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Abstract
Background: MicroRNA (miR) are a class of small RNAs that regulate gene expression by
inhibiting translation of protein encoding transcripts. To evaluate the role of miR in skeletal muscle
of swine, global microRNA abundance was measured at specific developmental stages including
proliferating satellite cells, three stages of fetal growth, day-old neonate, and the adult.

Results: Twelve potential novel miR were detected that did not match previously reported
sequences. In addition, a number of miR previously reported to be expressed in mammalian muscle
were detected, having a variety of abundance patterns through muscle development. Muscle-
specific miR-206 was nearly absent in proliferating satellite cells in culture, but was the highest
abundant miR at other time points evaluated. In addition, miR-1 was moderately abundant
throughout developmental stages with highest abundance in the adult. In contrast, miR-133 was
moderately abundant in adult muscle and either not detectable or lowly abundant throughout fetal
and neonate development. Changes in abundance of ubiquitously expressed miR were also
observed. MiR-432 abundance was highest at the earliest stage of fetal development tested (60 day-
old fetus) and decreased throughout development to the adult. Conversely, miR-24 and miR-27
exhibited greatest abundance in proliferating satellite cells and the adult, while abundance of miR-
368, miR-376, and miR-423-5p was greatest in the neonate.

Conclusion: These data present a complete set of transcriptome profiles to evaluate miR
abundance at specific stages of skeletal muscle growth in swine. Identification of these miR provides
an initial group of miR that may play a vital role in muscle development and growth.
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Background
Functionally important small RNAs were first described in
nematodes in 1993 [1,2]. However, it was not until 2001
that researchers began to understand the function of this
family of RNAs that includes microRNA (miR) and to rec-
ognize that their significance was not confined to lower
order organisms [3,4]. The small RNA classified as miR are
short sequences, 18–26 nucleotide long, encoded by
nuclear genes that produce characteristic stem-loop RNA
structures when transcribed. During processing from the
primary transcript, the mature miR sequence is loaded
into an RNA:protein complex known as the "RNA
induced silencing complex" (RISC) [5,6]. The sequence of
the miR loaded in the complex targets the RISC to specific
binding sites in the 3' untranslated region of mRNA tran-
scripts, resulting in either degradation of the miR:mRNA
complex or translocation to processing bodies. In either
case, association of RISC with mRNA causes decreased
translation of the targeted gene product [6,7]. As a result
of decreased translation of their cognate targets, miR have
been reported to guide developmental decisions includ-
ing cell fate, cell cycle progression, apoptosis, adipocyte
differentiation, and processes that alter muscle develop-
ment and growth including myoblast proliferation, differ-
entiation, and skeletal muscle hypertrophy [8-15].

The objective of the current research was to evaluate miR
transcriptome profiles during skeletal muscle develop-
ment in swine. MicroRNA were initially reported to have
a role in skeletal muscle development utilizing mouse,
drosophila, and zebrafish models. Three muscle-specific
miRNA (miR-1, miR-133, and miR-206) were identified
to increase in abundance during muscle cell differentia-
tion [10,16,17]. However, these miRNA have been
reported to regulate different stages of myogenesis
[12,13,15]. MiR-133 increases proliferation of C2C12
myoblasts, whereas miR-206 and miR-1 promote differ-
entiation [16]. Research in livestock models has begun to
evaluate the role these miRNA have in skeletal muscle
development. Expression of the muscle regulatory factor,
myogenic factor 5, has been reported to regulate miR-1
and miR-206 transcription level in a chicken cell culture
model [18]. In addition, over-expression of fibroblast
growth factor-4 has been reported to decrease miR-206
abundance, resulting in developmental changes in the
somite of developing chicken embryos [19]. Muscle-spe-
cific miR have also been reported to regulate a gene that
directly impacts economic traits in livestock [20]. A muta-
tion in the myostatin gene of heavily muscled Belgian
Texel sheep creates a target site for miR-1 and miR-206
containing RISC complexes in the 3' untranslated portion
of the transcript, resulting in decreased translation of the
myostatin protein and consequent increase in muscle
mass.

With the dramatic increase in identified miR sequences
for multiple species including livestock species, a public
database dedicated to the cataloguing of predicted and
experimentally observed miRs has been developed (miR-
base) [21-23]. In human, 678 miRs have been described
(miRbase release 11.0, April 2008). However, genomic
sequence scans and miR cloning results indicate that the
actual total number of human miRs may be closer to 800
[24]. Comparative analysis of these sequences indicates
that they are highly conserved among species as diverse as
nematodes and mammals, supporting the hypothesis that
they are of central importance to biological processes. In
addition, expression of miR genes is tightly regulated spa-
tially among tissues and temporally within tissues during
development in all species studied, indicating the impor-
tance of determining miR transcriptome profiles to fully
understand their biological importance [25-27]. In order
to identify miR and determine their role in skeletal muscle
of livestock, we evaluated miR transcriptome profiles at
specific stages of muscle development including prolifer-
ating satellite cells, three stages of fetal growth, day-old
neonate, and the adult.

Results and Discussion
Validation of miR cDNA libraries
The method of miR identification and quantification by
cloning and sequencing has been utilized in numerous
reports of miR biology [28]. It is particularly advanta-
geous to use this method when working in species with
poorly characterized genomes, since variation in miR
sequences between species has become apparent
[27,29,30].

Our initial goal was to obtain complete transcriptome
profiles of miR abundance in skeletal muscle, and to accu-
rately measure changes in the level of abundance for these
miR between developmental stages. Time points evalu-
ated included proliferating satellite cells (4th, 5th, and 6th

passage), three stages of fetal development (60, 90, and
105 day-old fetus), day-old neonate, and adult. After iden-
tification of miR, accurate quantification of changes in
miR abundance level between libraries and stages of skel-
etal muscle development was imperative. For all species,
the dynamic range and precision obtained with enumer-
ating each sequence observed enables a more quantitative
description of miR abundance levels. Converting this pre-
cision to accuracy, requires running enough samples to
saturate the signal until the abundance levels stay con-
stant as new sequences are added. Initially, data from the
neonatal muscle profiles were used to determine miR sig-
nal saturation as an indicator that abundance level of miR
would remain constant as additional data were added
(Figure 1). Although the number of unique singletons was
far from exhausted after 5,000 observed putative miR, the
number of new sequences observed for known and
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unknown miR began to plateau, suggesting that the sin-
gletons were either rare miR, represent contamination of
the tissue with trace amounts of other tissues, or are
sequence artifacts. Therefore, the data sets consisting of
several thousand miR sequences were determined to be
extensive enough to capture the diversity of miR abun-
dance and estimate relative steady state levels in the devel-
opmental stages examined. Similar plots (not shown)
were created from proliferating satellite cell profiles of the
4th and 5th passage. As with the neonate, abundance levels
of known and unknown miR were well defined once a few
thousand miR had been sequenced, as estimated abun-
dance levels based on the first 3,000 sequenced clones
from the 4th and 5th passage satellite cells agreed with esti-

mates for the full library of 8,832 clones within 10%.
Together, these results provide confidence that the
number of clones sequenced provide an accurate repre-
sentation of the miR transcriptome profiles of porcine
skeletal muscle.

Comparison of miR expression profiles between libraries
created from independent samples at the same develop-
mental state was of interest to examine biological and
technical replication of the clone-based approach to miR
profiling. Previous studies in other species have not spe-
cifically addressed this issue. Therefore, two approaches
were completed to evaluate possible variation between
miR libraries. First, transcriptome profiles were compared

Saturation plot of microRNA librariesFigure 1
Saturation plot of microRNA libraries. Saturation plots were created from the neonatal muscle sample to determine sat-
uration of the signal as an indicator that abundance levels would remain constant as new results were added. A total of 5,000 
observed miR were evaluated. The supply of unique singletons is represented by the small dashed line, while the known and 
unknown miR are represented by the solid black line and large dashed line, respectively.
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between miR libraries that were replicated in the current
experiment including the three proliferating satellite cell,
two adult biceps femoris, and two d 90 fetal biceps femo-
ris libraries (Figure 2). As detailed in the Methods, RNA
was obtained from multiple cell culture isolations of pro-
liferating satellite cells at different cell passages including
4th, 5th, and 6th passages. The 4th and 5th passages were
pooled together and compared to two different cell cul-
ture isolations from the 6th passage cells. The miR trascrip-
tome profiles from the two 6th passage samples differed
from each other as much as from the 4th and 5th passage
sample (Figure 2a). Therefore, variability in abundance

was quantified using a histogram (data not shown) of rel-
ative changes in abundance. Data utilized in the histo-
gram was restricted to miR observed at a minimum
abundance ratio level of 5 per thousand miR observed.
This analysis resulted in 30 observed changes between
samples that were not expected to have differing transcrip-
tome profiles. Of these observed changes, the majority of
changes were small (17 of the 30 ratios were between 1
and 2 per thousand miR observed, with an additional 8
between 2 and 3 per thousand miR observed). However,
four ratios (13%) were between 3 and 6 per thousand miR
expressed, with one almost reaching a ratio of 10. As a

Variation between microRNA librariesFigure 2
Variation between microRNA libraries. Transcriptome profiles from samples at the same developmental state were 
compared within the three satellite cell libraries (2a), two individual adult biceps femoris libraries (2b), and two d 90 fetal 
biceps femoris libraries (2c). MicroRNA cDNA libraries for satellite cells (2a) were created from the pool of the 4th and 5th 
passage satellite cells and the 6th passage (6th passage, #1). A second library was created from a second flask of 6th passage 
stellite cells (6th passage, #2) to evaluate variation between satellite cells at the same passage. MicroRNA abundance is repre-
sented as number of individual miR tags observed per thousand tags evaluated.
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result of this analysis, we concluded that changes in abun-
dance are likely to be significant if they are greater than 6-
fold. Upon final evaluation of the miR transcriptome pro-
files, we took a more conservative approach and restricted
our discussion to changes in miR abundance levels that
were 10-fold or greater. Second, two individual libraries
from the same 6th passage RNA ligation template were
created to determine if variability was introduced during
the PCR amplification step (see Methods). The transcrip-
tome profiles of the replicate libraries were identical (data
not shown), suggesting that variation observed previously
between the three satellite cell libraries was due to satellite
cell populations.

Further evaluation of miR tags from the adult biceps fem-
oris libraries (Figure 2b) demonstrated reproducible
abundance levels between libraries of the moderate to
highly abundant miR including let-7 and the muscle-spe-
cific miR-1 and miR-206. However, clear differences
between the two libraries were evident as seven additional
miR were identified in the first library compared to the
second. In contrast to the adult and satellite cell miR
libraries, the fetal libraries exhibited similarity across all
miR that were present (Figure 2c). This observed variation
in miR abundance within the adult libraries versus the
fetal libraries could be attributed to animal variation. For
the fetal libraries, biceps femoris of four female fetuses
was collected and pooled for RNA extraction separately
from two individual sows. The pooling strategy necessary
to obtain sufficient starting material for the fetal muscle
samples may have reduced variation present between
individual samples and present a less variable overall miR
profile. In contrast, each adult library was created from a
muscle sample of an individual sow. Additionally, differ-
ence between libraries could be a result of variation in
muscle sample. Muscle is not a homogeneous tissue [31],
and it has been reported that gene abundance levels
change based on location of the sample and distribution
of Type I and Type II muscle fibers throughout the sample
[32-36]. For the fetal libraries, the entire biceps femoris
was obtained from four fetuses. The pooled sample was
then powdered to a homogenous mix for RNA extraction.
However, for the adult libraries a two to four gram sample
was obtained for RNA extraction due to the greater size of
the adult muscle. Therefore, it is possible that the two
biceps femoris samples for the adult libraries were hetero-
geneous and may have contributed to the variation in miR
tags between adult libraries.

MicroRNA transcriptome profiles in skeletal muscle
A digital transcriptome profile approach [37] was applied
to evaluate miR abundance based on cloning the miR
population from each sample and evaluating abundance
as the number of transcripts for a given miR gene per
thousand transcripts observed (see Additional file 1). This

cloning and sequencing-based approach was highly suc-
cessful, as indicated by the high degree of homology
between our results and those previously described in
miRbase for other species.

Sequence comparison to known miR identified the mus-
cle-specific miR-206 as the highest abundant miR across
all muscle samples, which represented greater than 60%
of all miR present (Figure 3). This contrasts sharply with
the abundance of miR-206 in proliferating satellite cells at
1.8 per thousand (or 0.18%). In mouse C2C12 cells, miR-
206 is also lowly abundant in proliferating cells and has
been reported to be induced during differentiation [38],
suggesting that its presence is associated with the switch
from precursor to mature muscle cell. In addition, mR-1
and miR-133 are lowly abundant in proliferating C2C12
myoblasts [38]. The data herein confirm these results in
satellite cells and also demonstrate that miR-206 is
present at a high level through most or all of fetal devel-
opment, and continues through maturation of the adult
pig. The constant high-level presence at all stages follow-
ing early differentiation suggests that the role of miR-206
is to repress functions associated with muscle precursor
cells.

In comparison to the high abundance of miR-206 in mus-
cle tissue, porcine miR-1 had relatively moderate abun-
dance that increased throughout development, similar to
the pattern observed for this miR in mouse muscle devel-
opment [16]. These data suggest that miR-1 and miR-206
play different roles in muscle development, with miR-1
affecting regulation of genes that require inactivation in
later fetal stages and miR-206 having a more constant role
in repressing genes immediately after differentiation. In
contrast to miR-1 and miR-206, miR-133 was detected
only at low levels in fetal development yet increased in the
neonate and adult (Figure 3). Based on abundance level,
these data suggest that miR-206 and miR-1 may have a
greater role in fetal muscle development than miR-133, or
their targets are higher in abundance. In addition, both
miR-206 and miR-1 promote differentiation [16], suggest-
ing that these two miR may have a greater impact com-
pared to miR-133 on increased differentiation, which
characterizes fetal development [39].

In addition to muscle-specific miR, a larger number of
ubiquitous miR were present across all libraries. While a
greater percentage of ubiquitous miR were lowly abun-
dant throughout development, a number increased in
abundance at specific developmental stages. MiR present
10 fold greater in satellite cells compared to neonate mus-
cle included miR-16, miR-18, miR-27, miR-29, miR-34,
and miR-106. Slightly below the factor-of-ten cut-off
included miR-24 at 9.2. These miR have been implicated
in multiple cellular processes including cell growth (miR-
Page 5 of 11
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24), apoptosis (miR-16, miR-24 and miR-29), and cell
cycle regulation in normal (miR-16) and cancerous cells
(miR-24, miR-27, miR-29 and miR-34) [9,40-46]. Con-
versely, research has reported low abundance during pro-
liferation and differentiation in cell culture for these miR
with the exception of miR-24, which has a moderately
high abundance level during late differentiation [16]. This
difference in abundance level may be due in part to the
different cell culture models utilized in the experiments.
Chen et al. [16] evaluated miR in an immortalized C2C12
cell line, while the experiment herein utilized a porcine
primary muscle cell line (satellite cells) during prolifera-
tion.

The fetal time points examined in swine were selected to
coincide with important events in muscle development,
specifically the waves of primary and secondary fiber for-
mation (See Methods). Overall, miR were lowly abundant
throughout fetal development with the exception of let-7
and muscle specific miR-1 and miR-206. Differential
abundance of lowly to moderately abundant miR was
observed between time points for primary (d 60) and sec-
ondary fiber development (d 90 and d 105; Figure 3).
MiR-432 was moderately abundant during early fetal
development at d 60, while miR-424 abundance increased
during d 90 and d 105, and miR-126 abundance increased
during later stages of fetal development at d 90 and 105.

MicroRNA transcriptome profilesFigure 3
MicroRNA transcriptome profiles. MicroRNA cDNA clone libraries were created from skeletal muscle during specific 
stages of swine development including satellite cells, d 60 (primary fiber development) of fetal development, d 90 (secondary 
fiber development) of fetal development, d 105 of fetal development, one day-old neonate and the adult. For the fetal samples, 
biceps femoris (BF) and longissimus dorsi (LD) were collected from female and male fetuses. Biceps femoris (BF) samples were 
collected for the one day-old neonate and the adult. MicroRNA abundance is represented as number of individual miR tags 
observed per thousand tags evaluated. Data for the satellite cells and adult muscle is presented as the average of multiple tran-
scriptome libraries presented in Additional file 1.
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Currently, function of miR-432 in muscle development
has not been determined. However, previous research
reports that miR-424 regulates monocyte and macro-
phage differentiation [47], while miR-126 expression
alters cell cycle progression of cancer cells by decreasing
tumor growth and proliferation [48]. Four miR, miR-338,
miR-368, miR-376, and miR-381, were also identified to
be specific to the one-day old neonate as demonstrated by
a ten-fold increase in abundance level, compared to both
the adult muscle and satellite cells, suggesting that these
miR may have a role in muscle growth immediately fol-
lowing birth. As for the adult, miR abundance was greatest
for miR-151 and the muscle specific miR-1 and miR-133
compared to fetal and neonate miR libraries. While miR-
1 and miR-133 abundance increases during differentia-
tion in cell culture [16], the role of these miR in adult skel-
etal muscle has yet to be fully determined.

Classification of potential novel miR
Evaluation of sequence clusters identified two different
classifications of novel miR; sequence tags that differed at
only one (highly conserved) position and sequence tags
that had no match to miR in the database. Five observed
tags, miR-168a, miR-206, miR-24a, miR-368, and miR-
381, represented possible exceptions to the pattern of
exact sequence conservation across positions 4–17 of the
reference miR. These five observed sequences differed
from known miR at only one position, and the miR were
observed between 23 and 59 times, and are not likely to
be attributable to experimental artifacts. Three of the five
were observed more frequently without mismatches: miR-
206, miR-24a, and miR-168a (a cross-contamination
from the parallel control oligo processing, see Methods).
Interestingly, all of the miR-381 related tags displayed
mismatches with the reported human miR-381 sequence
with a single mismatch occurring 59 times (G?A at posi-
tion 10 in Sus scrofa miR sequence), indicating that the Sus
scrofa version of miR-381 does indeed differ in sequence
from human and mouse. MiR-368 was observed 23 times
as a mismatch and only 12 times without a mismatch.
These five examples of single base mismatches were
included in the transcriptome profiles along with those
that matched exactly.

In addition to identification of mismatches in the miR-
206 sequence, length of sequence at the 5' and 3' ends also
differed (Table 1, see Additional file 2). While there are
known instances of highly similar or identical mature miR
being produced from discrete genes, it seems more likely
that these differences are attributed to minor alterations in
processing, cloning or sequencing of miR originating
from the same gene. Since the goal was to produce relative
transcriptome profiles of potential miR during muscle
development, we clustered sequences of this type into a
single miR sequence, using the most commonly observed

sequence of the cluster as the defining sequence for com-
parisons to known miR.

Combining the data from all transcriptome profiles iden-
tified a total of 94 distinct miR that matched reference
sequences and 12 sequences that did not match, and are
therefore potential novel or porcine-specific miR (given
temporary identifiers PN (porcine new) 1 to PN12; Table
2). While a greater number of these novel miR were lowly
abundant throughout development, PN1 abundance
increased in the proliferating satellite cells, neonate, and
adult. Further validation of these putative novel miR
awaits development of the swine genome to look for hall-
marks of microRNA genes related to these tag sequences.

Computational identification of miR targets
Relatively few miRNA targets have been identified experi-
mentally, but numerous computational predictions are
readily available including miRanda, RNAhybrid and Tar-
getScan [49-51]. Initially, miR targets were predicted for a
sub-set of the miR up-regulated in this experiment (miR-
206, miR-338, miR-368, miR-376a, and miR-381). These
miR were predicted by miRNA viewer to target 47 "com-
mon genes" and 864 genes when the "all genes" option
was chosen. For the purposes of this study, the predicted
target genes were narrowed down to include only those
with "muscle" listed in the gene ontology, as noted by the
Entrezgene project [52]. A total of 19 genes were selected
based on these criteria (see Additional file 3). Of these, 7

Table 1: miR-206 sequence variation

Sequence Quantity observed

UGGAAUGUAAGGAAGUGUGUGA 2286

UGGAAUGUAAGGAAGUGUGUGAA 79

UGGAAUGUAAGGAAGUGUGUGU 78

UGGAAUGUAAGGAAGUGUGU 41

UGGAAUGUAAGGAAGUGUGUGAU 34

UGGAAUGUAAGGAAGUGUGUGA 15

UGGAAUGUAAGGAAGUGUGUG 13

UGGAAUGUAAGGAAGUGUGU 9

UGGAAUGUAAGGAAGUGUGUGG 8

CGGAAUGUAAGGAAGUGUGUGA 7

Mir-206 differed in length or sequence at the 5' and 3' ends. MiR-206 
sequences of this type were clustered into a single miR sequence 
identified as the predominant sequence. Mir-206 sequences with the 
greatest observations are listed.
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targets were identified for the highest expressed miR dur-
ing fetal development to the adulthood, miR-206, includ-
ing genes that have been implicated in multiple myogenic
processes (see Additional file 3) [50,53-56]. These pre-
dicted targets for miR-206 include dystophia myotonica
protein kinase, which has been implicated in myotonic
dystrophy [55] and the transcription factor paired box
gene 3 that regulates myogenic cell fate through the myo-
genic transcription factor MyoD [54]. Secondly, targets for
a sub-set of down-regulated miR (miR-15, miR-16, miR-
27, miR-29, miR-34 and miR-106), of which 44 targets
were identified based on our previous criteria were pre-
dicted (see Additional file 4). From these identified gene
targets, the ability to link the specific miR to target tran-
scripts will improve as computational methods evolve,
and as the databases of expressed and genomic porcine
sequences grow.

Conclusion
Together, these data suggest that miR have a role in pro-
gression of myogenesis throughout development and
their function may be specific to different stages of skeletal
muscle growth. In addition, the data reported herein are
the most complete set of transcriptome profiles to evalu-
ate miR abundance in skeletal muscle at specific time
points during fetal development of swine. Identification

of these miR provide an initial group of expressed miR
that change in abundance during specific developmental
stages and therefore may target genes that regulate this
process.

Methods
Skeletal muscle collection and clone libraries
MicroRNA libraries for the satellite cells were created from
cells cultured from semimebranosus of 8-week old piglets
as previously described [57] and incubated at 37°C with
5% CO2. Satellite cells at passage four, five, and six were
collected for RNA extraction. RNA from the 4th and 5th

passages was combined for creation of the first satellite
cell cDNA library. RNA from two sets of 6th passage satel-
lite cells were used for the second cDNA library. Tissues
during fetal development were collected at d 60, 90, and
105 of fetal development [57] by removing porcine
fetuses immediately after sacrifice and dissecting longis-
simus dorsi and biceps femoris muscle. Four female and
four male fetuses were obtained from a single sow at each
time point, and samples were pooled by sex and muscle
type before immersion in liquid nitrogen. Neonatal
biceps femoris was obtained at day one after birth, while
two to four grams of adult biceps femoris was also
obtained from an adult sow at slaughter. The experimen-
tal procedures were approved and performed in accord-

Table 2: Novel porcine miR

Temporary identifiers Sequence

PN1 CCGCAGGUGCGGCCACUUGUUU

PN2 GUGUUGGUGUGCACUUAUUU

PN3 CGAACCGAAUCCCUCACUAAA

PN4 AGGGGAGUGGUGGGGGGAG

PN5 CGAACCGAACUCCUCACUAAA

PN6 AGGGUUGGGCGGAGGCUUUCC

PN7 CCACGAGGAGGAGACGCAGUG

PN8 UGGCACAGGGUCCAGCUGUCGGC

PN9 GGGGUGGGGGUCUGGGGGGUGU

PN10 GAGAGAUCAGAGGCGCAGAGU

PN11 GUGUGGGACGGUGGGGUGGGUU

PN12 GUCGGGGAGGUUCCAGCUCUCAUUU

Twelve novel miR were detected that were not closely related to previously reported miR in the database. The miR were given temporary 
identifiers PN (porcine new) 1 to PN12.
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ance with U. S. Meat Animal Research Center Animal Care
Guidelines and the Guide for the Care and Use of Agricul-
tural Animals in Agricultural Research and Teaching
(1999). RNA extraction was performed using TRIreagent
following the manufacturer's recommended protocol
(Ambion, Austin, TX). Concentration and quality of RNA
was determined using an Agilent 2100 Bioanalyzer for
RNA (Agilent Technologies, Santa Clara, CA). Single insert
cDNA libraries were constructed as described previously
by Lu et al. [58] with the following modifications. RNA
fractions were isolated from denaturing acrylamide gels
and eluted by FlashPAGE (Ambion, Austin, TX). First
strand cDNA synthesis was performed utilizing a primer
to the 3' adapter sequence and SUPERSCRIPT reverse tran-
scriptase (Invitrogen, Carlsbad, CA). The microRNA were
then amplified by PCR and digested with EcoRI for liga-
tion into pBLUEscript and electroporation in EC100 elec-
trocompetent cells. Individual colonies were transferred
into 384-well plates and grown in ampicillin selective LB
media for plasmid preparation and sequencing using an
Applied Biotechnology 3730 sequencer.

Statistical analysis
Chromatograms were converted into sequences and
scored using Phred [59]. Sequences were collected based
on identification of flanking vector and linker sequences.
The intervening sequences were kept as putative miR, as
long as their length was between 16 and 27 bases. The
putative miR were then clustered based on sequence sim-
ilarity into characteristic consensus sequences, where each
member was required to match 14 consecutive bases to
the most common member of the cluster. This approach
was used due to frequent observance of highly similar miR
differing only at their 3' ends, which often varied only by
length or in the sequence of the last base [27]. The charac-
teristic sequences were then compared to all known miR
from the miRBase [21-23]. The criterion used for a posi-
tive match was that the putative miR contained an exact
match to positions 4–17 of a known miR, as this segment
of the miR sequence are highly conserved and unique to
each miR. Validity of our clustering approach was tested
using 455 known human miR. This resulted in 401 miR
matching only to their unique sequence. Of the remaining
54 sequences, none involved the human homologue of
the porcine miR reported in our current experiment.
While it is possible that a portion of the clusters may rep-
resent miR from more than one distinct gene, the homol-
ogy of the core targeting sequence indicates they are likely
to have similar targets. Those that were not identified this
way were screened, using BLAST, against tRNA, rRNA,
snoRNA and mitochondrial sequence. The remaining uni-
dentified sequences were checked for single base mis-
matches within positions 4–17 of previously identified
miR. Only five examples were found, and they were
counted with the full matching sequences. The observed

putative miR that had at least two mismatches and that
were observed at least 20 times were given temporary
labels PN (porcine new) 1 to PN12 in order of decreasing
levels of abundance.

MicroRNA were considered expressed if the tag cluster had
at least ten members per thousand tags observed. Low
abundance was defined as 0 to 16 tags per thousand
observed, moderate abundance was defined as 16 to 256
tags, and high abundance was defined as greater than 256
tags (Figure 3). A difference between tag counts was
accounted if greater than 10 fold.

Abbreviations
miR: microRNA; MiRNA: microRNA; mRNA: messenger
RNA; PCR: polymerase chain reaction; PN: Porcine new;
RISC: RNA induced silencing complex; RNA: ribonucleic
acid
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Additional file 1
Adundance levels of miR in skeletal muscle at specific developmental 
states. The data provided represent the transcription profiles of miR dur-
ing specific stages throughout skeletal muscle development in swine.
Click here for file
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Additional file 2
miR-206 sequence variation. The data provided represent the varia-
tion of miR-206 sequences identified in the current study.
Click here for file
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Additional file 3
Predicted targets of up-regulated miR. The data provided represent the 
predicted gene targets for the up-regulated miR.
Click here for file
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2164-10-77-S3.docx]
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