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Abstract
Background: Gastric cancers are generally classified into better differentiated intestinal-type
tumor and poorly differentiated diffuse-type one according to Lauren's histological categorization.
Although induction of prostaglandin E2 pathway promotes gastric tumors in mice in cooperation
with deregulated Wnt or BMP signalings, it has remained unresolved whether the gastric tumor
mouse models recapitulate either of human gastric cancer type. This study assessed the similarity
in expression profiling between gastric tumors of transgenic mice and various tissues of human
cancers to find best-fit human tumors for the transgenic mice models.

Results: Global expression profiling initially found gastric tumors from COX-2/mPGES-1 (C2mE)-
related transgenic mice (K19-C2mE, K19-Wnt1/C2mE, and K19-Nog/C2mE) resembled gastric
cancers among the several tissues of human cancers including colon, breast, lung and gastric
tumors. Next, classification of the C2mE-related transgenic mice by a gene signature to distinguish
human intestinal- and diffuse-type tumors showed C2mE-related transgenic mice were more
similar to intestinal-type compared with diffuse one. We finally revealed that induction of Wnt
pathway cooperating with the prostaglandin E2 pathway in mice (K19-Wnt1/C2mE mice) further
reproduce features of human gastric intestinal-type tumors.

Conclusion: We demonstrated that C2mE-related transgenic mice show significant similarity to
intestinal-type gastric cancer when analyzed by global expression profiling. These results suggest
that the C2mE-related transgenic mice, especially K19-Wnt1/C2mE mice, serve as a best-fit model
to study molecular mechanism underlying the tumorigenesis of human gastric intestinal-type
cancers.

Background
Gastric cancers are classically categorized into intestinal
type and diffuse type based on Lauren's histological clas-

sification [1]. Intestinal-type gastric cancers are character-
ized by better differentiated, cohesive and glandular-like
cell groups. The intestinal type is progressed through mul-
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tiple steps beginning with atrophic gastritis that is fol-
lowed by intestinal metaplasia, dysplasia and carcinoma
[2,3]. Diffuse type corresponds to poorly differentiated,
infiltrating and non-cohesive tumor cells. Although dif-
fuse type is not characterized by the multiple proceeding
steps, this shows more metastatic phenotype with poorer
prognosis.

Several genetic alterations are more frequently observed in
either subtype of gastric cancer. Overexpression of ErbB2
is selectively found in intestinal-type tumors and may
serve as prognostic marker for tumor invasion [4,5]. ErbB2
expression level was reported to correlate with lymph
node or liver metastasis [6,7]. Significant decrease in the
expression of E-cadherin (CDH1) has also been described
preferentially in diffuse-type gastric cancer ranging from
20% to 90% of frequency [8-10]. The decreased expres-
sion of CDH1 is caused by LOH or hypermethylation.
Interestingly, hereditary diffuse gastric cancer is caused by
germline mutations of CDH1 gene [11,12]. In addition,
mutation in adenomatous polyposis coli (APC) which
activates Wnt/β-catenin pathway is predominantly found
in intestinal-type gastric cancer [13]. Cyclooxygenase-2
(COX-2) that is one of the crucial enzymes to synthesize
prostaglandin E2 is highly up-regulated in intestinal-type
cancers compared with diffuse-type ones [14]. These
genetic alterations could be used as a hallmark of each
type of gastric cancer as well as the histological features.

Genome-wide mRNA expression profiles have identified
gene signatures to distinguish intestinal- and diffuse-type
gastric cancers. Boussioutas et al. [15] reported that the
gene signature distinctive for intestinal type exhibits the
up-regulation of proliferation markers related to DNA
replication, spindle assembly and chromosome segrega-
tion. Down-regulated genes in the signature are associated
with epithelial differentiation. Jinawath et al. [16] also
developed another gene signature that is differentially
expressed between intestinal-type and diffuse-type can-
cers with Japanese gastric tumor samples. The intestinal-
type signature represented enhancement of cell cycle pro-
gression, while the genes associate with extracellular-
matrix (ECM) are deregulated in the diffuse type signa-
ture. These signatures could provide opportunities of
developing biomarkers to diagnose/distinguish the two
types in both clinical and preclinical researches.

Transgenic mice that develop gastric tumors present suita-
ble models to decipher gastric tumorigenesis, and identify
novel therapeutic targets. We have previously developed
several transgenic mice in which prostaglandin E2 produc-
tion pathway is highly activated specifically in gastric
mucosa. K19-C2mE mice expressing COX-2 and micro-
somal prostaglandin E synthase-1 (mPGES-1) develop
inflammation-associated hyperplasia [17]. This was medi-

ated through the recruitment of mucosal macrophages. By
crossing the K19-C2mE mice with K19-Wnt1 mice, coop-
erative effect of Wnt1 and PGE2 on gastric tumorigenesis
was investigated. The K19-Wnt1/C2mE mice led to the
development of dysplastic gastric adenocarcinoma signi-
fying the importance of the Wnt pathway activation to
keep the progenitor cells undifferentiated [18]. To exam-
ine the additional effect of the suppression of BMP path-
way on the prostaglandin E2 activation, the compound
mice of K19-Nog/C2mE were established. The K19-Nog/
C2mE mice cause the development of gastric hamartomas
that are morphologically similar to juvenile polyposis (JP)
[19]. Although the detailed histological and hypothesis-
based molecular analysis implicated the pivotal role of
prostaglandin E2, Wnt and Nog pathway respectively in
gastric tumorigenesis, it remains elusive whether the K19-
C2mE and its compound transgenic mice show similarity
to intestinal type or diffuse type of human gastric cancers
when analyzed by non-biased global expression profile.

In order to identify which types of human gastric tumors
(intestinal or diffuse type) the C2mE-related mice are
more similar to, we compared expression profile of the
two types of human gastric cancer with those of K19-
C2mE, K19-Wnt1/C2mE, and K19-Nog/C2mE transgenic
mice.

Results
Overall gene expression profiles of transgenic animals
We have previously developed several types of transgenic
mice in which prostaglandin E2 pathway is activated. K19-
C2mE mice expressing COX-2 and mPGES-1 induce hyper-
plasic gastric tumors. K19-Wnt1/C2mE mice in which
both Wnt and prostaglandin E2 pathways are activated
cause dysplastic gastric tumors. K19-Nog/C2mE mice
expressing noggin as well as C2mE develop gastric hamar-
tomas. To provide insight into the molecular mechanism
of gastric tumorigenesis, gastric tissues from the trans-
genic mice and wild-type mice were subject to microarray
analysis. Using the Affymetrix GeneChip system, mRNA
expression levels were measured for 45,037 probe sets,
which represent 21,066 Entrez genes and 5,324 other
sequences. Increased expression of introduced gene in
each transgenic mouse was observed as reported previ-
ously [17-19].

Genome-scale overview of the microarray data revealed
that expression changes in the three tumor models of K19-
C2mE, K19-Wnt1/C2mE and K19-Nog/C2mE were quite
similar, whereas overexpression of Wnt1 only or Nog only
led to the expression changes in a small portion of genes
(Figure 1). This suggests most of expressional changes in
the three transgenic mice were caused by the activation of
PGE2 pathway. Hypergeometric test for gene enrichment
showed that the genes involved in wound healing and
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inflammatory response were significantly condensed with
the p-value of 1.5 × 10-21 and 4.2 × 10-13, respectively, in
the gene set changed by the C2mE induction.

Classification of mouse tumor models under a human 
gastric cancer subtype
In order to confirm that the mouse gastric tumor models
are similar to human gastric cancer, the expression pro-
files were compared with those of human cancer samples.
First, gene expression data of human breast, lung, colon,
and gastric tumors were collected from public domain. To
estimate similarity between the mouse gastric tumors and
the four types of human cancers, supervised classification
of principal component analysis (PCA) was conducted
using 1,925 genes which were changed more than two-
fold in more than 50 samples of all human samples. The

PCA with the selected genes found that mouse gastric
samples from C2mE-related mice were most closely clus-
tered to human gastric cancers among the four tissues
examined, indicating the global expression changes in the
gastric tumors of the transgenic mice resembled those in
human gastric cancers (Figure 2).

Next, in order to examine which subtype of gastric cancer
shows cross-species similarity, the mouse tumors were
compared with human gastric intestinal-type and diffuse-
type cancers on the basis of their expression profiles. Pre-
vious expression profiling studies of human gastric tumor
samples have identified gene signatures that classify the
two types. Intestinal and diffuse types are the two major
types of cancer classified on the basis of microscopic mor-
phology [1]. Boussioutas et al. [15] showed that prolifera-
tion genes were over-expressed in intestinal-type tumors
than in diffuse-type tumors; in contrast, extracellular
matrix protein genes were up-regulated in diffuse-type
compared with intestinal-type tumors. In order to deter-
mine which type of human gastric cancer the mouse mod-
els are more similar to, we normalized the human data
[20] to the average of normal samples, and selected 122
genes which were changed in the opposite direction in

Genome-scale expression pattern of transgenic mice show-ing major changes are caused by PGE2 inductionFigure 1
Genome-scale expression pattern of transgenic mice 
showing major changes are caused by PGE2 induc-
tion. Clustered in rows are 5,440 probe sets selected by fold 
change threshold of 2 or greater to the average of wild-type 
and a ratio p-value of 0.01 or less, and columns are mouse 
gastric samples grouped by genotype. Genotypes are shown 
on the top of the heatmap. The red-green color scale repre-
sents log10 ratio to the average of wild-type samples, as 
shown in a color bar on top left: red color indicates the gene 
is up-regulated in the sample, and green indicates down-regu-
lated. WT: wild-type.
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Overall expression changes in gastric tumors of C2mE-related transgenic mice are most similar to those in human gastric cancersFigure 2
Overall expression changes in gastric tumors of 
C2mE-related transgenic mice are most similar to 
those in human gastric cancers. K19-C2mE, K19-Wnt1/
C2mE, and K19-Nog/C2mE mouse gastric tumors and human 
gastric (diffuse, intestinal, and mixed type), colon, breast, and 
lung cancers were plotted by principal component 1 to 3 
(PC1 to PC3) calculated using 1,925 genes which were 
changed by more than two-fold in more than 50 samples of 
all. The cumulative contribution of the three components 
was 32%. Dots shown in blue: human gastric cancers; cyan: 
human colon cancers; red: human lung cancers; green: human 
breast cancers; magenta: mouse model tumors.
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intestinal type and diffuse type [see Additional file 1], to
classify intestinal and diffuse types by using the normal-
ized data. The false discovery rate was estimated to be
2.4%. The accuracy of class prediction using this gene set
was estimated to be 85% by leave-one-out cross-valida-
tion of human samples. We also examined whether this
gene set can be used to correctly classify another gastric
cancer data set [15]. The test data set included 22 intesti-
nal-type, 35 diffuse-type, and ten normal samples, and
was normalized to the average of all normal samples. The
error rate was 25% in total, and 29% and 18% in diffuse-
and intestinal-type cancers, respectively.

To compare the expression patterns of the signature genes
in mouse tumors to those in human gastric cancers, hier-
archical clustering analysis was performed with mouse
gastric data and human intestinal- and diffuse-type data
sets. The expression pattern of our modified signature
genes for distinguishing intestinal- and diffuse-type gas-
tric cancers revealed that the gastric tumors from C2mE-
related transgenic mice were more similar to intestinal-
type human gastric cancers than to diffuse-type human
gastric cancers (Figure 3). By linear discriminant analysis,
all C2mE-related gastric tumors except one K19-Wnt1/
C2mE sample were classified as intestinal-type tumors.

Expression pattern of the genes frequently deregulated in 
human gastric cancer in a subtype specific manner
It is known that amplification or overexpression of some
genes are found in a subtype-specific manner. E-cadherin
gene mutations or loss are specifically found in diffuse-
type gastric cancer [11,12]. In contrast, amplification of
ErbB2 gene is observed only in intestinal type, and not
reported in diffuse type [6,7]. LOH of deleted in colorectal
carcinoma (DCC) is predominantly observed in about
half of intestinal-type [21,22]. Expression levels of the
three genes were compared between mice and human gas-
tric cancer types (Table 1). CDH1 expression was signifi-
cantly decreased in human diffuse type but not in
intestinal type as expected. In the three transgenic mice,
Cdh1 gene was not decreased in any of transgenic mice
compared with wild-type, inferring that one of the most
characteristic changes in human diffuse type gastric cancer
was not observed in the mouse models. Up-regulation of
ErbB2 was observed in human intestinal-type microarray
data, and also in our mouse data. DCC expression was
reduced in human intestinal-type as expected, while the
reduction of the gene was observed in the mice model,
especially in K19-Wnt1/C2mE mice. The expressions of
the three genes defining the tissue-type of the human gas-
tric cancer also support the idea that the mouse models
are more similar to intestinal-type human cancer.

Difference among PGE2 pathway-activated mouse models
Tumors from three mouse models with PGE2 pathway
activation show different histology. K19-C2mE develops

hyperplasia with macrophage infiltration, whereas K19-
Wnt1/C2mE develops dysplasia [17,18]. K19-Nog/C2mE
develops hamartoma similar to human juvenile polyposis
[19]. We next attempted to identify differentially
expressed genes among the three mouse models which
allowed us to assess the best-fit model among the three to
study gastric intestinal-type cancer. With ANOVA p-value
threshold of 0.001, we selected 155 genes which were dif-
ferently regulated among the three groups. Few of these
genes showed expression changes in the same direction
between K19-Wnt1/C2mE and K19-Nog/C2mE (Figure 4).
Wnt pathway genes Porcn, an acyltransferase required for
Wnt protein secretion, β-catenin (Ctnnb1), and Tcfe2a
(TCF3 in human) were overexpressed in K19-Wnt1/C2mE

Expression profiles of C2mE-related gastric tumors are clus-tered to human intestinal-type gastric cancersFigure 3
Expression profiles of C2mE-related gastric tumors 
are clustered to human intestinal-type gastric can-
cers. Clustered in rows are 93 genes which met p-value less 
than 0.001 and opposite change direction between intestinal-
type and diffuse-type human gastric cancers, and clustered in 
columns are human and mouse gastric tumors. As a distance 
measure, cosine correlation was used. Linkage method for 
clustering was average linkage. Samples shown in red: human 
intestinal type gastric cancers; blue: human diffuse type; yel-
low: K19-C2mE mice; magenta: K19-Wnt1/C2mE: cyan: K19-
Nog/C2mE. The red-green color scale represents log10 ratio 
to the average of wild-type or normal samples, as shown in a 
color bar on top left.
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mice, but not in K19-Nog/C2mE (Figure 4). TGF-β/BMP
pathway genes Smad3 and Tgfbr2 were also up-regulated
and Bmp2 was down-regulated in K19-Wnt1/C2mE but
not in K19-Nog/C2mE.

In K19-Nog/C2mE mice, some genes which promote tum-
origenesis were up- or down-regulated, although they
have not been reported in the downstream of BMP path-
way. ROCKII was specifically up-regulated in K19-Nog/
C2mE, and its overexpression is associated with progres-
sion in several types of cancers via modulating actin
cytoskeleton organization. Down-regulated genes include
RAMP2 and PPARGC1A, and their inactivation or under-
expression was shown to contribute to lung cancer and
hepatoma development respectively.

Since deregulation of Wnt pathway including APC or
CTNNB1 mutation have been more frequently observed
in intestinal-type compared with diffuse-type [23,24], the
results indicated that K19-Wnt1/C2mE could offer a
model that best-fits intestinal-type tumors among the
three C2mE-related mice.

Discussion
The present study indicated that human intestinal-type
gastric cancers exhibited significant similarity to C2mE-
related mice, especially to K19-Wnt1/C2mE mice by global
expression profiling. The prediction of similar tumor type
by global expression profile is consistent with the pheno-
types of the transgenic mice. Accumulating evidence has
indicated that inflammation level which is caused by the
up-regulated expression/activity of COX-2 and mPGES-1
is severer in intestinal-type gastric cancer compared with
diffuse-type one, although both types of tumors are
related to Helicobacter pylori that are known to induce
inflammation to the infected site [14,25-28]. This knowl-
edge supports our observation that gastric tumors in
C2mE-related mice in which PGE2 pathway is activated
exhibit similarity to intestinal-type gastric tumors. In
addition, activating and inactivating mutations in
CTNNB1 and APC are more frequently observed in intes-
tinal-type cancer. No APC LOH/mutation were observed
in diffuse-type gastric cancer, whereas 60% were found in
intestinal-type one [24,29,30]. Mutation in CTNNB1 was

Table 1: Expression changes of subtype-specific genes in mouse and human gastric tumors.

Mouse Human

C2mE Wnt1/C2mE Nog/C2mE Diffuse Intestinal

CDH1 1.13* 1.00 1.10 0.43* 1.09
ErbB2 1.37* 1.43* 1.25* 0.92 1.37*
DCC 0.91 0.85* 0.94 0.98 0.71*

Expression values are shown in average log ratios (base 10) to wild-type or normal samples. Asterisk indicates t-test p-value < 0.05.

Wnt/β-catenin regulatory genes are up-regulated in Wnt1/C2mE miceFigure 4
Wnt/β-catenin regulatory genes are up-regulated in 
Wnt1/C2mE mice. Clustered in rows are 155 probe sets 
which were differently regulated among three genotypes, 
K19-C2mE, K19-Wnt1/C2mE, and K19-Nog/C2mE, using 
ANOVA p-value threshold 0.001. Columns show mouse gas-
tric sample grouped by genotype and genotypes are shown 
on top of the heatmap. Color scale is same as in Figure 1.
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predominantly observed in intestinal-type one [13]. This
is also concordant with our previous finding that K19-
Wnt1/C2mE mice which only develop adenocarcinoma
among the three C2mE-related mice activate down stream
genes of Wnt/β-catenin pathway.

Usually, several types of transgenic mice for one tumor
type are required to examine similarity in global expres-
sion profiling between mice tumor models and human
ones, since the genes which were up- or down-regulated in
each mice model were extracted compared to the average
of all the examined tumor samples. With this approach,
Lee et al. [31] analyzed gene expression data of seven
mouse hepatocellular carcinomas (HCCs) including five
GEMs with human HCCs to identify models that recapit-
ulate human cancer or a type of human cancer, and found
that some subclasses of human HCC mimic mice models
in expression pattern. Hershkowitz et al. [32] also used the
same normalization method, and found that characteris-
tic expression patterns observed in human breast tumors
were conserved in 13 mouse breast tumor models. Since
the available data of expression profile for mouse gastric
tumors are limited to our K19-C2mE and its compound
mice, we took different strategy to assess the similarity of
gastric tumors between the two species. Instead of using
average of all samples in the dataset as a reference to cal-
culate expression ratios, we normalized the mouse gastric
data to average of wild-type samples. To compare our
mice expression profiles with those of human gastric can-
cers, the gene signature to classify human intestinal- and
diffuse-type gastric cancers was also modified from origi-
nal one by normalizing the expression data to the average
of normal gastric samples. This has allowed us to reveal
that C2mE-related transgenic mice resemble human intes-
tinal-type gastric tumors in expression profiling.

Comparison of gene expressions between mouse models
showed that simultaneous induction of Wnt1 and PGE2
deregulated not only gene expression of Ctnnb1 and Porcn
in Wnt signaling but also Smad3 and Tgfbr2 in TGF-β/BMP
signaling. Given the crosstalk between TGF-β/BMP and
Wnt pathways has been reported in multiple previous
studies, the deregulated expression of the genes in the
additional signaling pathways could be explained by pos-
itive and negative feedback to the pathways from the up-
regulated Wnt signaling. For example, BMP signaling is
known to suppress β-catenin activity in intestinal stem
cells [33]. BMP signaling could be repressed in K19-Wnt1/
C2mE, because Bmp2 expression was significantly down-
regulated. Increase in Smad3 and Tgfbr2 might be resulted
from the negative feedback by BMP signaling suppression,
as demonstrated in a study on TGF-β induced fibrosis
[34]. In contrast to K19-Wnt1/C2mE transgenic mice,
expression changes of the Wnt pathway genes were not
observed in K19-C2mE and K19-Nog/C2mE mice. It would

be of great interest to further analyze the crosstalk of sign-
aling pathways in the compound transgenic mice.

Conclusions
Genetically engineered mouse (GEM) models provide
useful tools to study mechanism of tumorigenesis, to val-
idate a new target for drug development, and to find
biomarkers. Advances in genetic engineering have
allowed us to develop a variety of transgenic or knockout
models of human diseases. The main question on using
GEMs as disease models is whether the model recapitu-
lates the human disease. We previously developed several
gastric tumor transgenic mice in which prostaglandin E2
pathway is activated. Although we conducted detailed his-
tological analysis with the transgenic mice, it remained
elusive whether global molecular changes in the trans-
genic mice reproduce features of human gastric tumors or
not. This report has provided initial evidence that K19-
C2mE and their compound mice, K19-Nog/C2mE, K19-
Wnt1/C2mE, show similarity to human gastric cancer,
especially to intestinal-type one by the analysis of mRNA
expression profile. Among others, extraction of up- or
down-regulated genes specifically in K19-Wnt1/C2mE or
K19-Nog/C2mE respectively inferred that K19-Wnt1/C2mE
mice would provide best-fit mouse model for intestinal-
type gastric tumors. These findings would potentially pro-
vide various benefits in our future studies including eluci-
dation of gastric tumorigenesis and optimal therapeutic
target identification.

Methods
Stomach tissue samples
Construction of transgenic mice have been described in
our previous studies [17-19]. Briefly, the K19-Wnt1 and
K19-Nog strains overexpress Wnt1 and Nog genes, respec-
tively, specifically in the stomach. K19-C2mE overex-
presses the mPGES-1 gene and COX-2 genes
simultaneously and specifically in the stomach. K19-
Wnt1/C2mE and K19-Nog/C2mE are compound trans-
genic mice with K19-Wnt1 and K19-Nog, respectively;
both mouse strains have K19-C2mE. For expression profil-
ing, three wild-type C57BL/6, five K19-Wnt1, three K19-
C2mE, five K19-Wnt1/C2mE, two K19-Nog, and three K19-
Nog/C2mE mice were used. All animals used in this study
were female mice aged 18-65 weeks. The glandular stom-
ach of each mouse was cut for microarray analysis. All ani-
mal studies were carried out in accordance with good
animal practice as defined by the Institutional Animal
Care and Use Committee (IACUC).

Microarrays
GeneChip Mouse Genome 430 2.0 Arrays (Affymetrix,
Inc.) were used to monitor the expression profiles of the
gastric samples. Total RNA was prepared using the RNeasy
Mini Kit (QIAGEN) after treatment with TRIzol (Invitro-
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gen Corp.), and labeled cRNA was prepared using stand-
ard Affymetrix protocols. The signal intensities of the
probe sets were normalized by the Affymetrix Power Tools
RMA method implemented in Resolver software (Rosetta
Biosoftware), and log ratio values to the average of wild-
type samples were calculated for each sample by using
Resolver. All the microarray data were deposited at Gene
Expression Omnibus (GEO) under dataset accession no.
GSE16902 [35].

Public human microarray data
Human gastric cancer [20] and breast cancer [36] microar-
ray data were retrieved from the online supplement in the
Stanford Microarray Database [37]. The gastric cancer data
includes 68 intestinal-type cancer, 13 diffuse-type cancer,
and 15 normal gastric samples. The breast cancer data
include 115 breast tumor and seven normal tissue sam-
ples. Human colon cancer data [38], including 100 color-
ectal cancer and five normal tissue samples, were retrieved
from NCBI GEO under accession GSE5206. The Ann
Arbor lung tumor dataset [39] including 86 lung adeno-
carcinomas and 10 non-neoplastic lung samples was
obtained from the United States National Cancer Institute
website [40]. Expression values were transformed to log10
(ratio to geometric averages of normal samples) in order
to compare with mouse data.

Intestinal vs. diffuse type signature genes
Human gastric tumor data from Chen et al. [20] were used
to develop an intestinal vs. diffuse type classifier. We
selected genes that met the following criteria: (1) t-test p-
value < 0.001 between the two groups, (2) opposite
changes in the average expression of signature genes in
intestinal-type tumors and that of signature genes in dif-
fuse-type tumors. The false discovery rate was estimated
by the Benjamini and Hochberg method [41]. The tumor
classes of mouse and human samples were predicted by
linear discriminant analysis using the signature score
defined by the following formula:

Signature score = (Average log ratio of genes up-regulated
in intestinal-type tumors and down-regulated in diffuse-
type tumors) - (Average log ratio of genes down-regulated
in intestinal-type tumors and up-regulated in diffuse-type
tumors)

Combining mouse and human gene expression data
In order to combine mouse data with human gastric can-
cer microarray data, mouse and human data were re-
ratioed to the geometric average of wild-type and normal
samples, respectively. When there was more than one
probe set for a gene in a microarray, the averaged expres-
sion ratios were used for the gene. Next, using only
homologous genes that are represented in both arrays, we
merged the mouse and human data sets into a single data

set. The mouse microarray contains 45,037 probe sets,
which correspond to 21,066 Entrez genes, and the human
microarray contains 6,688 probes, which correspond to
4,463 Entrez genes. When they were merged, 4,094
homologous genes were identified.

Statistical analysis
The hypergeometric test for Gene Ontology enrichment
was performed using the Gene Set Annotator developed
by Rosetta Inpharmatics [42]. For the other statistical
analyses in this study, the MATLAB software (MathWorks
Inc.) was used.
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