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Abstract

Background: Transcriptional regulatory elements are central to development and interspecific
phenotypic variation. Current regulatory element prediction tools rely heavily upon conservation for
prediction of putative elements. Recent in vitro observations from the ENCODE project combined with in
vivo analyses at the zebrafish phox2b locus suggests that a significant fraction of regulatory elements may
fall below commonly applied metrics of conservation. We propose to explore these observations in vivo
at the human PHOX2B locus, and also evaluate the potential evidence for genome-wide applicability of

these observations through a novel analysis of extant data.

Results: Transposon-based transgenic analysis utilizing a tiling path proximal to human PHOX2B in
zebrafish recapitulates the observations at the zebrafish phox2b locus of both conserved and non-
conserved regulatory elements. Analysis of human sequences conserved with previously identified
zebrafish phox2b regulatory elements demonstrates that the orthologous sequences exhibit overlapping
regulatory control. Additionally, analysis of non-conserved sequences scattered over 135 kb 5' to
PHOX2B, provides evidence of non-conserved regulatory elements positively biased with close proximity
to the gene. Furthermore, we provide a novel analysis of data from the ENCODE project, finding a non-
uniform distribution of regulatory elements consistent with our in vivo observations at PHOX2B. These
observations remain largely unchanged when one accounts for the sequence repeat content of the assayed
intervals, when the intervals are sub-classified by biological role (developmental versus non-

developmental), or by gene density (gene desert versus non-gene desert).

Conclusion: While regulatory elements frequently display evidence of evolutionary conservation, a
fraction appears to be undetected by current metrics of conservation. In vivo observations at the PHOX2B
locus, supported by our analyses of in vitro data from the ENCODE project, suggest that the risk of
excluding non-conserved sequences in a search for regulatory elements may decrease as distance from the
gene increases. Our data combined with the ENCODE data suggests that this may represent a genome

wide trend.
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Background

Transcriptional regulatory elements play a critical role in
disease [1-3], development [4,5], and interspecific pheno-
typic variation [6-8]. However, unlike coding sequences,
there is no universal vocabulary that can infer their bio-
logical relevance based on sequence composition alone,
and, unlike structural RNAs, there is no associated second-
ary structure which can aid in their identification.

Comparative genomic sequence analysis has proven to be
a powerful tool for the identification of putatively func-
tional sequences, predicting functional significance based
on evolutionary conservation [9-15]. A logical extrapola-
tion of this approach has been to focus on highly or ultra-
conserved non-coding elements as regions presumably
enriched for regulatory sequences [9,16-18]. However,
functional regulatory elements have also been identified
using less stringent definitions of constraint [11,19-22].
Taken together these studies suggest that no single evolu-
tionary distance can capture all functional regulatory ele-
ments. Consistent with this are reports of reduced
promoter evolutionary constraint between human and
chimpanzee [23], wide spread cis-regulatory element
shuffling [24] and mammalian putative regulatory
regions that do not align to other mammalian genomes
[25-28]. Furthermore, we recently completed a compre-
hensive functional screen for regulatory activity by tiling
sequences across the zebrafish phox2b locus and demon-
strated that, at least at that locus, a significant fraction of
regulatory sequences displayed no evidence of functional
constraint [29]. However zebrafish and fugu, its most
closely related sequenced genome, are substantially more
evolutionarily separated than humans are from rodents
(3-400 million years compared to 80-100 million years).
Thus, one explanation for this observation is that func-
tional non-conserved sequences are detectably conserved
over shorter evolutionary distances. We directly address
this idea by assaying sequences from a tiled interval of the
human PHOX2B locus. We hypothesize that functional
non-conserved sequences are likely present at the human
locus in comparable frequency to the zebrafish phox2b
ortholog [29]. PHOX2B is a three exon gene that spans
approximately 4.9 kb and encodes a paired homeobox
domain transcription factor. This developmentally critical
gene is tightly regulated and mutations in its coding
sequence have been implicated in several human pathol-
ogies, including central congenital hypoventilation syn-
drome, neuroblastoma, and Hirschsprung disease [30-
34].

The recent public release of data from the ENCODE
project [25] provided a large data set to explore putative
regulatory element conservation and distribution. Using
protein occupancy and chromatin modification data from
the ENCODE project, 1,394 of the most likely transcrip-
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tional regulatory elements were identified and termed
putative transcriptional regulatory regions (pTRRs) [26].
Consistent with our observations at phox2b, the ENCODE
consortium reports a markedly low coincidence between
PTRRs and multi-species constrained sequences
[25,26,35,36]. While the enrichment of putative regula-
tory elements proximal to coding regions [35] has simi-
larly been noted, the relative distribution of non-
conserved proximal and distal intergenic pTRRs has not to
our knowledge been examined thoroughly.

We set out to address three main questions using a trans-
poson-based transgenic approach in zebrafish embryos.
First, we tested whether the human PHOX2B locus con-
tained functional non-conserved regulatory sequences in
addition to conserved PHOX2B functional elements, sim-
ilar to its zebrafish ortholog. We assayed the regulatory
potential of a tiled interval encompassing ten kilobases
(kb) upstream of PHOX2B as well as the intronic
sequences. Second, we assayed human PHOX2B non-cod-
ing sequences across a 135 kb interval that were conserved
with previously identified zebrafish phox2b regulatory
sequences, demonstrating that most overlap in their regu-
latory control; the functionality of these human to
zebrafish orthologous sequences remains generally
unchanged with increasing distance from the gene. Third,
by using these regulatory sequences as "anchors," we
tested flanking sequences that were not conserved and
provide preliminary evidence of a trend that non-con-
served regulatory sequences tend to lie more frequently
proximal to the PHOX2B/phox2b exons. To test if this
apparent non-uniform distribution of non-conserved reg-
ulatory elements represents a genome-wide characteristic,
we determined the distribution of the non-conserved
PTRRs reported for the ENCODE intervals [26] and dem-
onstrated the concordance between our data and the
ENCODE-derived data.

Results

Conserved and non-conserved PHOX2B non-coding
elements direct expression

We recently demonstrated that both conserved and non-
conserved sequences tiled across the zebrafish phox2b
locus frequently displayed regulatory control consistent
with endogenous phox2b expression [29]. We, and others,
have pointed out that the increased divergence among tel-
eosts, compared with divergence among mammals,
increases the likelihood that zebrafish functional
sequence modules will have acquired additional substitu-
tions, reducing overt conservation. Additionally, despite
the duplicate presence of approximately 30% of genes in
zebrafish, its genome is significantly more compact than
mammalian genomes ([37,38]; 1.9 gigabase pairs in
zebrafish versus 3.1 gigabase pairs in human genome).
Consequently functional sequences therein likely exist in
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proportionally reduced sequence space. Taken together,
these observations suggest that one is more likely to find
functional non-conserved regulatory elements in teleosts
than in mammals. However, it remains untested, until
now, whether these observations can be wholly accounted
for by the above explanations or whether they, in part, are
representative of a broader trend in vertebrate genomes.
We set out to determine whether the human PHOX2B
locus contains non-conserved functional sequences like
its zebrafish ortholog. In our recent study of phox2b, the
non-coding sequence intervals proximal to the phox2b
exons revealed more non-conserved regulatory sequences
than those at distance of 10 kb or greater. Thus we postu-
lated that, if they exist, human non-conserved PHOX2B
regulatory elements would be identified most readily in
the gene proximal region. We initially generated 11 Tol2-
based transgenic constructs tiling across all non-coding
sequences contained within the PHOX2B introns (two
intronic constructs) as well as those contained within an
interval of 10 kb 5' to the transcriptional start site (TSS)
(nine 5' constructs). Synteny between mammalian and
teleost PHOX2b/phox2b orthologs begins to break down 3'
to the coding exons; thus we focused on intronic
sequences and sequences 5' to the gene. We introduced
each construct into >200 GO zebrafish embryos as
described previously [19,39] and assayed their ability to
drive enhanced GFP (eGFP) reporter expression in cell
populations consistent with phox2b during development.
Although we, and others, have previously demonstrated
that GO analyses can provide a robust assay of regulatory
elements when requiring concordant expression among
many independent embryos [15,19,39,40], we also recog-
nize that such analyses can over look some signals that
become obvious only upon transmission through the
germ line. In these analyses we sought to limit the poten-
tial for such events by requiring consistent signal among
>10% of injected embryos; these embryos were used to
score for function. Only elements that drove reproducible
tissue specific expression were considered regulatory ele-
ments; images of representative embryos are provided for
each identified regulatory element (Figure 1; Figure 2).
Although the selected GO images demonstrate that identi-
fied regulatory elements directed expression in cell types
overlapping the endogenous phox2b expression domains
we cannot definitively attribute the extent of their regula-
tory control nor exclude the potential for regulatory con-
trol beyond those domains. We can, however, identify
that they display concordant functions as regulatory ele-
ments.

In our recent analysis of the zebrafish phox2b locus, we
demonstrated that among the many commonly used
sequence conservation algorithms, phastCons performed
with the highest sensitivity and specificity [29,41]. Thus in
our comparisons of the functionality of conserved versus
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non-conserved sequences, we classified amplicons based
on overlap with phastCons Placental Mammal Conserved
Elements, 28-way Multiz Alignment intervals [41-43]. The
amplicons generated in this experiment comprised a tiling
path of nine non-intronic elements (seven conserved, two
non-conserved), encompassing 10,244 bp of the total
10,562 bp in this region, and 1,721 bp of sequence con-
tained within its two introns (one conserved, one non-
conserved; Figure 1A; Additional file 1 Table S1).

As expected, seven of the eight human conserved
sequences (HCS), within 10 kb of PHOX2B, directed tis-
sue-specific expression consistent with that of endog-
enous phox2b, including expression in neuronal
populations of the ventral diencephalon (VDi), cranial
ganglia (CG), and hindbrain (Hb)(Figure 1B). Addition-
ally, two out of three assayed human non-conserved
sequences (HNCS) in this interval also drove phox2b-
appropriate expression, consistent with observations in
zebrafish. PHOX2B-HNCS-4.2 directed expression in the
ventral diencephalon and the hindbrain, while PHOX2B-
HNCS-5.3 directed expression in the forebrain and hind-
brain (Figure 1B). By contrast PHOX2B-HNCS+1.7 failed
to direct detectable reporter expression during the devel-
opmental time points analyzed (Table 1). Importantly,
these data are consistent with our previous findings at the
orthologous phox2b zebrafish locus [29] and are consist-
ent with our underlying hypothesis.

Orthologous PHOX2B/phox2b amplicons display
overlapping functions

Since PHOX2B and its zebrafish ortholog are critical for
neuronal development in both mammals and teleosts
[33,44], we posited that the corresponding human and
zebrafish orthologous non-coding sequences in this inter-
val would share largely overlapping functions. The
assayed human tiling path amplicons included three ele-
ments (PHOX2B-HCS+0.6, PHOX2B-HCS-0.0, PHOX2B-
HCS-2.9) conserved to zebrafish; their orthologous con-
served sequences (ZCS) are phox2b-ZCS+0.5, phox2b-
7CS+0.0 and phox2b-ZCS-1.4 (Table 2). PHOX2B-HCS-
0.0 directed expression in the ventral diencephalon and
hindbrain in GO fish (Figure 1B), overlapping with the
hindbrain expression observed in the previously pub-
lished G1 results using the orthologous zebrafish
sequence (Table 2 and Additional file 1 Table S1; [29]).
PHOX2B-HCS-2.9 directed reporter expression in the fore-
brain and hindbrain, overlapping the hindbrain reporter
expression directed by its zebrafish ortholog (phox2b-ZCS-
1.4; [29]). Furthermore, although PHOX2B-HCS+0.6
drove reporter expression in the forebrain and cranial gan-
glia consistent with phox2b, these sites also extend beyond
the observed regulatory control of the orthologous
zebrafish phox2b-ZCS+0.5 sequence. The incomplete
nature of overlap in regulatory control observed for these
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Conserved and non-conserved amplicons tiled across the PHOX2B proximal region direct PHOX2B appropri-
ate expression. (a) The human PHOX2B promoter proximal region (chr4:41,440,000—41,456,600; hgl8) was divided into | |
amplicons (total size 11,965 base pairs) excluding exons, 5' UTR, and 3' UTR, according to whether intervals contained Phast-
Cons Placental Mammal Conserved Elements, 28-way Multiz Alignment sequences [41]. The amplicons are represented as gray
scale rectangles: black (PHOX2B-HCS); gray (PHOX2B-HNCS); black (zebrafish alignment). Amplicon names are defined by
their distance from the PHOX2B transcriptional start site and are displayed as custom tracks on the UCSC Genome browser
http://genome.ucsc.edu[54] (b) Lateral images of GO 48-hpf zebrafish embryos exhibiting PHOX2B appropriate expression with
element name marked on picture. Fb, Forebrain; VDi, Ventral Diencephalon; Hb, Hindbrain; CG, Cranial Ganglia; SC, Spinal
Cord; ENS, Enteric Nervous System. *G| embryo at 72-hpf. **G| embryo at 48-hpf. *** Dorsal photo.
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PHOX2B human distal conserved sequences demonstrate activity consistent with orthologous zebrafish
sequences. The interval displayed as a custom track on UCSC Genome browser [54]. The amplicons are represented as gray
scale rectangles: black (conserved), gray (non-conserved), black (zebrafish alignment). (A) Region containing region aligning to
phox2b-ZCS -8.3 (chr4:41,516,361-41,521,080; hgl8) (B) Region containing aligning to phox2b-ZCS -16.6,phox2b-ZCS-20.1,
phox2b-ZCS -23.7 and phox2b-ZCS-30.0. (chr4:41,549,434-41,580,142; hgl8) (C) Lateral images of GO transgenic zebrafish
embryos corresponding to functional human conserved (PHOX2B-HCS -73.5, PHOX2B-HCS -108.3, PHOX2B-HCS-114.8,
PHOX2B-HCS -116.7, PHOX2B-HCS -130.4 and PHOX2B-HCS-133.5), and human non-conserved (PHOX2B-HNCS -112.3)
amplicons. Fb, Forebrain; OT, Oculomotor and Trochlear Motor Progenitors; Hb, Hindbrain; CG, Cranial Ganglia; SC, Spinal
Cord; ENS, Enteric Nervous System. Closed arrow-heads point to hindbrain expression. Open arrow-heads point to cranial
ganglia expression.

elements may reflect lineage-specific adaptation of a com-
mon ancestral functional element (Figure 1B, Table 1,
Table 2). Importantly, analyses of PHOX2B-HCS+0.6 and
PHOX2B-HCS+2.9 in GO were validated by passage
through the germ line and analysis of = 2 independent
lines per construct. The resulting observations (Figure 1B)
were consistent between GO and G1 embryos analyzed.

To further test our hypothesis, we expanded our analyses
of human PHOX2B sequences orthologous to the remain-

ing four previously identified phox2b zebrafish enhancers
(phox2b-ZCS -8.3, phox2b-ZCS-16.6, phox2b-ZCS-20.1 and
phox2b-ZCS-23.7) that align to the human PHOX2B locus
[29]. These sequences were scattered over an interval in
excess of 130 kb 5' to the PHOX2B gene. Zebrafish
sequence elements phox2b-ZCS-8.3, phox2b-ZCS-16.6 and
phox2b-ZCS-20.1 aligned with the human sequences
PHOX2B-HCS-73.5, PHOX2B-HCS-108.3 and PHOX2B-
HCS-114.8, respectively (Figure 2A, 2B; Table 2; Addi-
tional file 1 Table S1). However, the zebrafish amplicon

Table I: Functional non-conserved elements exhibit non-uniform distribution.

Functional non-conserved sequences

Zebrafish phox2b

Human PHOX2B

< 10 kb from gene
>10 kb from gene

3/5 functional

2/3 functional

1/8 functional 1/6 functional

The distribution and function of tested non-conserved elements at the zebrafish phox2b locus [29] and human PHOX2B locus are detailed; elements
are grouped according to position (less than or greater than 10 kb of the PHOX2B gene region).
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Table 2: Human PHOX2B elements conserved to zebrafish phox2b locus demonstrate activity consistent with orthologous zebrafish

sequences.
Human Amplicon Expression Zebrafish Amplicon Expression Coincident Control
(HCS) (ZCs)
PHOX2B-HCS+0.6* Fb, CG phox2b-ZCS +0.5 Hb, SC No
PHOX2B-HCS -0.0 VDi, Hb phox2b-ZCS +0.0 Hb, SC Yes
PHOX2B-HCS -2.9* Fb, Hb phox2b-ZCS -1.4 Mb, Hb, SC Yes
PHOX2B-HCS -73.5 OT, CG, Hb phox2b-ZCS -8.3 Mb, Hb, CG Yes
PHOX2B-HCS -108.3 Fb, Hb phox2b-ZCS -16.6 Mb, Hb Yes
PHOX2B-HCS-114.8 Fb, Hb, SC phox2b-ZCS-20.1 Hb Yes
PHOX2B-HCS -116.7 CG phox2b-ZCS -23.7 Hb, SC, ENS No
PHOX2B-HCS -130.4 ENS phox2b-ZCS -23.7 Hb, SC, ENS Yes

HCS expression is pattern driven by human amplicon in GO zebrafish embryos (* indicates G| expression pattern). ZCS expression is pattern
driven by orthologous zebrafish amplicon in G| zebrafish embryos [29]. Overlap is categorized as Yes, tissue overlap in expression patterns, but
additional tissues seen; No, no overlap in expression. Fb, Forebrain; OT, Oculomotor and trochlear motor Progenitors; VDi, Ventral diencephalon;
Hb, Hindbrain; CG, Cranial ganglia,; SC, Spinal cord ENS, Enteric nervous system.

phox2b-ZCS-23.7, which represents a tight cluster of
highly conserved sequence intervals (4.2 kb) aligned to
human genomic sequences scattered over 13.8 kb, more
than 115 kb 5' to the human PHOX2B TSS. We selected
intervals PHOX2B-HCS-116.7 and PHOX2B-HCS-130.4,
aligning to phox2b-ZCS-23.7, as representative sequences
for evaluation (Figure 2B, Table 2 and Additional file 1
Table S1).

PHOX2B-HCS-73.5 directed reporter expression in the
oculomotor and trochlear motor progenitors, cranial gan-
glia and hindbrain, consistent with the cranial ganglia and
hindbrain reporter expression pattern exhibited by the
zebrafish orthologous element phox2b-ZCS-8.3 (Figure
2A, 2C) [29]. However, in contrast with its zebrafish
ortholog, PHOX2B-HCS-73.5 did not direct detectable
expression in the midbrain. As noted above, this may
reflect lineage-specific adaptation of the common ances-
tral regulatory sequences by the zebrafish and human
phox2b/PHOX2B loci. It may also reflect, in part, the
mosaic nature of the reporter expression observed in GO
embryos. However, one might reasonably expect that cell
populations present in lower abundance within the
embryo might be more likely to be overlooked in mosaics
and not vice versa. Amplicon PHOX2B-HCS-108.3
directed reporter expression in the forebrain and hind-
brain, overlapping the hindbrain expression its ortholo-
gous zebrafish sequence directed (phox2b-ZCS-16.6;
Figure 2C, Table 2 and Additional file 1 Table S1, [29]).
Moving more distal from the PHOX2B coding sequence,
PHOX2B-HCS-114.8 directed expression in the forebrain,
hindbrain, and spinal cord, once again overlapping the
tissue specific hindbrain regulatory activity of its zebrafish
orthologous sequence (phox2b-ZCS-20.1; Figure 2C; Table
2; [29]). Interestingly, although PHOX2B-HCS-116.7 was
functionally active within the central nervous system, its
tissue-specific regulatory control was discrete from that of
phox2b-7ZCS-23.7, to which it aligns. PHOX2B-HCS-116.7

directed expression within cranial ganglia, contrasting
with the hindbrain, spinal cord and enteric nervous sys-
tem expression demonstrated by the orthologous
zebrafish sequence phox2b-ZCS-23.7 (Figure 2C, Table 2;
[29]). Despite lying immediately proximal to an unchar-
acterized primate-specific predicted gene,PHOX2B-HCS-
130.4 directed enteric nervous system-specific reporter
expression overlapping the expression pattern displayed
by phox2b-ZCS-23.7 (Figure 2C, Table 2 and Additional
file 1 Table S1, [29]). These data are largely consistent
with our underlying hypothesis that orthologous
sequences drive overlapping expression patterns. Overall,
six of the eight enhancer sequences that aligned between
zebrafish and human overlapped in their regulatory con-
trol; these observations are, of course, consistent with
their conservation and with their potentially important
role in vertebrate nervous system development.

We then tested three human regions at the PHOX2B locus
(PHOX2B-HCS-34.8, PHOX2B-HCS-107.2 and PHOX2B-
HCS-133.5) that aligned to conserved zebrafish phox2b
sequences lacking detectable enhancer function (phox2b-
ZCS-3.5, phox2b-ZCS-14.1, and phox2b-ZCS-30.0, respec-
tively) in our previous analysis (Figure 24, 2B, [29]). Con-
sistent with their zebrafish orthologs, neither PHOX2B-
HCS-34.8 nor PHOX2B-HCS-107.2 exhibited detectable
regulatory control. PHOX2B-HCS-133.5, however, did
display regulatory control, directing reporter expression in
the forebrain and hindbrain (Figure 2C). Once again this
observation may represent lineage-specific adaptation of
an ancestral regulatory element; we also cannot exclude
the possibility that the zebrafish element (phox2b-ZCS-
30.0) may function at times outside the window exam-
ined (24-96 hour post fertilization). Consistent with our
initial postulate, 8 of 11 assayed human sequences dis-
played regulatory control overlapping their zebrafish
orthologs. Perhaps unsurprisingly, 8 of 11 human
sequences conserved to zebrafish also displayed some
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spatial control within the nervous system that was absent
from their zebrafish orthologs, consistent with lineage-
specific variation in regulatory control.

in vivo functional validation of skewed non-conserved
regulatory element distribution at phox2b/PHOX2B

We posited that non-conserved regulatory elements occur
less frequently with an increasing distance from the gene.
Further evaluation of our recent analysis at the zebrafish
phox2b locus [29] suggests that three of five zebrafish non-
conserved (ZNCS) regulatory elements within 10 kb of
the gene exhibit function. Zebrafish elements phox2b-
ZNCS+6.7, phox2b-ZNCS+5.6 and phox2b-ZNCS+3.1
drove phox2b consistent expression, while phox2b-ZNCS-
4.9 and phox2b-ZNCS-5.9 did not exhibit regulatory activ-
ity [29]. However, only one of eight non-conserved
zebrafish amplicons greater than 10 kb from the gene
exhibited regulatory activity (phox2b-ZNCS-27.9; Table 1;
[29]). We posited that the human PHOX2B locus might
exhibit the same characteristic distribution of non-con-
served regulatory elements (Table 1).

To directly address this idea, we assayed six additional
non-conserved sequences flanking functional distal regu-
latory elements conserved from zebrafish to human (Fig-
ure 2A-C, Additional file 1 Table S1). The non-conserved
element PHOX2B-HNCS-71.5, which is adjacent to
PHOX2B-HCS-73.5 (Figure 2a), exhibited no function
upon injection of >200 GO zebrafish embryos. Upon
injection and assay of comparable numbers of embryos
with constructs PHOX2B-HNCS-106.1, PHOX2B-HNCS-
110.6, and PHOX2B-HNCS-112.3 (Figure 2B), only
PHOX2B-HNCS-112.3 drove expression. This element
directed reporter expression in the cranial ganglia, consist-
ent with endogenous phox2b expression (Figure 2C).
Additionally, we selected and analyzed elements
PHOX2B-HNCS-115.3 and PHOX2B-HNCS-128.9,
immediately flanking the conserved enhancers PHOX2B-
HCS-116.7, PHOX2B-HCS-130.4, respectively; both non-
conserved amplicons failed to direct reproducible reporter
expression in any tissues at all time points examined (Fig-
ure 2B). Thus, of these six human distal non-conserved
sequences tested, only PHOX2B-HNCS-112.3 displayed
evidence of tissue-specific regulatory control (Table 1; Fig-
ure 2A-C). These data are consistent with our earlier
observations at the zebrafish phox2b locus (Table 1; [29]).
If one examines the corresponding human and zebrafish
data sets for sequences within 10 kb of the gene, they sim-
ilarly suggest a bias in the distribution of functional non-
conserved, non-coding sequences proximal to the gene.
Comparison of the data generated at the human and
zebrafish PHOX2B/phox2b orthologs demonstrate that
two of the three non-conserved elements tested in the
PHOX2B (TSS-proximal) tiling path drove expression
consistent with endogenous phox2b expression (Figure 1;
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[29]), which agrees with the data generated at phox2b in
zebrafish, for the same interval (Table 1; [29]).

While it remains possible that the observed skewed distri-
bution of non-conserved, functional non-coding
sequences is unique to PHOX2B/phox2b or represents an
artifact of a small sample size, we posited that it might
also represent a more general characteristic of vertebrate
genomes. When combining the zebrafish and human
data, five of eight non-conserved elements within 10 kb of
the gene exhibit regulatory function, while only two of 14
non-conserved gene distal elements exhibit regulatory
function (Table 1; Figure 1; Figure 2; [29]). Taken together
these data suggest that the non-conserved elements proxi-
mal to genes may have an increased probability of func-
tioning as a transcriptional regulatory element. These in
vivo observations at the PHOX2B locus indicate a potential
trend that functional non-conserved regulatory sequences
may not be uniformly distributed with respect to genes;
functional non-conserved amplicons display a slightly
skewed distribution, with a higher frequency more proxi-
mal to genes and a lower frequency in more distal regions.
We sought to test the generality of these observations to
other loci using the recently published ENCODE data
[25].

The non-uniform distribution of non-conserved regulatory
sequences represents a genome-wide phenomenon

Until the completion of the human, mouse and other ver-
tebrate genome sequences, the 5' putative promoter
regions of genes were the primary site of inquiry for verte-
brate regulatory sequences. Although existing functional
data sets of regulatory sequences may consequently be
enriched for these sequence intervals, the recently com-
pleted ENCODE project also reports a similar trend
[25,26,35]. Prompted by the observation of a potential
unequal distribution of conserved regulatory elements at
the PHOX2B locus, we set out to determine whether the
distribution of non-conserved regulatory elements also
contributes to this genome wide trend. King and col-
leagues [26] recently identified 1,394 putative transcrip-
tional regulatory regions (pTRRs) within the 1% of the
human genome evaluated by ENCODE [25]. We exam-
ined this data, classifying pTRRs as conserved or non-con-
served based upon whether they overlapped with
PhastCons Placental Mammal Conserved Elements, 28-
way Multiz Alignment intervals [10,41,43]. We then
applied the ENCODE defined sub-region identifiers (cod-
ing sequence, 5' UTR, 3' UTR, intronic proximal, intronic
distal, intergenic proximal, or intergenic distal) to the
PTRRs (Additional file 1 Table S2, Table 3). As with our
analysis of non-conserved sequences at the PHOX2B and
phox2b loci, we focused on pTRRs within intergenic prox-
imal (intervals closer than 5 kb to nearest exon) and inter-
genic distal intervals (farther than 5 kb from the nearest
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Table 3: Distribution of putative transcriptional regulatory regions (pTRRs) identified by King et al. [26].

Type of gene

ENCODE Sub-regions

Conserved pTRRs in sub-

Non-conserved pTRRs in sub- Base pairs in sub-region

Analyzed region region
All 5'UTR 71 46 99,440
All 3'UTR 15 12 382,329
All Intergenic Proximal 6l 163 2,429,196
All Intergenic Distal 48 171 11,055,834
All Intronic Proximal 173 457 8,903,959
All Intronic Distal 55 122 6,462,925
All Coding sequences 0 0 671,166
Developmental Intergenic Proximal 20 22 392,692
Developmental Intergenic Distal 5 20 1,636,075
Non-developmental Intergenic Proximal 24 86 733,487
Non-developmental Intergenic Distal 10 51 2,309,353
Non-gene Desert Intergenic Distal 39 159 7,147,316
Gene Desert Intergenic Distal 9 12 3,908,518
Gene Desert Intergenic Proximal 0 3 75,000
Non-gene Desert Intergenic proximal 6l 160 2,354,196

pTRRs partitioned to ENCODE defined regions and grouped as conserved versus non-conserved based on pTRR overlap with PhastCons Placental
Mammal Conserved Elements, 28-way Multiz Alignment [43]. Gene type of all represents analysis of whole ENCODE region. Developmental genes
represent regions flanking genes labeled with Gene Ontology term GO:0032502, while non-developmental genes were those that were not labeled
with GO:0032502. Gene deserts were ENCODE intervals overlapping regions >500 kb without a Reference Sequence gene. Non-gene deserts
were all sub-regions that did not overlap gene deserts. The "Base pairs in sub-region" column represents the sum of the genomic intervals

represented by each type of sub-regions.

exon). After calculating the total number of conserved and
non-conserved base pairs in each sub-region (see Methods
for details on calculations), we then determined the den-
sity of non-conserved pTRRs within intergenic proximal
and intergenic distal sub-regions (Table 4, Additional file

1, Table S2). Non-conserved pTRR density was defined as
the number of non-conserved pTRRs in the region per
non-conserved base pair in the region. Interestingly, the
density of non-conserved pTRRs within intergenic proxi-
mal sub-regions was 4.33 fold higher than the density

Table 4: Non-conserved pTRR density is higher in intergenic proximal regions than intergenic distal regions.

pTRR Density

Gene Type ENCODE Sub-region Conserved pTRRs/ Non-conserved Conserved pTRRS/  Non-conserved pTRRs/
Conserved bp  pTRRs/Non-conserved Conserved Non-repeat Non-conserved Non-

bp bp repeat bp

All 5'UTR 1/457 1/1,456 1/410 17931
All 3'UTR 1/5,625 1/24,829 1/5,460 1/18,610
All Intergenic Proximal 1/1,185 1/14,460 171,094 1/7,005
All Intergenic Distal 1/7,528 1/62,541 117,073 1/29,635
All Intronic Proximal 1/1,463 1/18,930 1/1,356 1/10,801
All Intronic Distal 1/4,259 1/51,055 1/4,026 1/28,231
Developmental Intergenic Proximal 171,591 1/16,403 171,508 1/8,796
Developmental Intergenic Distal 1/11,370 1/78,961 1/10,714 1/47,792
Non-developmental Intergenic Proximal 1/1867 1/8,287 1/821 1/3,619
Non-developmental Intergenic Distal 176,160 1/44,074 115,776 1/18,446
Non-gene Desert Intergenic Proximal 1/1,078 1/14,303 17991 116,877
Gene Desert Intergenic Proximal N/A 1/22,824 N/A 1/13,830
Non-gene Desert Intergenic Distal 1/5,307 1/43,650 1/4,954 1/19,047
Gene Desert Intergenic Distal 1/17,151 1/312,847 1/16,254 1/151,566

Density of putative transcriptional regulatory regions (pTRRS) identified by King et al. [26]. The ENCODE interval was partitioned into sub-regions.
Gene type of all represents analysis of whole ENCODE region. Developmental genes represent regions flanking genes labeled with Gene Ontology
term GO:0032502, while non-developmental genes were those that were not labeled with GO:0032502. Gene deserts were ENCODE intervals
overlapping 2500 kb regions without a Reference Sequence gene. Non-gene deserts were all sub-regions that did not overlap gene deserts. Density
of pTRRs was calculated by dividing the total number of conserved or non-conserved base pairs in the ENCODE defined region by number of
conserved or non-conserved pTRRs in the ENCODE defined region. N/A= not applicable due to lack of conserved pTRRs in gene desert intergenic

proximal regions
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within intergenic distal sub-regions (Table 4, Table 5).
Although potentially interesting, we also noted that these
observations could be significantly confounded by several
factors; we thus addressed each in turn.

First, much of the genome is composed of repeats whose
distribution is non-uniform, we thus set out to determine
if the difference in non-conserved pTRR density between
intergenic proximal and intergenic distal regions was due
to density of repetitive DNA elements within evaluated
intervals. We then calculated the total number of con-
served and non-conserved repeat base pairs in each sub-
regions, which where then used to calculate the number of
conserved non-repeat base pairs and non-conserved non-
repeat base pairs in each sub-region (Additional file 1,
Table S2, See methods for details of calculations).
Adjusted for repeats, the density of non-conserved pTRRs
is 4.23 times higher in intergenic proximal regions than in
intergenic distal sub-regions, suggesting that the trend
observed of higher non-conserved pTRR density proximal
to the gene compared to distal to the gene is not due to a
difference in repetitive element density in the sub-regions
(Table 4; Table 5; Additional file 1 Table S2).

Second, developmental genes are reported to require
more regulatory control modules than non-developmen-
tal genes [45-47]. We therefore asked whether the density
of pTRRs differed between sequences flanking develop-
mental and non-developmental genes. We utilized Gene
Ontology (GO) to differentiate between developmental
and non-developmental genes, using GO term
G0:0032502 to define developmental genes [48]. Using

"GO Slimmer" http://amigo.geneontology.org/cgi-bin
amigo/slimmer; [49]), 78 unique genes from the

ENCODE intervals labeled with GO:0032502 were iden-
tified as developmental genes, while 152 genes from the
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ENCODE region were correspondingly identified as non-
developmental. The fold change in densities of non-con-
served pTRRs from intergenic proximal to intergenic distal
for developmental genes (4.81 fold change in density)
and non-developmental (5.32 fold change in density)
were consistent with those in analysis of all ENCODE
intergenic proximal and intergenic distal sub-regions
(4.32 fold change in density; Table 4; Table 5). Addition-
ally, the fold change in density between the intergenic
proximal and intergenic distal sub-regions when adjusting
for repeats remained similar for both the developmental
genes (5.43 fold change in density) and non-developmen-
tal genes (5.10 fold change in density; Additional file 1,
Table S3; Table 4; Table 5).

Finally, we sought to determine whether our observations
still held true in comparisons of gene desert intervals
alone and those specifically excluding gene deserts. To
examine the effect of gene deserts on pTRR density, we
compared gene desert intergenic proximal and intergenic
distal sub-regions to non-gene desert intergenic proximal
and intergenic distal regions. Intergenic distal sub-regions
were manually curated to identify the sub-regions that
overlapped gene deserts, defined as intervals >500 kb
without a National Center for Biotechnology Information
Reference Sequence gene [50,51]. After analysis was per-
formed as described above on the gene desert and non-
gene desert sub-regions (Additional file 1, Table S4), the
PTRR densities were once again calculated (Table 4). The
gene desert intergenic distal non-conserved pTRR density
was nearly an order of magnitude (7.17 fold) lower (1
non-conserved pTRR per 312,847 non-conserved base
pairs) than that of non-gene desert intergenic distal
regions (1 non-conserved pTRR per 43,650 base pairs),
consistent with our underlying hypothesis that as distance
from the gene increases, the density of non-conserved reg-

Table 5: Fold change in pTRR density of intergenic versus intergenic distal regions.

Fold change of pTRR density between Intergenic Proximal and Intergenic Distal Sub-regions

Gene Type Conserved pTRRs/ Non-conserved pTRRs/ Conserved pTRRs/Conserved Non-conserved pTRRs/
Conserved bp Non-conserved bp Non-repeat bp Non-conserved

Non-repeat bp

All 6.35 433 6.47 423
Developmental 7.15 4.81 7.10 543
Non-developmental 7.10 5.32 7.04 5.10
Gene Desert N/A 13.71 N/A 10.96
Non-gene Desert 4.92 3.05 5.00 2.77

Gene type of all represents analysis of whole ENCODE region. Developmental genes represent regions flanking genes labeled with Gene Ontology
term GO:0032502, while non-developmental genes were those that were not labeled with GO:0032502. Gene deserts were ENCODE intervals
overlapping 2500 kb regions without a reference sequence gene. Non-gene deserts were all sub-regions that did not overlap gene deserts. Fold
change in gene density was calculated for each gene type by dividing the intergenic proximal pTRR density by the intergenic distal pTRR density
(Table 4). The pTRR densities were calculated for conserved pTRRs divided by conserved bp, non-conserved pTRRs divided by non-conserved bp,
conserved pTRRs divided by conserved non-repeat bp and non-conserved pTRRs divided by non-conserved non-repeat bp (Table 3). N/A = not
applicable due to lack of conserved pTRRs in gene desert intergenic proximal regions.
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ulatory elements decreases. However, since gene desert
flanking intergenic proximal regions represent such a
small fraction (0.25%) of the total base pairs analyzed
(Additional file 1 table S4), it is difficult to draw any con-
clusions on pTRR density for this subset alone. However,
we can say that when comparing non-gene desert inter-
genic proximal regions to non-gene desert intergenic dis-
tal regions, we still observe a 3.02 fold change in non-
conserved pTRR density. These data indicate that while
gene deserts may contribute to the skewed pTRR density,
there remains a significant fraction that cannot be
accounted for by their effect.

Discussion

The identification of functional non-coding regulatory
sequence relies heavily upon commonly applied metrics
of constraint. However, our previous analysis at the
zebrafish phox2b locus identified numerous functional
non-coding regulatory sequences that were not under any
detectable constraint [29], raising into question the fre-
quency with which current approaches overlook func-
tional elements. However, the large evolutionary distance
between teleosts reduces the ability to detect constraint, so
we undertook a similar analysis using the human
PHOX2B locus.

The human PHOX2B and zebrafish phox2b gene proximal
regions exhibited similar densities of both conserved and
non-conserved functional elements, suggesting that our
original observations at the zebrafish phox2b locus may
not simply be an artifact of the increased evolutionary dis-
tance among teleosts compared with mammals. Further-
more, the numbers of non-conserved functional
regulatory sequences decreased with increasing distance
from the gene for both the zebrafish and human phox2b/
PHOX2B loci. We and others have proposed that the exist-
ence of non-conserved regulatory elements may result
from lineage specific regulatory elements, transcription
factor binding site shuffling, or elements falling below the
threshold of detectable conservation [23,24,26,29]. Con-
sistent with these postulates, analyses among more closely
related species may increase the sensitivity and decrease
the specificity with which one identifies true functional
elements based upon conservation alone.

While previous studies have commented on the enrich-
ment of regulatory elements proximal to genes
[25,26,35], the relative distribution of non-conserved reg-
ulatory elements had not been assessed in detail. We
directly addressed this question in vivo and, using the
ENCODE data set, in silico. Our analysis of ENCODE-
defined pTRRs [25,26] is consistent with the in vivo data
both presented here for human PHOX2B and published
previously for the zebrafish phox2b ortholog [29], as well
as with previously published predictions from cell line
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derived data [27]. We demonstrated that ENCODE-iden-
tified pTRRs [26] lacking conserved sequence intervals
defined by phastCONS were present at a 4.33 fold higher
density in intergenic proximal regions compared to the
intergenic distal region (Table 4, Table 5). These trends
were maintained even when accounting for repeat density
or class-specific biases associated with developmental ver-
sus non-developmental genes. Also consistent with our
underlying hypothesis, we noted a lower density of inter-
genic distal pTRRs in gene desert regions than in non-gene
desert regions. This observation is also consistent with
data generated by Roh et al. [27], who reported a similar
enrichment of proximal non-conserved putative enhanc-
ers identified by histone acetylation patterns in vitro. Col-
lectively these data suggest that the fraction of regulatory
elements that can be detected by conservation alone may
be smaller than previously believed.

Conclusion

The human and zebrafish PHOX2B/phox2b data taken in
combination with previously published data [27] and our
analysis of the publicly available ENCODE data [25,26]
suggests that although conservation is a robust strategy to
find functional sequences, implementation of this strat-
egy alone will potentially overlook significant numbers of
functional elements, particularly in regions proximal to
genes. Importantly, these findings may significantly
impact the search for regulatory variation underlying dis-
ease risk. The data suggest that although sequence conser-
vation is a valid and often informative starting point for
the identification of biologically functional sequences,
there are frequently functional sequences that lie beneath
that predictive radar. These observations suggest that the
risk of overlooking non-conserved regulatory sequences at
this level of constraint decreases with increasing distance
from a gene.

Methods

Selection and amplification of human non-coding
sequences

The sequences studied were in the region corresponding
to chr4:41,443,127-41,579,542 in the human March
2006 (hg18) build. Using standard PCR conditions,
sequences (Additional file 1 Table S1) were amplified off
of human genomic DNA and separately subcloned into
the pT2GWcfosEGFP vector, a Tol2-based transgenic
reporter construct [19,29,39]. We, and others, have previ-
ously shown this to be a reliable screen for enhancer activ-
ity [15,19,39]. 333 base pairs were omitted from the tiling
path due to primer design issues; the non-conserved
amplicons were designed to have 0% overlap with the ele-
ments identified within the PhastCons Placental Mammal
Conserved Elements, 28-way Multiz Alignment track [43].
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Fish care

All zebrafish were raised, bred, and staged according to
standard protocols at 28°C [52,53] and under protocols
approved by the Johns Hopkins University Animal Care
and Use Committee.

Embryo injections and analysis

Putative regulatory elements subcloned into the
pT2GWcfosEGFP reporter construct were injected into
wild-type GO AB zebrafish embryos [39]. Reporter expres-
sion directed by each construct was then evaluated in
>200 live GO mosaic embryos at 24, 48, 72 and 96 hours
post fertilization, requiring that consistent signal is
observed among >10% of injected embryos. Analysis of
embryos was conducted using a Carl Zeiss Lumar V12
Stereo-microscope with AxioVision version 4.5 software.

Analysis of ENCODE data

Defining ENCODE regions for analysis

The human genome sequence (hgl7) regions studied
were obtained using the UCSC Genome Browser http://
genome.ucsc.edu[54] based on ENCODE coordinates
[25]. The corresponding 44 regions encompass
29,998,060 base pairs. From the Galaxy2ENCODE (GEN-
CODE) data sets available on the Galaxy database, parti-
tioned intervals representing the ENCODE region were
obtained as a custom track ([55,56]; http://
main.g2.bx.psu.edu/). The ENCODE sequence data was
partitioned into 7 sub-regions: coding sequence; 5' UTR;
3' UTR; intronic proximal (intronic <5 kb from an exon);
intronic distal (intronic >5 kb from an exon); intergenic
proximal, between genes <5 kb from an exon; and inter-
genic distal, between genes >5 kb from an exon [55]. The
partitioned ENCODE region was composed of 10,689
regions representing 30,717,051 base pairs, 718,991 base
pairs more than the region represented by UCSC Genome
Browser defined ENCODE regions. Using the Galaxy
Database Subtraction tool, we determined that 167,090 of
the extra base pairs were accounted for by partitioned sub-
regions that lay outside the UCSC genome browser
defined regions, which were excluded from the analysis.
Using the Galaxy Database Base Coverage tool, we deter-
mined that the rest of the remaining 551,901 excess base
pairs arose from redundant partitioning of the same
genomic intervals into multiple sub-regions. Manual
curation of the region was used to remove the redun-
dancy, leaving only 6,789 base pairs of overlap (0.02% of
the ENCODE data set). The curated ENCODE partition
sub-regions consisted of 10,052 intervals equaling
30,004,849 base pairs. The Galaxy Database Base Cover-
age tool was used to confirm that the manually curated
ENCODE partitioned sub-regions had the same actual
base coverage as the UCSC defined ENCODE regions
(29,998,060 base pairs). To confirm the accuracy of our
partitions the total base pairs in each sub-regions were
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summed, and were shown to be equal to the total base
pairs in the manually curated ENCODE partitioned sub-
regions.

Defining data sets for analysis

Using the UCSC Table Browser, the human genomic coor-
dinates (hg18) for the PhastCons Placental Mammal Con-
served Elements, 28-way Multiz Alignment, which are not
available in hg17, overlapping the ENCODE region were
downloaded as a custom track. The Galaxy Database Lift-
over Convert Genome Coordinates tool was used to con-
vert the PhastCons Placental Mammal Conserved
Elements, 28-way Multiz Alignment ([41-43]), genomic
intervals from hgl8 to hgl7. These elements were then
partitioned into ENCODE sub-regions using the Galaxy
Database Gencode Partition tool. The total PhastCons
Placental Mammal Conserved Elements, 28-way Multiz
Alignment base pairs in each sub-region were then
summed and termed conserved base pairs. The total non-
conserved base pairs were then calculated by subtracting
the conserved base pairs from each sub-region from the
total base pairs for each sub-region (Additional file 1,
Table S2).

To examine the effects of repeats on pTRR density, we cal-
culated the amount of repeat DNA in each ENCODE sub-
region. The hgl7 repeat masker track for the UCSC
defined ENCODE regions was downloaded in a custom
track. To remove any overlap from repeat elements, the
Galaxy Database Merge tool was used to concatenate over-
lapping repeat regions into single intervals. The merged
repeats were then partitioned into ENCODE sub-regions
using the Galaxy Database Gencode Partition tool. The
total repeat base pairs were calculated for each sub-region
using the merged partitioned repeats. To confirm that no
repeats were lost in the Merge program, the Galaxy Data-
base Base Coverage tool was used to confirm that the
repeat masker and merged repeat intervals covered the
same total genomic region (Additional file 1 Table S2).

To calculate the number of repeats that overlap with con-
served regions, the Galaxy Database Intersection tool was
used to calculate the intervals of base pair overlap
between the PhastCons Placental Mammal Conserved
Elements, 28-way Multiz Alignment intervals and merged
repeat masker intervals. The regions of these overlaps were
termed conserved repeats. The conserved repeats were
then partitioned into ENCODE sub-regions using the Gal-
axy Database Gencode Partition tool. The total numbers
of base pairs for each sub-region were summed. The con-
served repeat base pairs were used to calculate the number
of non-conserved repeat base pairs by subtracting the total
number of conserved repeat base pairs from the number
of total repeat base pairs for each sub-region. To calculate
the non-conserved non-repeat base pairs, the non-con-
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served repeat base pairs were subtracted from the total
non-conserved base pairs for each sub-region. To calculate
the conserved non-repeat base pairs, the total conserved
repeat base pairs were subtracted from the total conserved
base pairs for each sub-region (Additional file 1 Table S2).

pTRR analysis

The hg 17 genomic coordinates for putative transcrip-
tional regulatory regions identified by the ENCODE
project [26] were obtained at http://www.bx.psu.edu/
projects/encode_pTRR. The UCSC Table Browser Intersec-
tion tool was then used to determine which pTRRs overlap
the PhastCons Placental Mammal Conserved Elements,
28-way Multiz Alignment, termed conserved pTRRs, and
those which do not, termed non-conserved pTRRs. The
conserved and non-conserved pTRRs were then parti-
tioned into the ENCODE sub-regions using the Galaxy
Database Gencode Partition pool. The total number of
conserved and non-conserved pTRRs for each sub-region
was totaled (Table 3, Additional file 1 Table 2).

To calculate the density of pTRRs in each sub-region, the
number of pTRRs in each sub-region was divided by the
total number of base pairs in each sub-region, with a den-
sity of pTRRs per base pair. To calculate the density of con-
served pTRRs in conserved regions, the total number of
conserved pTRRs in each sub-region was divided by the
total number of conserved base pairs in each sub-region.
To calculate the density of non-conserved pTRRs, the
number of non-conserved pTRRs in each sub-region was
divided by the total number of non-conserved base pairs
in each sub-region (Additional file 1 Table 2, Table 4).

To examine the effects of repeats on conserved pTRR den-
sity, the number of conserved pTRRs was divided by the
number of conserved non-repeat base pairs in each sub-
region. Also, the number of non-conserved pTRRs was
divided by the number of non-conserved non-repeat base
pairs in each sub-region (Additional file 1 Table 2).

Gene desert versus non-gene desert analysis

To study the effects of gene deserts on pTRR density, the
gene desert regions of the ENCODE region were identified
by manually curating the intergenic distal sub-regions to
identify regions that had a minimum of 50 kb of overlap
with a = 500 kb region that did not contain a National
Center for Biotechnology Information Reference
Sequence gene [50,51]. All intergenic distal gene desert
regions were expanded 500 base pairs in the 3' and 5'
direction; these expanded regions were then used on the
UCSC Table Browser intersection tool to find all inter-
genic proximal regions flanking gene desert regions. The
total number of base pairs, non-conserved base pairs, con-
served base pairs, repeat base pairs, conserved repeat base
pairs, non-conserved repeat base pairs, conserved non-
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repeat base pairs, non-conserved non-repeat base pairs,
conserved pTRRs, and non-conserved pTRRs were calcu-
lated for both the gene desert intergenic distal and inter-
genic proximal regions as described above. The totals of
the gene desert regions were then subtracted from inter-
genic proximal and intergenic distal all genes totals to cal-
culate non-gene desert statistics. The density of conserved
PTRRs, non-conserved pTRRs and the repeat adjusted den-
sity of conserved pTRRs and non-conserved pTRRs was
then calculated as described above (Additional file 1 Table
4).

Analyses of Developmental versus Non-developmental Gene
Intervals

To determine whether pTRR density differed between
flanking developmental genes and non-developmental
genes, Gene Ontology terms were used to classify the
genes in the ENCODE region [48]. Using the UCSC Table
Browser, the table for MGC genes in the ENCODE region
was downloaded. Gene ontology term GO:0032502 was
chosen as a reference to define developmental genes ver-
sus non-developmental genes. The gene names off the
MGC gene table were then entered into the GO slimmer
tool (http://amigo.geneontology.org/cgi-bin/amigo/slim
mer; [49]), with the setting All species databases, All evi-
dence codes, GO Slimmer term GO:0032502. Of the
genes input into GO slimmer, 230 total unique genes
were recognized by the database. Gene names not recog-
nized by GO slimmer were excluded from the analysis. Of
these, 78, labeled developmental genes, were labeled with
the GO term GO:0032502, while 152 genes, termed non-
developmental genes, were not labeled with
GO0:0032502. Manual curation was then used to create
separate UCSC Genome Browser custom tracks contain-
ing the gene regions of the non-developmental and devel-
opmental genes respectively. These gene region intervals
for both non-developmental and developmental genes
were then expanded 7.5 kb in both the 5' and 3' direction,
to allow identification of intergenic proximal and inter-
genic distal regions flanking the developmental and non-
developmental regions. Using the UCSC Table Browser
intersection tool, the overlap was found between the
expanded developmental gene intervals and the inter-
genic proximal and intergenic distal sub-regions. Using
the same method the overlap between the non-develop-
mental gene expanded intervals and the intergenic proxi-
mal and intergenic distal sub-regions was also identified.
To identify sub-regions that were positioned between a
developmental gene and a non-developmental gene, and
thus represented in both data sets, the UCSC Table
Browser intersection tool was used to identify regions of
overlap between the developmental gene intergenic prox-
imal sub-regions and the non-developmental intergenic
proximal sub-regions; and the overlap between the devel-
opmental gene intergenic proximal sub-regions and the
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non-developmental intergenic proximal sub-regions.
These regions of overlap were excluded from the analysis
due to their presence in both data sets. Using the UCSC
Table Browser intersection tool the regions of overlap
were subtracted from developmental and non-develop-
mental gene intergenic proximal and intergenic distal sub-
regions to leave four non-overlapping data sets termed
developmental gene intergenic proximal non-overlap
regions, developmental gene intergenic distal non-over-
lap regions, non-developmental gene intergenic proximal
non-overlap regions, and non-developmental gene inter-
genic distal non-overlap regions. For these four data sets
total number of base pairs, non-conserved base pairs, con-
served base pairs, repeat base pairs, conserved repeat base
pairs, non-conserved repeat base pairs, conserved non-
repeat base pairs, non-conserved non-repeat base pairs,
conserved pTRRs, and non-conserved pTRR and appropri-
ate pTRR densities were calculated as above (Additional
file 1 Table 5).
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