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U12 type introns were lost at multiple occasions
during evolution
Sebastian Bartschat1,2, Tore Samuelsson1*

Abstract

Background: Two categories of introns are known, a common U2 type and a rare U12 type. These two types of
introns are removed by distinct spliceosomes. The phylogenetic distribution of spliceosomal RNAs that are
characteristic of the U12 spliceosome, i.e. the U11, U12, U4atac and U6atac RNAs, suggest that U12 spliceosomes
were lost in many phylogenetic groups. We have now examined the distribution of U2 and U12 introns in many of
these groups.

Results: U2 and U12 introns were predicted by making use of available EST and genomic sequences. The results
show that in species or branches where U12 spliceosomal components are missing, also U12 type of introns are
lacking. Examples are the choanoflagellate Monosiga brevicollis, Entamoeba histolytica, green algae, diatoms, and the
fungal lineage Basidiomycota. Furthermore, whereas U12 splicing does not occur in Caenorhabditis elegans, U12
introns as well as U12 snRNAs are present in Trichinella spiralis, which is deeply branching in the nematode tree. A
comparison of homologous genes in T. spiralis and C. elegans revealed different mechanisms whereby U12 introns
were lost.

Conclusions: The phylogenetic distribution of U12 introns and spliceosomal RNAs give further support to an early
origin of U12 dependent splicing. In addition, this distribution identifies a large number of instances during
eukaryotic evolution where such splicing was lost.

Background
In eukaryotes mature RNA is formed by the removal of
introns from a primary transcript. Splicing is catalyzed
by a multicomponent complex, the spliceosome [1].
Two intron classes have been identified, a common U2-
type and a rare U12-type [2-4]. Splicing of U2-type
introns is catalyzed by the U2-dependent (major) spli-
ceosome, which includes the U1, U2, U4, U5 and U6
spliceosomal RNAs as well as multiple protein factors.
The U12-dependent (minor) spliceosome, responsible
for the excision of the U12-type introns, is structurally
similar to the U2-type spliceosome. It contains protein
subunits and the U5 RNA as well as the U11, U12,
U4atac, and U6atac spliceosomal RNAs that are func-
tionally and structurally related to the U1, U2, U4 and
U6 RNAs of the major spliceosome.

U2 introns have characteristic properties at the 5’
splice site (AG/GURAGU), 3’ splice site (YAG/G) and
branch site (CURACU, where the A is the branch point
adenosine). There is also a pyrimidine rich region
between the branch and 3’ splice sites. Much of the spe-
cificity in the splicing reaction is accomplished by pair-
ing with snRNAs. Thus, the 5’ splice site pairs with U1
RNA and the branch site pairs with U2 RNA.
The U12 introns have consensus sequences that are

different from U2 introns. The 5’ splice site
(/RTATCCTTT) as well branch site (UCCUUAACU,
where the underlined A is the branch point adenosine)
are more conserved than their counterparts in U2
introns, whereas the 3’ splice site is more variable. In
addition, U12 introns lack a pyrimidine rich region.
Whereas the vast majority of U2 introns have the dinu-
cleotides GT and AG at their 5’ and 3’ ends, respec-
tively, some U12 introns have the dinucleotides AT and
AC in these positions [5]. During U12 splicing, the 5’
splice site and branch site pair with the U11 and U12
snRNA, respectively.
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U2-type introns are ubiquitous in eukaryotes while
U12-type introns are lacking in some species, such as
Saccharomyces cerevisiae [6] and in the nematode Cae-
norhabditis elegans [5]. U12 introns were first reported
only in vertebrates, insects, cnidarians and plants [5].
However, they were later discovered in Rhizopus oryzae,
Phytophthora and Acantamoeba castellanii, demonstrat-
ing an early evolutionary origin for the U12 spliceosome
[7].
We have recently presented an inventory of spliceoso-

mal RNAs based on computational prediction from
genomic sequences [8]. We found additional support of
U12 splicing in Acanthamoeba castellanii as we identi-
fied the U12-type spliceosomal U11 and U6atac RNAs,
in addition to the previously identified U12 RNA [7].
Furthermore, RNAs specific to the U12 spliceosome
were identified in a number of phylogenetic groups
where previously such RNAs were not observed, includ-
ing the nematode Trichinella spiralis, the slime mold
Physarum polycephalum and the fungal lineages Zygo-
mycota and Chytridiomycota. The detailed map of the
distribution of the U12-type RNA genes supports an
early origin of the minor spliceosome and points to a
number of occasions during evolution where it was lost.
We have now addressed the question of whether the

distribution of U12-type RNAs is correlated with the
distribution of U12 introns. If there is such a correlation
we also wanted to examine mechanisms of U12 intron
evolution. Possible events regarding the fate of U12
introns as discussed by Burge et al [5] include U12
intron loss as well as conversion of introns from the
U12 to the U2 category by mutational changes. The
database of orthologous U12 introns, U12DB[9], lists
examples of changes in the latter category.
A number of methods have been developed for the

prediction of U12 type introns [5,10,11]. Most of them
make use of weight matrices based on known exon-
intron boundary regions and branch sites [5,11]. In addi-
tion, AT-AC-type introns with classic consensus fea-
tures may be identified with a simple pattern-based
approach [7].
For this study we have used the methods of Burge

et al [5] as well as that of Sheth et al [11] to predict U2
and U12 introns in a number of different species that
represent a broad phylogenetic range. The results show
that the distribution of U12 introns is consistent with
the distribution of U12 spliceosomal components.

Methods
Sequence data
EST sequences were retrieved using NCBI Entrez. Geno-
mic sequences were downloaded from WUSTL http://
genome.wustl.edu, T. spiralis version 1.0, and Physarum
polycephalum version 3.1), Wormbase (Caenorhabditis

elegans, http://www.wormbase.org/), JGI (http://www.jgi.
doe.gov/, Monosiga brevicollis version 1.0, Phycomyces
blakesleeanus version 1.0, Chlamydomonas reinhardtii v
3.0, Phytophthora sojae version 1.0, Thalassiosira pseu-
donana version 3.0, Phaeodactylum tricornutum assem-
bly 1), from Broad Institute (Rhizopus oryzae assembly
3, Phytophthora infestans version 1.0), from TIGR (Enta-
moeba histolytica 2004 version) and from TraceDB
(Phakopsora pachyrhizi and Acanthamoeba castellanii).

Identification of U12 introns
Introns were identifying from BLAST searches [12]
where EST sequences were used to query a database of
genomic sequences. For instance, in the case of T. spira-
lis, a total of 25,268 EST sequences were retrieved using
NCBI Entrez and used to query a database of T. spiralis
genome sequences. The genome sequences contained
15544 contigs with a total of 115,634,429 nt. Only hits
with sequence identity at least 98% and HSP length at
least 35 nt were considered for further analysis.
Whenever an EST matched to more than one genomic

contig sequence we selected for further analysis the con-
tig with the most extensive match to the EST sequence.
As BLAST is often not able to unambiguously identify
the exact location of the splice site, we considered all
possible sites and the most probable one was identified
by screening with position weight matrices (PWMs) as
described below.
PWMs for 5’, 3’ and branch sites of the GT-AG U12,

GT-AG U2, AT-AC U12 and GC-AG U2 type of introns
from five different species were obtained from the Spli-
cerack database http://katahdin.cshl.edu:9331/SpliceRack/
index.cgi?database=spliceNew. For the 5’ splice sites the
PWM covers 13 positions where the first 3 positions are
the 3’ end of the exon, and for the 3’ splice site the win-
dow has 17 positions when the last 3 positions are in the
exon part. The branch site PWM has a length of 12 and
corresponds to a location falling into the range of (-40,-5)
upstream of the 3’ splice site of the intron. PWMs were
available for C. elegans, D. melanogaster, A. thaliana, H.
sapiens and M. musculus but only the first three of these
were used for the scoring of T. spiralis sequences as
these PWMs are more appropriate to nematodes as well
as to the other species examined here [11].
We used 5’ and 3’ matrices from C. elegans, D. mela-

nogaster and A. thaliana to score all possible intron
locations as inferred by BLAST. Each possible position
of the intron therefore generated three different sets of
5’ and 3’ scores. We finally selected the intron position
where both 5’ and 3’ scores were the greatest or, in
cases where this was not applicable, where the sum of
both scores was the greatest.
For identification of U12 introns using the method of

Sheth et al [11], pseudocounts of 0.001 were added to
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the PWMs available from the Splicerack database http://
katahdin.cshl.edu:9331/SpliceRack/ and log-odd matrices
were then obtained. In the case of the branch site scor-
ing we used only one PWM, as the PWMs of the five
different species were identical. For identifying the most
likely branch site every segment of length 12 within the
range (-40,-5) relative to the 3’ splice site was scored
with U12 GT-AG and AT-AC matrices.
For prediction of U12 introns using the Burge et al

method [5] we used for scoring the frequency matrices
of U2 GT-AG, U12 GT-AG, and U12 AT-AC depen-
dent introns from SpliceRack. As there is no matrix for
branch sites of GT-AG U2 introns we created such a
matrix in the following way. For every U2 intron of T.
spiralis classified with the method from Sheth et al. we
used the branch site which achieved the best score with
a GT-AG U12 PWM. All the 14480 branch sites
obtained in this way were used to construct a frequency
matrix.
The scores for each splice or branch site were then

computed as described in Burge et al. [5]. The 5’ splice

site probability is defined as P X pss
U

x
i

i
i5

0

12

’ ( )

 where the

probability of base j in position i is p j
i , U is either U12

or U2 and X describes the sequence to be scored. To
score the branch site, the values of P Xbps

U12( ) and
P Xbps
U2( ) are calculated for each 13 nt segment in the

range (-40,-5) relative to the 3’ splice site and the maxi-
mum values of both calculations were retained. The
complete 5’ splice site scores and branch site scores are
L P Pss ss

U
ss

U
5 2 5

12
5

2
’ ’ ’log ( / ) and L P Pbps bps

U
bps
U log ( / )2

12 2 ,
respectively. These two values were calculated for every
intron found. The corresponding sample mean and stan-
dard deviation were determined and these scores were
normalized to z scores S5’ss and Sbps by subtracting the
sample mean and dividing by the standard deviation.
After scoring all introns we tried to separate the puta-

tive U12 dependent introns from the U2 dependent
ones with respect to their normalized scores. The lower
thresholds for U12 type introns were empirically defined
with respect to the minimum values of a reference set
of minor introns which were used by Burge et al [5].
The test criterion we used was the same as in Zhu and
Brendel [10], and as discussed by these authors it is
likely to be different from the test statistic
t S Sss bps  5

2 2 20’ originally used by Burge et al.
We also analyzed all predicted introns with respect to

previously known consensus features of U12 introns as
referred to by Russell et al [7]. In addition, we took into
consideration that for effective splicing at the 5’ splice
site we require the sequence RTATCCTT where one of
the Cs in positions +5 and +6 may be replaced by a T
(Mikko Frilander, Helsinki, personal communication).

Analysis of relationship between introns of C. elegans and
T. spiralis
For identifying introns in C. elegans that are homolo-
gous to the U12 introns in T. spiralis the C. elegans
genome sequence (sequence number 198, release of Jan-
uary 13, 2009) was retrieved from Wormbase ftp://ftp.
wormbase.org/pub/wormbase/genomes/c_elegans/
sequences/dna/.
A C. elegans protein database (number 198, release of

January 12, 2009) with 23962 proteins was also down-
loaded from Wormbase ftp://ftp.wormbase.org/pub/
wormbase/genomes/c_elegans/sequences/protein/.
BLASTX was first used to identify C. elegans proteins

corresponding to the T. spiralis U12 intron genes.
Genomic positions of the corresponding gene in C. ele-
gans were then inferred using TBLASTN.

Results and Discussion
We have previously examined the phylogenetic distri-
bution of U2 and U12 spliceosomal components [8].
The results showed that U12 components were lacking
in a number of phyla such as Nematoda, Choanoflagel-
lida (Monosiga), Fungi, Mycetozoa, Entamoeba, red
and green algae and Heterokonta. We have now exam-
ined the occurrence of U12 type introns in these
groups.

Identification of introns
Introns were identified by matching of ESTs to genomic
sequences using BLAST [12]. The size distribution of
introns for selected species is shown in additional file 1.
Mode values vary between 51 and 95 nt for all species
examined here. An exception is C. reinhardtii, which
has a distribution of introns lengths with a mode value
which is approximately 195 nt, consistent with previous
observations [13].
In order to discriminate between U2 and U12 introns

we used methods described by Burge et al [5], Zhu and
Brendel [10] and Sheth et al [11] as described under
Materials and Methods. In the Burge et al method
weight matrices were used to score 5’ splice sites and
branch sites. Normalized z scores for these sites were
then obtained and used to produce plots like that
shown in Fig. 1 for P. sojae. In order to discriminate
between U12 and U2 type introns we used a cutoff
based on a reference set of U12 introns as used in
Burge et al [5]. Thus, for an intron to qualify as a U12
type both 5’ splice site and branch site scores need to
be at least the minimum values present in the reference
U12 set of sequences [10]. The plot in Fig. 1 shows that
in the case of P. sojae three different introns, one of the
type GT-AG and two of the type AT-AC, fulfilled these
criteria.
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U12 introns in Trichinella spiralis
We examined in more detail the prediction of U12-type
introns in the nematode T. spiralis. Molecular phyloge-
netic analysis places Trichinella close to the root in the
nematode tree, i.e. more deeply branching than species
such as C. elegans of the Rhabditida branch [14-16]
which is believed to be lacking U12 introns.
In T. spiralis we identified a total of 15402 introns.

Out of these, 14866 were of type GT-AG, 218 were of
type GC-AG and 8 were AT-AC type introns. In addi-
tion, 315 introns were identified with non-canonical
terminal dinucleotides.
Using the method of Sheth et al [11], U12 GT-AG

type introns (13) and U12 AT-AC introns (3) were iden-
tified (Table 1). Minor introns are thought to have the 5’
splice site sequence RTATCCTT where one of the Cs in
positions +5 and +6 may be converted into a T (Mikko
Frilander, Helsinki, personal communication). There are

5 introns that do not conform to this rule, leaving 11
introns that are stronger predictions.
In order to study the fate of T. spiralis U12 introns we

examined the homologous genes in C. elegans where
U12 introns are believed to be absent. Of the 16 EST
sequences that we identified using the Sheth et al
method as being associated with U12 type introns, 3
had no matches to entries in protein databases and
could not be associated with a C. elegans gene. Another
6 ESTs matched only partially to the homologous C. ele-
gans gene and for this reason we were not able to exam-
ine the fate of the homologous T. spiralis intron. For the
remaining ESTs we were able to compare the T. spiralis
U12 intron to the corresponding C. elegans intron. Four
of these had identical splice sites in the two species as
shown in Table 1, and in all these cases the T. spiralis
introns were changed from U12 to U2 type in C.
elegans.

Figure 1 Plot of splice site scores of introns identified in Phytophthora sojae. The scores of 5’ splice sites and branch sites are compared to
those of a reference set of U12 introns as used by Burge et al [5] (within blue rectangle). Introns in P. sojae predicted to be of the U12 type
have both 5’ splice site and branch site scores equal to or larger than the minimum values of the reference set. Arrows indicate one GT-AG and
two AT-AC introns.
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For two of T. spiralis AT-AC-type U12 introns the
intron was completely lost in C. elegans (Table 1). It is
interesting to note that in the case of the third U12
AT-AC intron, a shift from U12 to U2 is accomplished
by a shift of splice site (Table 1, EST EX501652.1),
such that the intron is moved a distance corresponding
to three amino acids in the coding sequence. Therefore,
we here observe yet another mechanism whereby a U12
intron may be converted to a U2 type intron.
Finally, we also used the method of Burge et al [5] to

predict U12 type introns in T. spiralis. A smaller num-
ber of U12 type introns were found using this method;
3 AT-AC and one GT-AG U12 intron (Table 1). Also
for other species examined, the Sheth et al method
generated more U12 candidates as compared to the
Burge et al method.

U12 introns as predicted by requiring effective branch
sites as well as 5’ splice sites
In addition to Trichinella spiralis, we examined the
introns in the choanoflagellate Monosiga brevicollis, in
the Zygomycota Rhizopus oryzae and Phycomyces bla-
kesleeanus, in the Basidiomycota Phakopsora pachyr-
hizi, in Acanthamoeba castellanii, Entamoeba
histolytica, Physarum polycephalum, in the green alga
Chlamydomonas reinhardtii and in the heterokonts
Phytophthora infestans, Phytophthora sojae, Thalassio-
sira pseudonana and Phaeodactylum tricornutum
(Table 2 and Fig. 2). Introns were predicted using the
same methods as described above for T. spiralis
introns.
Previously, U12 introns have been reported in some

of these species. Thus, Russell et al [17] reported three
AT-AC and two GT-AG type introns in A. castellanii,
one AT-AC intron in R. oryzae and one AT-AC intron
in the peptidyl-prolyl isomerase genes of P.sojae and P.
ramorum. It should be noted that Russell et al used a
pattern based approach to identify U12 type introns.
This method is not expected to be as accurate as the
prediction carried out here which is based on position
weight matrices. Two U12 introns were identified by
Glöckner et al [18] in P. polycephalum, although it is
not clear what method in that case was used to classify
the introns.
In A. castellanii we identified three U12 introns

(Table 2). One of them is the AT-AC U12 intron in
the gene COMM7 previously found by Russell et al
[17]. We also identified a GT-AG intron present in the
gene for a mitochondrial carnitine acylcarnitine carrier
protein. In addition, there is evidence of a GC-AG U12
intron, present in a gene encoding a lipid transfer
protein.
A multiple alignment of all available A. castellanii

U12 introns, i.e. those identified previously [17],Ta
b
le

1:
U
12

ty
p
e
of

in
tr
on

s
id
en

ti
fi
ed

in
T.

sp
ir
al
is
.
(C
on

tin
ue
d)

EX
50
05
43
.1

T
C
G
|
G
T
A
T
T
C
T
T
T
G
.
.
.

T
T
A
T
T
A
T
T
A
A
T
T
T
C
T
G
T
T
T
T
T
T
T
T
G
G
T
T
T
T
C
T
A
A
A
C
A
G
|
A
G
A

8
6

-
+

N
on

e

ES
56
15
35
.1

G
G
G
|
G
T
A
T
T
A
T
T
T
T
.
.
.

T
T
T
T
C
T
G
T
G
A
T
T
T
A
A
T
T
G
C
A
T
T
T
T
A
A
T
G
T
T
C
T
A
T
C
T
A
G
|
T
G
A

7
1

-
-

N
on

e

BQ
73
89
18
.1

G
A
A
|
G
T
A
T
C
T
T
T
T
A
.
.
.

T
G
A
A
T
T
T
T
G
C
T
A
A
A
T
T
G
T
A
C
T
T
A
A
C
A
G
G
T
T
G
T
T
T
T
T
A
G
|
A
A
A

1
5
3

-
+

N
on

e

Ta
bl
e
sh
ow

s
al
l
in
tr
on

s
id
en

tif
ie
d
by

th
e
Sh

et
h
et

al
m
et
ho

d
[1
1]
.R

eg
io
ns

w
ith

be
st

m
at
ch

to
br
an

ch
si
te

PW
M

is
un

de
rli
ne

d
.F

or
on

e
of

th
e
A
TA

C
in
tr
on

s
(E
ST

EX
50

16
52

.1
)
is
sh
ow

n
th
e
sh
ift

in
5’

sp
lic
e
si
te

ob
se
rv
ed

be
tw

ee
n
T.

sp
ira

lis
an

d
C.

el
eg
an

s.
Ru

le
of

5’
sp
lic
e
si
te

(R
)
is
th
at

5’
sp
lic
e
si
te

se
qu

en
ce

is
RT

A
TC

C
TT

w
he

re
on

e
of

th
e
C
s
in

po
si
tio

ns
+
5
an

d
+
6
m
ay

be
co
nv

er
te
d
in
to

a
T.

Bu
rg
e
et

al
m
et
ho

d
(B
)
is

de
sc
rib

ed
in

[5
].
N
A
=
no

t
av
ai
la
bl
e.

Fo
r
se
qu

en
ce
s
of

U
2
an

d
U
12

in
tr
on

s
lis
te
d
in

ta
bl
e,

se
e
ad

di
tio

n
al

fil
e
2.

Bartschat and Samuelsson BMC Genomics 2010, 11:106
http://www.biomedcentral.com/1471-2164/11/106

Page 6 of 10



together with the two additional introns identified here,
shows that there is a C-rich region in all these
sequences downstream of the consensus 5’ splice site
sequence (Fig. 3). We do not know if this sequence con-
servation is functionally significant, but it seems specific
to A. castellanii, as it is not found in other species with
U12 introns such as Physarum.
In P. sojae we identified a previously reported AT-AC

intron which is present in a gene encoding peptidyl-pro-
lyl isomerase [17]. In addition, one other AT-AC as well
as a GT-AG U12 intron in the ribosomal protein L31
gene is present in this species. In P. infestans we identi-
fied the introns homologous to the peptidyl-prolyl iso-
merase and L31 introns in P. sojae, as well as an
additional AT-AC intron.
In R. oryzae we found the same AT-AC intron previously

reported [17], as well as two additional GT-AG introns.
A very large number of U12 introns were predicted in

P. polycephalum (Table 2). At the same time, this col-
lection does not include any of the introns reported by
Glockner et al [18]. Perhaps U12 introns are particularly
predominant in this species. As an alternative, our pre-
diction method may give rise to an unusually large

number of false positives in P. polycephalum. On the
other hand, many of the U12 introns may be regarded
as strong predictions as they also conform to the 5’ con-
sensus rule. It is therefore highly likely that U12 introns
exist in this species.
In summary, the phylogenetic distribution of U12

introns is entirely consistent with the distribution of
U12 snRNAs [8]. This is illustrated in the schematic
phylogenetic tree in Fig. 2. There are at least nine differ-
ent branches that are associated with a loss of U12 spli-
cing. When more genomic and EST sequences become
available even more instances of such loss may be
observed.
When comparing the distribution of U12 snRNAs and

U12 introns one potential discrepancy is P. pachyrhizi
where U12 introns seem to be missing but we have identi-
fied a U4atac snRNA. However, no other U12-type
snRNA was found, and it would therefore seem likely that
this species is missing U12-dependent splicing. The
U4atac snRNA observed could be a non-functional rem-
nant of the U12 splicing machinery of an ancestral species.
There is also a weak candidate for a U12 AT-AG intron

in T. pseudonana (data not shown) but as this is the only

Table 2 Summary of U12 introns identified in a range of eukaryotic species.

Number
of ESTs
analyzed

U12
spliceosomal

RNAs

U12 AT-AC
introns
(5’ rule)

U12 GT-AG
introns
(5’ rule)

U2 GC-AG
introns

U2 GT-AG
introns

Other
AT-AC
introns

B S B S B S B S B S

Trichinella spiralis 25,268 + 3 (3) 3 (3) 1 (1) 13 (8) 217 217 14697 14685 5 5

Monosiga
brevicollis

29,495 - 0 0 0 1 (0) 134 134 13327 13326 10 10

Rhizopus oryzae 13,313 + 1 (1) 1 (1) 2 (2) 3 (2) 71 71 5520 5519 3 3

Phycomyces
blakesleeanus

47,847 + 9 (8) 8 (8) 8 (8) 12 (10) 446 446 13504 13500 31 32

Phakopsora
pachyrhizi

34,394 -? 0 0 0 1 (0) 10 10 561 560 2 2

Acanthamoeba
castellanii

13,784 + 1 (0) 0 1 (1) 3 (0) 21 21 1232 1230 2 2

Entamoeba
histolytica

14,388 - 0 0 0 0 0 0 160 160 4 4

Physarum
polycephalum

25,393 + 83 (14) 27 (15) 88 (57) 218 (109) 34 34 6452 6326 251 307

Chlamydomonas
reinhardtii

202,044 - 0 0 0 0 532 532 25053 25053 7 7

Phytophthora
infestans

94,091 + 2 (2) 2 (2) 1 (1) 1 (1) 66 66 6601 6601 9 9

Phytophthora
sojae

28,467 + 2 (2) 2 (2) 1 (1) 1 (1) 34 34 3351 3351 5 5

Thalassiosira
pseudonana

61,913 - 0 0 0 0 37 37 5140 5140 13 13

Phaeodactylum
tricornutum

133,871 - 0 0 0 0 23 23 3815 3815 7 7

Table shows prediction according to methods of Burge et al (B) and Sheth et al (S) [11]. The “5’ rule” is that 5’ splice site sequence is RTATCCTT where one of
the Cs in positions +5 and +6 may be converted into a T. Occurrence of U12 snRNAs is from Davila-Lopez et al [8]. For sequences of U12 introns as predicted by
the Burge et al method, see additional file 2.
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U12 intron predicted in this species and because we have
failed to identify any U12 snRNAs in this species the evi-
dence of U12 splicing is so far very poor.

U12 introns in ribosomal protein genes
Although U12 introns are very rare they occur in ribo-
somal protein genes in five of the species examined
here, R. oryzae (S13), P. blakesleeanus (S13), P. sojae
(L31), P. infestans (L13) and P. polycephalum (L4).
In the Zygomycota R. oryzae there are at least three

non-identical versions of the S13 gene. These genes
encode nearly identical proteins (see additional file 2).
One of the genes has no intron at all and the other two
have U12 GT-AG introns towards the 3’ end of the cod-
ing sequence. In P. blakesleeanus, another Zygomycota,
we have identified one S13 gene. This gene has a U12
intron in the same position as for the R. oryzae gene.
More S13 genes might be found in this species once
genome sequencing is complete.
By comparison the S13 gene in the Basidiomycota P.

pachyrizi has two different introns and neither of them
are of the U12 type and in the same position as the R.
oryzae S13 intron.
P. sojae, P. infestans and P. ramorum of the Oomycetes

group all have a L31 gene with a U12 GT-AG intron
positioned towards the 5’ end of the coding sequence. By
comparison the L31 genes in the diatoms T. pseudonana
and P. tricornutum seem to be missing introns.
The presence of U12 introns in ribosomal protein

genes may be of significance from a regulatory point of
view. Ribosomal proteins have previously been reported
to be involved in U12 splicing. Thus, there is a U12
intron in the gene for ribosomal protein L1 in X. laevis
[19-23]. This intron has a low efficiency in splicing,

Figure 2 Schematic phylogenetic tree showing instances where
U12 introns were lost. Presence or absence of U12 snRNAs and
U12 introns are shown as well as paths where U12 splicing seem to
have been lost (dashed lines). Figure is based on previous
information regarding the phylogenetic distribution of U12 snRNAs
[7,8] as well as results regarding U12 intron distribution described
here.

Figure 3 Conserved sequence elements of U12 introns in A. castellanii. Position 6 in alignment corresponds to the 5’ terminal position of
the intron. The majority of these introns were identified by Russell et al [7], whereas the introns of lipid transfer protein and carnitine/
acylcarnitine carrier protein was identified in this work.
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indicating that it might be involved in regulation of L1
expression. There is evidence that splicing of U12
introns is comparatively ineffective and is a rate-limiting
step in gene expression [24].
The presence of U12 introns in ribosomal protein

genes may also be relevant to the observation that in
the yeast S. cerevisiae, where introns are rare, ribosomal
protein genes is a predominating class of genes contain-
ing introns [25,26]. The splicing of introns in S. cerevi-
siae ribosomal proteins is presumably of great
regulatory significance [27]. For instance, there is an
autoregulatory mechanism of L30 where the protein
inhibits the splicing of its own pre-mRNA [28]. There is
also evidence that yeast ribosomal protein paralogues
are different in terms of splicing regulation [29].

Conclusions
The presence of U2 and U12 introns have been exam-
ined in a number species that we previously screened
for U2 and U12 spliceosomal RNAs. In most species
where U12 introns are found, such introns are very rare.
The phylogenetic distribution of U12 introns is entirely
consistent with the distribution of U12 spliceosomal
RNAs. The currently available information on U12
introns and U12 spliceosomal components presents
strong evidence that U12 splicing is missing in a num-
ber of phyla and species; in the Caenorhabditis branch,
in Monosiga, in Microsporidia, in Basidiomycota, Asco-
mycota and Pezizomycotina, in Dictyostelium and Enta-
moeba, in the red and green algae and in the diatoms
T. pseudonana and P. tricornatum. This would corre-
spond to at least nine different occasions during evolu-
tion where U12 splicing seem to have been lost (Fig. 2).
We have examined in more detail the occurrence of

introns in the nematodes T. spiralis and C. elegans. As
these two species are relatively closely related by evolu-
tion they offer a unique possibility to monitor the pro-
cess in which U12 splicing is lost. By comparing T.
spiralis U12 introns to their homologues in C. elegans
we noted that U12 introns were eliminated using differ-
ent mechanisms. In some cases U12 introns were lost
completely. Other U12 introns were subject to extensive
sequence changes including changes in the 5’, 3’, and
branch site regions of the introns. In one case a U12 to
U2 conversion was achieved by shifting the splice posi-
tion only a short distance.

Additional file 1: Intron length statistics. Upper panel: Distribution of
lengths in the size range 1-300 nt for all introns (U2 and U12) of T.
spiralis, E. histolytica, A. castellanii, P. tricornutum, M. brevicollis, and C.
reinhardtii. Lower panel: Mean intron lengths for all species with U12
introns considered in this work.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2164-11-
106-S1.PDF ]

Additional file 2: Sequences of introns. Sequences of introns referred
to in Tables 1 and 2. Sequences of R. oryzae ribosomal protein S13 genes
and introns.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2164-11-
106-S2.PDF ]
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