset of S.cerevisiae with expression data of
several knockout yeast for transcription factor involved in
oleate response, and two mouse datasets with experi-
ments belonging at three category of experimental design
mentioned above.

Statistical analysis of microarray data
Gene expression of Affymetrix datasets were quantified
and separately normalized using rma technique [17] and.
EntrezGene Custom CDF file proposed by Dai et al. [18]
was used to re-annotate Affymetrix probe sets in order to
have an efficient and up-to-date genome annotation of
array features. Raw data derived by oligo microarray were
normalized using lowess algorithm exploiting MIDAW
web tool [19]. In order to identify differentially expressed
gene (hereafter DEGs) we performed SAM test [20], a
moderated t-test with permutational approach. P-values

Table 1: Meta-analysis data collection.

PPARα signaling n° Reference Dataset
Accession Number GEO/AE

Org Tissue Technology

PPARα signaling activated by 
WY14643

1 [55] GSE8302/E-GEOD-8302 Hs Liver Affymetrix

2 [55] GSE8302/E-GEOD-8302 Mm Liver Affymetrix

3 [55] GSE8302/E-GEOD-8302 Rn Liver Affymetrix

PPARα signaling repressed using 
PPARα knokout mice

4 [55] GSE8290/E-GEOD-8290 Mm Liver Affymetrix

5 [55] GSE8291/E-GEOD-8291 Mm Liver Affymetrix

6 [55] GSE8292/E-GEOD-8292 Mm Liver Affymetrix

7 [55] GSE8295/E-GEOD-8295 Mm Liver Affymetrix

PPARα signaling activated by 
High fat diet

8 [56] GSE8753/E-GEOD-8753 Mm Liver Affymetrix

9 [57] GSE6903/E-GEOD-6853 Mm Liver Affymetrix

10 [58] GSE8524/~ Mm Liver Affymetrix

11 [59] GSE1560/E-GEOD-1560 Mm Aorta Oligo Array

12 [60] GSE8700/E-GEOD-8700 Rn Epididymal fat Affymetrix

13 [61] ~/E-MEXP-893 Mm Colon mucosa Affymetrix

14 [62] ~/E-CBIL-24 Mm Liver Affymetrix

15 [63] GSE432/~ Mm Liver Oligo Array

16 Marchi and Cavalieri in 
preparation

~/E-TABM-614 Sc ~ Oligo Array
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and then Q-values (false discovery rate, FDR) were used to
control test multiplicity, 0.05 was the chosen cut-off. Q-
values for each gene were defined as: Q = (p*n)/i, where p
is the p-value of the gene, n the total number of genes and
i is the number of genes at or better than p. Statistical anal-
yses was performed with R software http://www.r-
project.org.

Unfortunately, not all the datasets contained sufficient
numbers of biological replicates as required for powerful
inference. Fold change cut-off, filtered by variance coeffi-
cient, was used to select DEGs in those datasets with less
than 3 replicates per gene (GSE8302, GSE9291 and
GSE9290).

Pathways analysis on DEGs
Enrichment analysis on metabolic pathways was calcu-
lated for each dataset using Fisher exact test based on
hypergeometric distribution with a p-value cutoff of 0.1.
Similarity structure on metabolic enrichment characteris-
tics across datasets was performed using cluster analysis. A
Boolean matrix with pathways in rows and datasets in col-

umns was generated, where matrix cells equal to 1 identi-
fied significant enrichment of a given pathway in a given
dataset, and 0 otherwise [21,22]. Using TM4 [23] a hierar-
chical dendrogram based on Euclidean distance, average
linkage and with bootstrap support was generated.

Meta-analysis approach
Homologene database [24] was used to match DEG lists
across different species. Mouse annotation was used as ref-
erence; thus, each gene has been converted to its corre-
spondent Mus musculus HomologeneID.

Given the presence of some datasets without gene p-value
(see previous paragraph for details), we decided to adopt
as meta-analysis procedure the vote counting approach
proposed by Rhodes and colleagues [3]. The vote count-
ing approach allows the identification of a set of genes
common to j of the S total number of datasets with j =
2...S. The idea was to compare the observed number of
significant genes shared by at least j studies (observed
gene enrichment) with the number of significant genes
shared by at least j studies obtained by chance (random

Table 2: Validation data sets.

n° PPARα signalling Reference Dataset Accession Number GEO/AE Org Tissue Technology

1 PPARα signaling activated by WY14643
(PPARα WY14643-GSE8396)

[64] GSE8396/E-GEOD-8396 Mm Liver Affymetrix

2 PPARα signaling repressed using PPARα knokout 
mice

(PPARα KO1-GSE8396)

[64] GSE8396/E-GEOD-8396 Mm Liver Affymetrix

3 PPARα signaling repressed using PPARα knokout 
mice

(PPARα KO1-GSE8396)

[64] GSE8396/E-GEOD-8396 Mm Liver Affymetrix

4 PPARα signaling activated by High fat diet
(HFD-E-MEXP-1755)

[65] ~/E-MEXP-1755 Mm Liver Affymetrix

5 Oleate response repressed using knokout yeast of 
a transcription promoter

(del_ADR1)

[50] GSE5862/~ Sc ~ Oligo Array

6 Oleate response repressed using knokout yeast of 
a transcription promoter

(del_PIP2)

[50] GSE5862/~ Sc ~ Oligo Array

7 Oleate response repressed using knokout yeast of 
a transcription promoter

(del_OAF1)

[50] GSE5862/~ Sc ~ Oligo Array

8 Oleate response activated using knokout yeast of a 
transcription repressor

(del_OAF3)

[50] GSE5862/~ Sc ~ Oligo Array

9 Oleate response activated by High fat diet
(oleate_vs_low_glucose)

[50] GSE5862/~ Sc ~ Oligo Array
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gene enrichment). The number j was defined through a
permutational approach. Permutational steps were the
following: i) Q-values of each dataset were randomly per-
mutated so that genes in each signature (list of differen-
tially expressed genes) changed randomly, but the
number of genes in each signature remained the same, ii)
the number of genes differentially expressed common to
at least j datasets was calculated for j ranging from 2 to the
total number of datasets, iii) step i) and ii) were repeated
1000 times, iv) average and empirical confidence intervals
(at confidence level 95%) of the number of random gene
enrichment for each j (across the 1000 simulations) were
calculated. Then, we compared the observed number of
genes shared by at least j studies with the confidence inter-
val obtained through the permutational approach and
choose those js showing a significant difference between
observed and random number of gene enrichment.
Finally among these js we selected the minimum j such
that the ratio between the expected and observed number
of genes shared was less than 10%. In our analysis the
number of j leading to 4% of false positives was found to
be equal to 6 [5]. Finally, meta-analysis approach pro-
duced a list of 164 genes, called MDEGs (Meta-analysis
Differential Expressed Genes), given by the integration of
the DEGs shared by at least 6 datasets (See Additional File
1 and 2 for details).

Pathways analysis on MDEGs
An enrichment analysis, similar to that described in the
previous paragraph, was applied on MDEGs. In this case,
using hypergeometric distribution, the enrichment test set
was represented by the MDEG list, while the reference set
should be virtually generated according to the number j
identified through the permutational approach described
above. The virtual reference set for the hypergeometric dis-
tribution was obtained by selecting all the genes common
in at least j platforms. In our analysis the reference set con-
tained 15,463 genes. This new general approach, specifi-
cally adapted for meta-analysis enrichment analysis,
showed several advantages, accurate results, faster and
easier execution.

A gene ontology network was drawn and analysed by
means of the BINGO plug-in [25] of Cytoscape software
version 2.6.0 [26]. Statistical significance was calculated
using hypergeometric test with an FDR cut off equal to
0.05.

Gene signature validations
The validation set was divided by organism, we performed
one validation with S. cerevisiae and one for mouse data.
The differentially expressed genes of each dataset are fil-
tered by the species specific MDEGs and matrix with genes
in row and dataset in column were build. Using TM4 [23]

a hierarchical dendrogram with bootstrap support was
generated.

Transcription factor binding site search
Over-represented putative transcription factor binding
sites have been detected for the lists of differentially
expressed genes with oPOSSUM web tool [27]. The
default parameters suggested by the Authors have been
used to find TFBSs in the genomic flanking regions 2000
bp upstream and downstream the transcription starting
site of MDEGs. Two statistical measures (Z-score and
Fisher exact one-tail probability) were calculated to deter-
mine which TFBS were significantly over-represented in
the examined flanking regions. Z-score > 5 and Fisher p-
value < 0.05 were used as significant cut-off thresholds.

Chromosomal clustering
Following the approach proposed by Vogel et al. [28] we
searched for correlations between chromosome location,
regulation and function of genes. In order to find genes
located in chromosome clusters along the genome, we
used a bioinformatic tool called REEF [29]. The first anal-
ysis step used the distribution of MDEGs in the genome,
performed with different parameters of "window width"
and "window shift". The tool calculate the hypergeomet-
ric probability, taking into account the number of studied
genes and the number of the genes in the genome con-
tained in each window. Statistical significance was calcu-
lated using a cut off equal to 0.05.

Results and discussion
Meta-analysis of gene expression datasets
Our work aims at developing methodological and com-
putational procedures for the study of metabolic path-
ways and conserved regulatory mechanisms underlying
the fundamental biological response to high fat diet, with
additional goal to suggest novel candidate genes belong-
ing to PPARα signaling.

We used a cross-species meta-analysis approach for the
integration, at the gene level, of sixteen transcriptional
datasets from different organisms (human, mouse, rat
and yeast) and experimental platforms (Affymetrix, single
and double channels spotted oligonucleotides). The data-
sets included into the analysis were focused on either
genetic or dietary perturbations.

First, we evaluated the presence of possible trend in clus-
tering due to organism, platform, tissue and experimental
design variability characterising the sixteen datasets
selected for the analysis. After inferential and enrichment
analysis on each single dataset, functional similarities
among studies have been performed through cluster anal-
ysis (see Methods for details). We expected that if some
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biases would be present in our analysis, datasets should
be grouped according to the sources of variability. Figure
1 represents the dendrogram resulting from cluster analy-
sis performed on GO and KEGG enriched classes. As
shown in Figure 1, despite some differences, all the data-
sets seem to be highly similar, strictly comparable and not
grouped according to the mentioned possible sources of
variability. Thus, we proceeded with the meta-analysis
approach in order to identify a set of marker genes highly
relevant for the response to high fat diet and PPARα sign-
aling. The clustering results support the evidence that die-
tary conditions modulating PPAR signaling and in
general, high fat-low fat diet affect a coherent and evolu-
tionary conserved core of genes, that overcomes the differ-
ences in gene expression associated to cell type, tissue and
organ.

Analyzing the data intra and inter datasets, the meta-anal-
ysis approach allows us to find the most frequently dereg-
ulated genes in the tested condition.

Comparing the MDEG list with the DEG lists of datasets
analyzed individually, we observe that the meta-analysis
led us to identify a smaller number of total genes but bio-
logically more strongly correlated to the studied condi-
tion, probably reducing the false positive genes and
recovering true positive genes eliminated by a strict statis-
tic at a single study level. A cross-species meta-analysis
provides an added value to find conserved genes and for
this reason is more reliable.

Meta-analysis approach identified 164 differentially
expressed genes shared by at least 6 datasets (MDEGs) (for
a complete list of MDEG see Additional File 1). The 164
MDEGs are selected with the consensus of at least 6 data-
sets regardless of the species. All the species are repre-
sented in the MDEG list but not all MDEGs are
represented in all species excepted for mouse. This is due
to the different number of organism specific experiments
and the evolutionary distance between the species and the
reference species. The Venn diagram represents the contri-
bution of the four organisms in defining the MDEGs (Fig-
ure 2). The 100% of MDEGs (164 genes) are found in
mice datasets, the 28.6% (47 genes) are found in human,
the 25% (41 genes) in yeast and the 55.5% (91 genes) in
rat datasets.

Functional characterization of the MDEGs
To study the identified set of 164 genes, we applied a net-
work-based approach to describe the over-representation
of GO categories in our pool of genes. The background
organism used for this analysis was mouse, because it best
represents all the genes highlighted in this study. This
allows assessment of the reliability that our gene set
reflects in the response to high fat diet and PPARα signal-

ing as it is known by the literature (Figure 3 &4). For
details on number of genes on each category, hypergeo-
metric and FDR correction see Additional File 1.

Resulting biological process network (Figure 3) could be
divided into three areas: i) group A, representing catego-
ries linked to amino acid metabolism, ii) group B, com-
posed by carbohydrate metabolism, specifically related to
monosaccharide metabolism and gluconeogenesis, and
iii) group C, with categories associated to lipid metabo-
lism and transport. These results give an overview of how
PPARα modulates gene expression in order to regulate
energy metabolisms.

The main over-represented cluster (cluster C Figure 3) was
composed by lipid related categories, biogenesis, catabo-
lism and transport of lipids. Fatty acid metabolism was
one of the fundamental category of the network
(Hsd17b4, Ehhadh, Dci and Acox1, Acadl and Acadvl),
together with biosynthesis of lipids, represented by the
enzyme to elongation of fatty acid (Elovl3, Elovl5, Elovl6)
and Stearoyl-Coenzyme A desaturase 1 (Scd1) which cat-
alyzes the rate limiting step in biosynthesis from unsatu-
rated to saturated fatty acids. Moreover we found Me1
(Malic enzyme), which catalyzes the generation of
NADPH required for fatty acid biosynthesis. Me1 and
Scd1 are known as target genes of PPARα responsible for
important parts of lipogenesis [30-32]. The activation of
PPARα and fatty acid metabolism requires mobilization
and transport within the cell and the engagement of vari-
ous compartments of fatty acids. The categories of fatty
acid transport in MDEGs were represented by Cpt1b, Cpt2
and Adfp. Cpt1b is a carnitine palmitoyltransferase
enzyme, responsible for the oxidation of fatty acid allow-
ing the translocation across the outer mitochondrial
membrane and the starting of fatty acid oxidation. The
carnitine palmitoyltransferase II (Cpt2) encodes for an
enzyme embedded into inner mitochondrial membrane,
that favours the reaction condensating coenzyme A with
long-chain fatty acids facilitating the release from mito-
chondria. Cpt1b and Cpt2 are directly regulated by
PPARα [33-38]. The intracellular transport of fatty acids to
the nucleus and the nuclear receptor was represented in
MDEGs by Fabp1, regulated by PPARα [39-41].

The representation of amino-acid metabolism pathway in
GO network could be well explained by the interplay
between anabolism and catabolism. In case of caloric
restriction, amino acids are precursors for lipids, carbohy-
drates, and nucleic acids used as co-substrates and co-
enzymes in the production of energy. On the contrary in
case of dietary surplus, the potentially toxic nitrogen from
amino acids has to be eliminated via transamination,
deamination, and urea formation. Kersten et al. observed
that in fasted mice the simultaneous increase in ketone
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Functional enrichment bootstrap support trees of datasets analyzed. Biological Process (BP), KEGG's pathways 
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body concentration and decrease in urea concentration
are due to the action of a single factor, PPARα, which reg-
ulates the transcription of genes involved in the relative
pathways, up-regulating fatty acid oxidation genes and
downregulating the ureagenesis and ammonia detoxifica-
tion.

PPARα regulates amino-acid metabolism through several
genes, two of them, Cytosolic aspartate aminotransferase
(Got1) and argininesuccinate lyase (Asl) were included in
MDEGs [42,43].

Finally, Kersten et al. demonstrated that PPARα regulates
carbohydrate metabolisms in particular by acting on glu-
coneogenesis [42] and governing hepatic glycerol metab-
olism [44].

All this evidence demonstrates that PPARα, despite its pri-
mary role in regulating the metabolism of fatty acids, acts
as a master regulator of the rate of utilization of the vari-
ous energy substrates in relation to food availability, and
the identified network of biological process provides full
details of all these aspects.

In addition to biological processes network, the cellular
component network (Figure 4) highlights that the princi-
pal sites of activity during the response to high fat diet and
PPARα signaling activation are the endoplasmatic reticu-
lum (cluster A), the peroxisome (cluster B), and the mito-
chondrion (cluster C). The over-represented cellular
components indicate that mitochondrion was the most
over-represented scenario (26.8%; 44 genes) of the differ-
ential transcription regulation under the studied stimuli.

The results of pathway enrichment analysis are shown in
Additional File 2. Several MDEGs belong to pathways

related to high fat diet and 16 out of 164 MDEGs (10%)
belonged to KEGG's Mouse PPARs signaling pathway
(Acadl, Acaa1a, Acox1, Cpt1b, Cpt2, Cyp4a14, Cyp8b1,
Fabp1, Hmgcs2, Me1, Scd1, Sorbs1, Acsl5, Angptl4,
Ehhadh, Acsl3). Each of these 16 genes could be specifi-
cally connected to PPARα signal and not to the others dif-
ferent type of PPARs. Focusing on PPARα target genes in
the whole set of 164 MDEGs, we found that the transcrip-
tion of 42 genes (25.6%) was regulated by this nuclear
receptor (Additional File 2). We also observed that only
11 of these 42 genes were characterized by functional
PPRE and 5 genes have an in silico predicted PPRE.

Evolutionary conserved markers of high-fat response
Cross-species analysis allows deciphering molecular com-
plexity through evolutionary constrains. As expected
mammalian organisms share the largest amount of genes
(Figure 2), however, it is interesting to note that 41 yeast
ORF (25%) were identified among MDEGs, each of these
yeast genes has a homolog in mouse.

Looking at functions and processes linked to the yeast
MDEGs, we observed that 7 out 41 genes, (17%; CAT2,
FEN1, POT1, FOX2, YAT1, CRC1, SPS19) were directly
involved in fatty acid metabolism and transport. CRC1,
POT1, YAT1, FOX2 and SPS19 are targets of the transcrip-
tion induced by Oaf1-Pip2 in yeast [45]. The 41 yeast
genes identified by meta-analysis are localized both in
mitochondrion (49%; 20 genes) and in peroxisome
(12%; 5 genes). This strongly agrees with findings
described in literature, stating that S. cerevisiae adapts to
oleic acid as a sole carbon source inducing transcriptional
modulation of both peroxisomal and mitochondrial
function [46]. In addition to lipid metabolism, transcrip-
tional reprogramming induced by oleic acid in yeast, as in
the mammalian organisms, deregulates the amino acid
metabolism (20%; 8 genes; EHD3, ARG4, CAT2, CYS3,
CDC60, YAT1, GLN1, AAT2). Interestingly we discovered
5 yeast genes that are homologous of mammalian genes
under control of PPARα. The 5 genes are ADP1 homolo-
gous of Abcg2 [47], AAT2 homologous of Got1 [42,43],
ARG4 homologous of Asl [42], FOX2 homologous of
Hsd17b4 [48,49] and YAT1 homologous of human CPT2
[37,38]. Interestingly only two genes Hsd17b4/FOX2 and
CPT2/YAT1 appears to share the same transcriptional reg-
ulator PPARa in the mammal and Pip2p-Oaf1p in the
yeast. This suggests FOX2 and YAT1 as central and evolu-
tionary conserved response elements for the high fat diet
response. Moreover these findings indicate that, either the
regulatory structure remains to be completely elucidated,
the other three genes could represent valid candidate
genes for future investigations and that they could be used
as model study for mammals genes exploiting the awe-
some benefits of yeast genetics.

Venn diagram of 164 MDEGs sharing among each organismFigure 2
Venn diagram of 164 MDEGs sharing among each 
organism.
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Gene signature validation
Further validation of our methodology and analyses came
from the comparison of our gene list with several external
expression dataset. We performed a validation for yeast,
that have a gene signature composed of 41 MDEGs and a
validation for mouse using all the 164 genes. The valida-
tion on yeast was performed using a dataset published in
GEO database by Smith et al. [50]. Smith et al. (2007) per-
formed the expression profiles of 4 transcription factor
deletion strains (delta_OAF1, delta_PIP2, delta_ADR1 or
delta_OAF3) in the presence of oleate and the expression
profile of wild type strain in oleate versus low glucose diet.
Our 41 yeast genes resulted as a subgroup of the pool of
Smith, underlining the consistency of our list of genes in
relation to the pathway of signal studied. In order to
establish if our list is a useful gene signature to understand
the activity of oleate response we selected the expression
value of the 41 yeast MDEGs in each experiments of the

Smith's dataset and we performed a cluster analysis. This
analysis allows us to separate the datasets into two main
groups. The first group contains the expression profiles of
delta_OAF1, delta_PIP2, delta_ADR1 strains where the
oleate-inducible transcription factors are deleted and
therefore, the response to oleate diet is repressed. The sec-
ond group is composed by oleate diet versus low glucose
diet dataset, delta_OAF3 strain and our dataset used as a
reference. The findings exactly mach to our expectations.
As OAF3 is a repressor of oleate-induced transcription,
delta_OAF3 strain has a behaviour similar to the activa-
tion of transcription induced by oleate. (Tree in Figure 5-
B). The same procedure was applied to external expression
dataset of M. musculus. The resultant tree of experiments,
obtained clustering by similarity of expression the
selected 164 mouse MDEGs, perfectly split the 4 experi-
ments in 2 groups. In the first group we find experiment
studying activation of PPARα signaling, in the second

Graphical representation of enriched biological process Gene Ontology category in MDEGsFigure 3
Graphical representation of enriched biological process Gene Ontology category in MDEGs. The network repre-
sented is a hierarchical network, the arrow from the element A to the element B signifies "the element B is part of the element 
A". The size of each circle is proportional to the number of gene contained in the category and circles are shaded based on sig-
nificance. Red indicate P-value close to zero, yellow represent p-value close to cut-off threshold, white are not significant cate-
gory. Biological Process (GO) category over-represented in MDEGs: A) amino-acid metabolism B) sugar metabolism C) lipid 
metabolism and transport.
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group experiment in which there is not PPARα. (Tree in
Figure 5-A; Complete Matrix with expression values in
Additional File 2).

The correspondence of the datasets separation to our
expectations qualifies the identified genes as putative
markers of the biological response to high fat diet.

Transcription factor (TF) screening on MDEGs
Mining the literature we can find that Lemay and Hwang
[13] have already performed a genome-wide screening of
PPRE on human genome. Accordingly we compared the
list of MDEG with the list of genes with PPRE provided by
Lemay and Hwang, finding that 12 MDEGs have in silico
predicted PPRE. We calculated the Fisher exact test p-value
to study the overlap. As expected, because of the unbal-
anced numbers of the comparison, the p-value (p = 0.21)
was not significant, although giving an indication of non

randomness. However we are aware that the only presence
of a PPRE does not necessarily result in a change in gene
expression and vice versa many of the changes in gene
expression we discover might be due to a not-direct inter-
action with PPARa or a combined action of more TFs.

With the aim of deeply investigate the presence of other TF
binding sites, we accomplished a genome-wide screening
of the region flanking the transcription starting site of all
mouse MDEGs, searching binding site (TFBS) for all TFs
contained in the Jaspar database [51]. The screening was
performed using a tool called oPOSSUM [27]. Confirm-
ing and strengthening our previous results, the analysis
shown that PPRE was the only TFBS over-represented in
our pool of genes (see Additional File 2 for details). The
target genes with predicted PPRE were 18 (Table 3). As
expected the results of the two TF screening on MDEGs
were partially different because of two different analysis

Graphical representation of enriched cellular component Gene Ontology category in MDEGsFigure 4
Graphical representation of enriched cellular component Gene Ontology category in MDEGs. Cellular Compo-
nent (GO) category over-represented in MDEGs: A) endoplasmic reticulum B) peroxisome C) mitochondrion.
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pipelines [13]. Lemay and Hwang performed the screen-
ing using the whole human genome instead of the mouse
one, they used a quite different sequence consensus for
the PPAR binding site and different methods to assess a
score to the findings. However the two analyses were sim-
ilar for the purpose and, despite of the two different
organisms used as reference, each method is developed
taking into account species comparison. As consequence
the human-mouse conserved elements have to be found
and, in our opinion, no method is better than the other
providing two complementary results.

We believe that, despite the previous not significant p-
value, the overlapping genes might represent an impor-
tant set of response activators. This belief is strengthened
by the fact that the overlap between the results of the two
methods is composed by 5 genes (Lpcat3, Hmgcs2,

Fabp1, Ccnd1, Cpt1b) all already known as target gene of
PPARa (as shown in Table 3). This makes us confident
that the remaining 20 genes, 13 of the oPOSSUM list and
the 7 of Lemay and Hwang list, could be new candidate
targets potentially interesting for further investigations.

Co-localization of MDEGs across the genome
The regulatory mechanism at the basis of PPARα induc-
tion of transcription is not well understood. The presence
of PPRE in the promoter and the simultaneous expression
of the gene with the activation of the nuclear receptor are
the best criteria required to confirm the regulation of a
gene by PPARα. However, often we do not have both of
these evidences to identify a target genes. Some genes
without PPRE show fatty acid responsive changes in tran-
scription and they seem to be under control of fatty acid
regulation. In literature we find evidences supporting the

Bootstrap support trees of validation datasets selected for MDEGsFigure 5
Bootstrap support trees of validation datasets selected for MDEGs. A) Yeast datasets B) Mouse datasets.
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Table 3: Table of MDEG with predicted Peroxisome Proliferator Response Element.

MDEG with oPOSSUM predicted PPRE in Mus 
musculus

MDEG with predicted PPRE by Lemay and Hwang in 
Homo sapiens

Gene Symbol Entrez Gene ID TFBS Position Homolo
Gene ID

Gene Symbol Entrez Gene ID TFBS Position Reference

ACADVL 37 chr17:7060717-
7060729

[38]

G0S2 50486 chr1:206232580-
206232592

[66]

ELOVL3 83401 chr10:103974942-
103974954

[67]

TXNIP 10628 chr1:142924546-
142924558

[55,68]

SLC25A42 284439 chr19:19033468-
19033480

-

ACSL3 2181 chr2:223550325-
223550337

-

CREB3L3 84699 chr19:4104406-
4104418

-

Lpcat3 14792 chr:6 124626752-
124630751

14678 LPCAT3 10162 chr12:6996212-
6996224

[69]

Hmgcs2 15360 chr:3 98363840-
98367839

38066 HMGCS2 3158 chr1:120023667-
120023679

[70-73]

Fabp1 14080 chr:6 71127471-
71131470

1106 FABP1 2168 chr2:88270538-
88270550

[39-41]

Ccnd1 12443 chr:7 144747221-
144751220

1334 CCND1 595 chr11:69162605-
69162617

[74]

Cpt1b 12895 chr:15 89251630-
89255629

22548 CPT1B 1375 chr22:49311113-
49311125

[34-36,74]

Nrp1 18186 chr:8 131243328-
131247327

-

Nrp1 18186 chr:8 131241743-
131245742

-

Sorbs1 20411 chr:19 40428334-
40432333

-

Sorbs1 20411 chr:19 40429124-
40433123

-

Sorbs1 20411 chr:19 40434177-
40438176

-

Mmd 67468 chr:11 90063566-
90067565

-

Igfbp2 16008 chr:1 72755699-
72759698

-
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idea that genes regulated by the same transcription factors
and/or that sharing biological functions are co-localized
in the genome [28].

Given the validity of our MDEGs, resulting from all the
previous findings, for a better comprehension of the
molecular mechanism underneath the high fat response,
we explored MDEG genome arrangements across a mouse
genome.

To increase the power of analysis we added to MDEG list
the known PPARα target found in literature and not in our
list. The analysis of the arrangement of the genes reveals a
non-random chromosomal location, in particular,
MDEGs are often co-localized to compose small group
consisting of 2 to 5 genes (see Table in Additional File 2).
Some of these clusters are very interesting for two reasons:
(i) they contained genes that have been already demon-
strated to be regulated by PPARα and in some cases the
PPRE is known, and (ii) they contained genes with similar
function and strongly correlated to the known activity of
PPARα.

In our opinion, this finding is a further confirmation that
the mechanism of transcription regulation operated by
PPARα involve epigenetic processes. Indeed in literature

we can find molecular and in silico confirmation of this
hypothesis. Lemay and Wang, calculating functional
enrichment of genes showing PPRE, have found that one
of the most over-represented category was chromatin
remodelling. In 1999 Xu et al. demonstrated that the
recruitment of transcriptional machinery by nuclear
receptors can occur directly or in response to chromatin
remodelling, elicited by the dismissing of HDAC (Histone
Deacetylase Complex), by ligand and by the recruitment
of HAT complex (Histone Acetylase) [52]. Unfortunately
this was not demonstrated specifically for PPARα. How-
ever, in recent years substantial effort has been invested in
studies of chromatin remodelling complexes associated
with transcription factors. In particular, Li et al. have
shown that SMARCD1 is the molecular link between SWI/
SNF chromatin remodelling complex and PPARα tran-
scription factor. The recruitment of SMARCD1 to PPRE,
mediated by PGC-1α, leads to a switch in chromatin struc-
ture to an active state [53]. In yeast, the connection
between diet and chromatin remodelling is well studied.
The nutritional status and chromatin state are correlated
to health state and replicative life span, by mechanism
involving sirtuin activation that regulates mitochondrial
biogenesis through changing of the acetylation state of the
transcriptional coactivator PGC-1α [54]. The fact that
PGC-1α plays important role in epigenetic transcription

Stk16 20872 chr:1 75092003-
75096002

-

Rtn4 68585 chr:11 29616570-
29620569

-

Hadh 15107 chr:3 131259199-
131263198

-

Cxcl14 57266 chr:13 56304174-
56308173

-

St5 76954 chr:7 109391843-
109395842

-

Suclg1 56451 chr:6 73176158-
73180157

-

Nnmt 18113 chr:9 48399563-
48403562

-

Etfdh 66841 chr:3 79712646-
79716645

[55]

Pnpla2 66853 chr:7 141303884-
141307883

Pnpla2 66853 chr:7 141304526-
141308525

[55]

Pnpla2 66853 chr:7 141306941-
141310940

Table 3: Table of MDEG with predicted Peroxisome Proliferator Response Element. (Continued)
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regulation in both yeast and mammals as a physical link
between PPRE bounded by PPARα and chromatin remod-
elling complex, suggest possible presence of the evolu-
tionary conserved epigenetic regulatory mechanisms.

At the light of these findings, in silico analysis suggest that
transcription factor induction and chromatin state seem
to be the principal factors mediating the response to
excess dietary fat. This probably allows PPARα to bind a
PPRE and to regulate more than one gene at the same
time.

Conclusions
The proposed computational methods contribute towards
the advances in integrative analyses of genomic data that
still represent a major, and partially unresolved, computa-
tional issue. Through the selected strategy we were able to
scan the expression data currently available and to suggest
directions and new candidates to be investigated. This
demonstrates the utility of the undertaken approach to
exploit cross-species analysis and define gene signatures
of the evolutionary conserved mechanisms as key ele-
ments to decipher the complexity of genome-wide data.
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