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Abstract

HSF1.

Background: The nuclear receptor peroxisome proliferator-activated receptor alpha (PPARa) regulates responses to
chemical or physical stress in part by altering expression of genes involved in proteome maintenance. Many of
these genes are also transcriptionally regulated by heat shock (HS) through activation by HS factor-1 (HSF1). We
hypothesized that there are interactions on a genetic level between PPARa. and the HS response mediated by

Results: Wild-type and PPARa-null mice were exposed to HS, the PPARa agonist WY-14,643 (WY), or both; gene
and protein expression was examined in the livers of the mice 4 or 24 hrs after HS. Gene expression profiling
identified a number of Hsp family members that were altered similarly in both mouse strains. However, most of the
targets of HS did not overlap between strains. A subset of genes was shown by microarray and RT-PCR to be
regulated by HS in a PPARa-dependent manner. HS also down-regulated a large set of mitochondrial genes
specifically in PPARa-null mice that are known targets of PPARy co-activator-1 (PGC-1) family members.
Pretreatment of PPARa-null mice with WY increased expression of PGC-1 and target genes and prevented the
down-regulation of the mitochondrial genes by HS. A comparison of HS genes regulated in our dataset with those
identified in wild-type and HSF1-null mouse embryonic fibroblasts indicated that although many HS genes are
regulated independently of both PPARa. and HSF1, a number require both factors for HS responsiveness.
Conclusions: These findings demonstrate that the PPARa genotype has a dramatic effect on the transcriptional

targets of HS and support an expanded role for PPARa in the regulation of proteome maintenance genes after
exposure to diverse forms of environmental stress including HS.

Background

Physiological and chemical stresses produce disease
states in which proteins are damaged or misfolded in
part through increases in oxidative stress. Many endo-
genous pathways are engaged in restoring cellular home-
ostasis, including stabilization of unfolded proteins to
prevent aggregation and removing damaged or excess
proteins through proteolysis. Stabilization of unfolded
proteins is performed by molecular chaperones that
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assist in the folding of nascent polypeptides. Many
genes encoding for chaperones exhibit increased expres-
sion after exposure to a wide variety of stimuli including
chemical exposure or increased temperatures and are
thus called heat shock (HS) protein (Hsp) genes [1-3].
These proteins play key roles in a number of human
diseases [4]. Expression of some Hsp is essential for cel-
lular survival under physical or chemical exposure con-
ditions that increase oxidative stress [5,6]. Regulation of
the Hsp genes by heat or chemical-induced oxidative
stress is controlled in part by HS factor 1 (HSF1), acti-
vated under conditions in which the level of unfolded
proteins increase [1-3]. Microarray studies of mouse
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embryonic fibroblasts from wild-type and HSF1-null
mice or a human cervical carcinoma cell line have
shown that HSF1 controls only a subset of the genes
altered by HS [7,8] indicating that other inducible path-
ways play roles in regulating the Hsp genes.

The nuclear receptor peroxisome proliferator-activated
receptor a (PPARa) is one of three PPAR subtypes that
regulate lipid and glucose homeostasis, tissue growth
and inflammation after exposure to a large class of
structurally heterogeneous industrial and pharmaceutical
chemicals called peroxisome proliferator chemicals
(PPC) [9,10]. The PPARa subtype plays a key role in
mediating the effects of hypolipidemic and xenobiotic
PPC in liver, kidney, heart and skin. Exposure to PPC
leads to regulation of a large number of genes including
up-regulation of those involved in lipid homeostasis and
down-regulation of inflammatory genes that are gener-
ally abolished in PPC-exposed PPARo.-null mice [11-13].

There is compelling evidence that PPARo protects tis-
sues from chemical-induced oxidative stress (reviewed
in [14]). Prior exposure of rats and mice to PPC protects
the liver from damage by cytotoxic agents that induce
oxidative stress [15]. The hypolipidemic drug and PPC,
clofibrate, protects the liver from damage by the cyto-
toxicant acetaminophen in wild-type but not PPARa-
null mice [16]. Compared to wild-type mice, untreated
PPARa-null mice or primary hepatocytes isolated from
PPARa-null mice were more sensitive to carbon tetra-
chloride-, paraquat- or cadmium-induced toxicity [12].
The beneficial effects of caloric restriction in protecting
the liver from cytotoxicant-induced liver injury were
shown to depend on PPARa [17]. Additional studies
have shown that PPARa plays a positive role in recover-
ing from partial hepatectomy [18]. In the kidney,
PPARo-null mice were more sensitive to damage after
ischemia-reperfusion injury, and prior exposure of wild-
type mice to PPC reduces the injury [19,20]. Our pre-
vious microarray studies identified an overlap in the
genes regulated by the PPARa agonist WY-14,643 (WY)
and those regulated by HS through HSF1 [12]. The pro-
teome maintenance genes included those involved in
protein folding (e.g., Hsp genes) as well as ubiquitin-
dependent and -independent proteolytic processing
through the proteosome (e.g., Psm genes). Altered regu-
lation of these genes by PPC could help to explain why
PPC exposure through PPARa helps to protect tissues
from environmental stressors.

In the present study, we hypothesized that there were
interactions on a genetic level between PPARa and the
HS response mediated by HSF1. We dissected the con-
tribution of PPARa by examining gene expression
changes in the livers of wild-type and PPARa-null mice
after HS. We found that a number of genes regulated by
HS were dependent on PPARa for regulation.
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Furthermore, we showed that PPARo-null mice were
more sensitive to the transcriptional effects of HS and
exhibited a remarkably different transcriptional response
compared to wild-type mice. Our findings suggest
PPARa is a major regulator of stress responses in the
liver.

Methods

Animals, exposure to heat and WY

All animal studies were carried out at CIIT Centers for
Health Research, Research Triangle Park, NC. Studies
utilized wild-type and PPARoa-null male mice 9-12
weeks of age on a mixed SV129/C57BL/6 background.
These mice have been described previously [21]. The
mice were originally obtained from Dr. Frank Gonzalez,
NCI, National Institutes of Health to establish a breed-
ing colony at CIIT. Control and treated mice were pro-
vided with NIH-07 rodent chow (Zeigler Brothers,
Gardeners, PA) and deionized, filtered water ad libitum.
Lighting was on a 12-hr light/dark cycle. Mice (n = 5-6
per group) were fed a control diet or a diet containing
the PPARo agonist WY-14,643 (ChemSyn Science,
Lenexa, KS) (WY) in the diet (500 ppm) for 1 week fol-
lowed by a 40-min heat stress at 42°C or held at room
temperature in wire rack cages. Mice were sacrificed 4
hrs, 24 hrs and 3 days after the heat stress.

Heat in the exposure chamber was generated by a
combination of the building reheat system, an in-line air
heater and two small surface heaters. The in-line heater
(Riley Equipment Company, Inc., Houston, TX) was set
to approximately 300°F. The heated air traveled through
a 2 foot by 2 inch inlet tube constructed of PVC, stain-
less steel and Teflon into the bottom of the H1000 inha-
lation chamber. A small diverter was placed in the
bottom of the H1000 inhalation chamber to prevent a
chimney effect in the chamber and increasing the effi-
ciency of the heat distribution. The stainless steel animal
cage unit was placed in the center of the H1000 inhala-
tion chamber and a feces/urine catch pan was placed in
the chamber. A small (1500 watt) heater was placed on
either side of the H1000 inhalation chamber approxi-
mately 4 inches from the surface. These heaters heated
the stainless steel sides and heated the surface enough
to allow the internal temperature of the chamber to
reach approximately 42°C. The temperature was moni-
tored in three locations of the H1000 inhalation cham-
ber: front door above the animal cage unit, back door
below the animal cage unit and in the center using tem-
perature probes (Rotronic Hygrometer Series 1200,
Rotronic Instrument Corp., Huntington, NY).

Portions of the livers were rapidly snap-frozen in
liquid nitrogen and stored at -70°C until analysis. Where
appropriate, slices of liver were fixed in 10% neutral buf-
fered formalin for 48 h, transferred to 70% ethanol, and
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embedded in paraffin; 5-pm sections were cut and
mounted on slides and stained with H&E. H&E-stained
liver sections were examined by light microscopy. Clini-
cal chemistry markers in the serum from animals were
measured by Antech Diagnostics, Charlotte, NC. All ani-
mal studies were conducted under federal guidelines for
the use and care of laboratory animals and were
approved by Institutional Animal Care and Use
Committees.

RNA Isolation and Analysis of Gene Expression

Liver RNA was isolated using a modified guanidium iso-
thiocyanate method (TRIzol’; Invitrogen) and was
further purified using silica membrane spin columns
(RNeasy’; Qiagen, Valencia, CA). RNA integrity was
assessed by the RNA 6000 LabChip® kit using a 2100
Bioanalyzer (Agilent Technologies, Palo Alto, CA). Glo-
bal gene expression changes were examined using the
Affymetrix platform. Gene expression changes were
assessed in the livers from three mice in each of the 8
treatment groups in wild-type and PPARa-null mice
using a total of 24 chips. Gene expression in each ani-
mal was assayed on a separate chip. Biotin-labeled
cRNA was produced from 15 ug total RNA using an
Affymetrix “one-way” labeling kit. Total cRNA was
quantified using a Nano-Drop ND-1000 spectrophot-
ometer (NanoDrop Technologies, Wilmington, DE) and
evaluated for quality after fragmentation on a 2100 Bioa-
nalyzer. Following overnight hybridization at 45°C to
Affymetrix U74Av2 GeneChips in an Affymetrix Model
640 GeneChip hybridization oven, the arrays were
washed and stained using an Affymetrix 450 fluidics sta-
tion as recommended by the manufacturer and scanned
on an Affymetrix Model 3000 scanner. After scanning,
raw data (Affymetrix .cel files) were obtained using Affy-
metrix GeneChip Operating Software (version 1.4). All
of the Affymetrix (Santa Clara, CA) .cel files were ana-
lyzed by Bioconductor SimpleAffy to assess data quality
[22].

Data (.cel files) was analyzed and statistically filtered
using Rosetta Resolver® version 7.1 software (Rosetta
Inpharmatics, Kirkland, WA). Statistically significant
genes were identified using one-way ANOVA with a
false discovery rate (Benjamini-Hochberg test) of < 0.05
followed by a post-hoc test (Scheffe) for significance.
Significant transcripts were evaluated for relevance to
canonical pathways and biological functions using Inge-
nuity Pathways Analysis (Ingenuity Systems, http://www.
ingenuity.com). Heat maps were generated using Eisen
Lab Cluster and Treeview software http://rana.lbl.gov/
EisenSoftware htm.

Gene Set Enrichment Analysis (GSEA; http://www.
broad.mit.edu/gsea/) was used to evaluate whether a
pre-defined set of genes showed statistically significant,
concordant differences between two biological states
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[23]. GSEA generates a list of genes from submitted .cel
files and tests whether, within that queried list of genes,
there is a statistically significant enrichment or not of
pre-defined groups of genes, or “gene sets”. Gene sets
examined through GSEA include canonical, metabolic
and signaling pathways as well as groups of genes pre-
viously identified and validated to be up- or down-regu-
lated when cells are given a particular stimulus. This
type of analysis can sometimes detect more subtle
changes present in the data. Expression profiles were
submitted to GSEA using default settings and searched
for enriched gene sets. Gene set C2 (curated gene sets)
includes genes from online pathway databases, publica-
tions in PubMed, and knowledge from domain experts.
Gene set C3 (motif gene sets) contains genes that share
a transcription factor (TF) binding site defined in
TRANSFAC?®, a database for transcription factors and
their genomic binding sites. Additional .cel files were
analyzed using GSEA including those from the livers of
wild-type and PPARa-null mice exposed to WY (400 uL
of a 10 mg/mL solution/day) for 6 hr or 5 days [24].

A description of the HS and WY exposure microarray
experiment is available through Gene Expression Omni-
bus (GEO) at the National Center for Biotechnology
Information http://www.ncbi.nlm.nih.gov/geo/, as acces-
sion number GSE14,869.

We categorized the genes regulated by HS in wild-
type or PPARa-null mice based on whether they were
altered by HS in mouse embryonic fibroblasts (MEF)
from wild-type or HSF1-null mice [8]. From this dataset,
genes which fell into three groups were identified
including 1) HSF1-dependent regulation by HS, 2)
HSF1-independent regulation by HS and 3) altered reg-
ulation between wild-type and HSF1-null MEFs in the
absence of HS. Genes were identified using procedures
outlined in [25].

Real Time RT-PCR Analysis

The levels of gene expression were quantified using real
time RT-PCR analysis. Real-time reverse transcriptase-
PCR was performed as follows. After DNase treatment,
total RNA was quantified (Ribogreen®, Molecular Probes,
Inc., Eugene, OR) and diluted with water. Fifty ng of
RNA and PCR reagents were aliquoted into 96-well
plates using an ABI Prism™ 6700 Automated Nucleic
Acid Workstation (Applied Biosystems, Foster City, CA)
and subjected to real-time quantitative PCR (TagMan®,
Applied Biosystems) using gene-specific primers (Addi-
tional File 1) and fluorescently labeled probes (Molecu-
lar Probes) designed by the Primer Express® software
(Applied Biosystems). Amplification curves were gener-
ated using the ABI Prism™ 7900 HT Sequence Detection
System (Applied Biosystems). Expression relative to
vehicle control animals was determined after normaliz-
ing to the ribosomal 18S gene. There were four animals
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per treatment group, and each sample was analyzed in
duplicate. Variability is expressed as standard error of
the mean. Means and S.E. (# = 4) for RT-PCR data
were calculated by Student’s ¢ test. The level of signifi-
cance was set at p < 0.05.

Western Blot Analysis

Liver lysates were prepared in 250 mM sucrose, 10 mM
Tris-HCI, pH 7.4, and 1 mM EDTA with protease inhi-
bitors (0.2 mM phenylmethylsulphonyl fluoride, 0.1%
aprotinin, 1 pg/ml pepstatin, 1 pg/ml leupeptin) as pre-
viously described [26]. Fifty ug hepatocyte whole cell
lysate was subjected to 12% sodium dodecyl sulfate -
polyacrylamide gel electrophoresis followed by transfer
to nitrocellulose membranes. Immunoblots were devel-
oped using primary antibodies against acyl-CoA oxidase
(ACO) (a gift from S. Alexson, Huddinge University
Hospital, Huddinge, Sweden), HS proteins (Santa Cruz
Biotechnology, Santa Cruz, CA; StressGen, Victoria, B.
C., Canada) or CYP4A (GenTest, Waltham, MA) and
appropriate secondary antibodies conjugated with horse-
radish peroxidase (Santa Cruz Biotechnology) in the
presence of chemiluminescent substrate ECL (Amer-
sham, Piscataway, NJ). Blots were quantitated using Gel-
Pro (MediaCybernetics, Silver Spring, MD). Most anti-
bodies recognized only one major band of the expected
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size. Antibodies to TCP1n routinely gave 2 bands of
~60 kDa and ~40 kDa, both of which were elevated
after HS, WY or both treatments. In this study we
report the levels of ACO-B protein, the 52 kDa pro-
cessed form of the full-length ACO protein (ACO-A)
[27].

Results and Discussion

Identification of PPARa-dependent heat shock-regulated
genes

We previously identified chaperone genes regulated by
WY through PPARa that are also targets of HS through
HSF1 [12]. We set out to characterize the HS response
in the mouse liver and to determine if there were inter-
actions between HS and PPARa. Wild-type and
PPARa-null mice were exposed to either a WY diet or a
control diet for 7 days and then groups of mice were
challenged with HS (42°C) for 40 minutes or kept at
room temperature. Transcript profiles were determined
in the livers of mice sacrificed 4 hours after HS, as this
time was shown to maximally induce the HS responsive
genes [28]. Principle component analysis (PCA) of the
24 chips in the study revealed the greatest differences
were caused by WY or WY+HS in wild-type mice or by
HS in PPARa-null mice (Figure 1A). More subtle
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Figure 1 Altered gene expression by heat shock and WY in wild-type and PPARa-null mice. Mice were fed a control diet or a diet
containing WY for 7 days. Groups of mice were subjected to a 42°C HS for 40 min or kept at room temperature. Mice were sacrificed 4 hrs after
HS and hepatic mRNA levels were assessed in the livers. A. Principle component analysis. B. Heat map of altered gene expression. Genes were
subjected to one-dimensional hierarchical clustering. Red, up-regulation; green, down-regulation; black, no change. The intensity scale indicates
fold-change due to chemical exposure relative to controls. Abbreviations: H, heat shock; W, WY-14,643.
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differences were caused by HS in wild-type mice and by
WY+HS in PPARa-null mice. Consistent with the PCA
results, HS, WY alone or WY+HS treatments in wild-
type mice altered 107, 1714 or 1418 genes, respectively
(Figure 1B). Exposure to HS in wild-type mice altered a
number of well-characterized targets of HSF1 (described
below). Almost half of the HS regulated genes were also
regulated by WY in the same direction. (The complete
list of genes is found in Additional File 2.)

The gene expression pattern after treatment was dra-
matically different in PPARo-null mice. HS, WY alone
or WY+HS treatments in PPARa-null mice altered 774,
6, or 68 genes, respectively (Figure 1B).

We directly compared the genes that were regulated
by HS in the two strains (Figure 2A). A small number
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of genes exhibited concordant expression changes in
both strains including Hsp90aal, Hspel, and Hspdl.
Other genes exhibited up-regulation in wild-type mice
but down-regulation in PPARa-null mice. There were
76 genes that exhibited altered expression only in wild-
type mice, whereas 743 genes were altered only in
PPARo-null mice. For the most part, the HS genes
unique to each strain lacked inclusion of Hsp family
members.

The HS genes were categorized based on their expres-
sion behavior in the two strains after HS and WY expo-
sure (Figure 2B). Genes in class I and II were altered by
either HS alone (class I) or by HS and WY (class II) in
a PPARa-dependent manner. The class I genes included
FK506 binding protein 4 (Fkbp4) and GrpE-like 2,
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Figure 2 Heat shock alters the expression of different sets of genes in wild-type and PPARc-null mice. A. Direct comparison of HS genes
in wild-type and PPARa.-null mice. The relatively small number of genes which exhibited altered expression in both strains are shown in detail. B.
Different classes of HS genes. The genes altered by HS were divided into six classes (I - VI) based on expression in wild-type and PPARa.-null
mice and comparison with WY. The genes whose expression was confirmed by TagMan are underlined. Red, up-regulation; green, down-
regulation; black, no change. The intensity scales indicates fold-change due to exposure relative to controls. C. Altered expression of genes
assessed by TagMan. There were four animals per treatment group, and each sample was analyzed in duplicate. Variability is expressed as
standard error of the mean. Means and S.E. (n = 4) for RT-PCR data were calculated by Student’s t test. The level of significance was set at p <
0.05.
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mitochondrial gene (Grpel2). Also included was ubiqui-
tin carboxy-terminal hydrolase L1 (Uchll) identified
using less stringent microarray analysis cut-offs but con-
firmed by RT-PCR (Figure 2C). The class II genes
included Dnajal (Hsp40) and a tubulin family member
(Tubb2a). RT-PCR revealed concordance with array
expression for Tubb2a; Dnajal exhibited weak induc-
tion by HS in PPARa-null mice. Genes in class III were
altered only by HS and were partially, if not completely
independent of PPARa, including stress-inducible phos-
phoprotein-1 (Stip1) in which increases in expression
after HS in PPARo-null mice were detected by RT-PCR.
Genes in class IV were induced by HS independent of
PPARa and also exhibited PPARa-dependent WY
induction. These genes included a number of chaper-
ones Hsp90aal, Hspel, Hspa4l, Hspdl and Hsphl. The
expression pattern of Hsp90aal and Hsphl was con-
firmed by RT-PCR. Class V genes were those that exhib-
ited altered expression only in PPARa-null mice after
HS but not WY and included two metallothionein genes
(Mt1, Mt2). Class VI genes were those that exhibited
altered regulation after HS in PPARo-null mice but not
after HS+WY indicating suppression of HS transcrip-
tional effects by WY. These genes included the up-regu-
lation of serum amyloid protein family members (Saa2,
Saa3) and down-regulation of a large number of mito-
chondrial genes (described below). Overall, the data is
consistent with a subset of 1) HS-regulated genes (Class
I and II) that are dependent on PPARa for altered
expression, 2) HS-regulated genes (Class III and IV) that
are independent of PPARa and 3) genes responsive to
HS only in the absence of PPARa (class V and VI).

Heat shock activates different biological responses in
wild-type and PPARa-null mice

We identified sets of genes that exhibited altered regula-
tion in the two strains using Gene Set Enrichment Ana-
lysis (GSEA). GSEA is an analysis method that evaluates
the expression of biological pathways on defined gene
sets, as an alternative to examining individual genes, to
assist in identifying significant biological changes in
microarray data sets [23]. Consistent with HS effects on
proteome maintenance genes, HS in wild-type mice
increased the expression of genes involved in protein
synthesis (HSA03010_RIBOSOME, RIBOSOMAL_PRO-
TEINS, TRNA_SYNTHETASES) and degradation
(HSA03050_PROTEASOME, PROTEASOME_DEGRA-
DATION, PROTEASOMEPATHWAY, PROTEASOME)
(Additional File 3). There were no gene sets that exhib-
ited significant overlap with the down-regulated HS
wild-type genes.

HS in PPARa-null mice altered the expression of
genes in a different set of biological categories (Addi-
tional File 4) including the up-regulation of genes asso-
ciated with mouse liver tumors (LEE_DENA_UP,
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LEE_MYC_E2F1_UP, LEE_E2F1_UP, LEE_MYC_TG-
FA_UP, LEE_ACOX1_UP, LEE_CIP_UP, LEE_-
MYC_TGFA_DN), muscle contraction (STRIATED_
MUSCLE_CONTRACTION) and the aging kidney
(AGEING_KIDNEY UP).

There were a large number of genes down-regulated by
HS in PPARa-null mice associated with mitochondrial
biogenesis and function regulated by the PPARy Co-acti-
vator 1 (PGC-1) family which includes PGC-1a, PGC-1
and PRC (MOOTHA_VOXPHOS, PGC, HUMAN_MI-
TODB_6_2002, MITOCHONDRIA) (Additional File 5).
There was also down-regulation of genes involved in
mouse and human liver tumors (LEE_MYC_E2F1_DN,
LEE_DENA_DN, LEE_ MYC_TGFA_DN, LEE_CIP_DN,
HCC_SURVIVAL_GOOD_VS_POOR_UP) and down-
regulation of genes associated with amino acid and fatty
acid metabolism (VALINE_LEUCINE_AND_ISOLEUCI-
NE_DEGRADATION, HSA00280_VALINE_LEUCI-
NE_AND_ISOLEUCINE_DEGRADATION, HSA00380_-
TRYPTOPHAN_METABOLISM, HSA00071_FATTY_A-
CID_METABOLISM). The fatty acid metabolism genes
included those that are regulated by PPARa upon expo-
sure to PPC (discussed below).

GSEA was also used to identify candidate transcription
factors responsible for altered regulation of the HS
genes. A number of stress-inducible transcription factors
are likely involved in the altered expression of HS genes
in wild-type mice. Consistent with well-characterized
mechanisms of HS gene regulation, GSEA twice identi-
fied HSF1 as a candidate transcription factor of the HS
genes (Additional File 6). Two sets of genes positively
regulated by HS overlapped with those regulated by X-
box binding protein (XBP1). XBP1 is a key component
of the endoplasmic reticulum (ER) stress response [29].
Accumulation of unfolded proteins in the ER activates
the unfolded protein response (UPR), resulting in tran-
scriptional induction of ER chaperones and proteases in
part through activation of XBP1. A number of genes
associated with XBP1 were either up- (HOXC4, STATS3,
PAK1IP1, SGK, VDP, SEC61A1, SFRS2, UBQLNI,
MORF4L2) or down-regulated (COL1A2, ATBFI,
POLG, GRIA3) in wild-type mice. HS genes linked to
up-regulation of nuclear respiratory factor 1 (NRF1)
were also identified (data not shown). NRF1 is activated
by increased levels of heme and regulates a large num-
ber of genes involved in mitochondrial biogenesis and
oxidative stress that overlap with those regulated by
PGC-1a or PGC-13[30,31].

In contrast, the genes regulated by HS in PPARa-null
mice overlapped with serum response factor (SRF) (one
set significantly and three approaching significance)
(Additional File 7). SRF is a ubiquitously expressed tran-
scription factor that plays a role in regulating early
response genes to various stimuli including healing after
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tissue injury [32]. SRF plays a prominent role in regulat-
ing the expression of heart muscle genes [33] and may
explain increases in muscle contraction genes (ACTAL,
ACTA2, DES, MYL1, MYL2, MYL3, MYL9, MYOM],
TNNC2, TNNT1, TNNT3, TPM2, TPM4) after HS.
Two gene sets that approached significance were regu-
lated by HSF1. In summary, these results indicate that
the PPARa genotype has a dramatic effect on the biolo-
gical pathways that are affected by HS.
PPARo-independent changes in triglyceride levels and
fatty acid oxidation protein expression by heat shock

We examined the levels of a number of clinical chemis-
try markers including triglycerides in the blood from
mice 4 or 24 hrs after HS. The levels of alkaline phos-
phatase were increased in all WY-treated wild-type mice
but not PPARa-null mice (Figure 3A), paralleling the
increases in gene expression for alkaline phosphatase,
liver/bone/kidney (Alpl) after exposure to WY and other
PPC (data not shown). Consistent with PPARo agonists
playing a role in glucose homeostasis [34,35], glucose
levels were lower in wild-type but not PPARa-null WY-
treated mice at 4 and 24 hrs. HS also lowered glucose
levels in wild-type but not PPARo-null mice at 24 hrs.
HS did not induce overt liver damage as measured by
ALT levels; minor increases were observed by HS+WY
treatment in wild-type but not PPARa-null mice at 4
and 24 hrs that approached significance (data not
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shown). These results were consistent with a lack of
pathological findings in the liver. In wild-type mice tri-
glyceride levels were increased by HS and decreased by
WY at 4 hrs with no change by both treatments. At 24
hrs, triglyceride levels were decreased by HS, WY or HS
+WY in wild-type mice and by HS or HS+WY in
PPARa-null mice. Despite uniform increases in choles-
terol biosynthetic genes after WY exposure that were
reversed by WY+HS treatment (Additional File 8 and
9), no changes in circulating cholesterol were noted
between control and treated groups for each strain (data
not shown).

Triglyceride levels are controlled in part by enzymes
involved in fatty acid oxidation. Expression of fatty acid
metabolism genes/proteins and triglyceride levels are
reciprocally related. HS decreased the transcript levels
of a number of genes involved in fatty acid transport
and metabolism in both mouse strains including the
Acox1 gene (Figure 3B). In wild-type mice we observed
the expected increases in enzymes involved in fatty acid
oxidation including Aco and Cyp4a after exposure to
WY in wild-type but not PPARa-null mice 24 hrs after
HS in liver (Figure 4A, B) and kidney (Figure 4C). HS
had complex effects on expression of Aco and Cyp4a. In
the liver HS decreased the expression of ACO-B protein
in wild-type mice at 24 hrs. In the kidney but not the
liver, ACO-B protein was increased by HS in PPARa-
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Figure 3 PPARoa-independent changes in triglyceride levels and fatty acid metabolism genes by heat shock. A. Serum levels of alkaline
phosphatase, glucose and triglycerides 4 and 24 hrs after HS. B. Decreases in fatty acid metabolism genes by HS in wild-type and PPARa-null
mice. Genes called as significantly altered between control and HS groups were extracted from GSEA gene sets
HSA03320_PPAR_SIGNALING_PATHWAY (wild-type mice) and HSA00071_FATTY_ACID_METABOLISM (PPARa.-null mice).
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null mice. In the liver but not the kidney, Cyp4a protein
was induced by HS only in PPARa-null mice. HS-indu-
cible gene expression of Cyp4al0/14 genes was not
observed by microarray indicating post-transcriptional
regulation of expression.

These findings indicate that HS elicits complex
changes in fatty acid metabolism gene and protein
expression leading to alterations in triglyceride levels,
some of which are independent of PPARa. The
increases in triglyceride levels in wild-type mice by HS
at 4 hrs may be attributed in part to decreases in fatty
acid oxidation genes; the decreases in triglyceride levels
in PPARa-null mice are correlated with increases in
Cyp4a and ACO-B in the liver or kidney. The decreases
in triglyceride levels in wild-type mice 24 hrs after HS
cannot be explained by the decreases in ACO and
Cyp4a in liver and kidney. Thus, additional mechanisms
that control triglyceride levels are likely at play including
effects on mitochondrial fatty acid oxidation and require
further study. In summary, 24 hrs after HS the decreases
in triglyceride levels were PPARa-independent whereas
decreases in glucose levels were PPARo.-dependent.
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Chaperone protein expression after heat shock and WY
treatment

We examined protein expression of Hsp family mem-
bers in livers and kidneys of the mice 24 hrs after HS.
Given the transcriptional increases in chaperonin-con-
taining T-complex 1 (Tcp-1) family members Cct3,
Cct4, Cct7 and Cct8 after exposure to WY in wild-type
mice (Additional File 2), we also examined the expres-
sion of Tcpln protein. Western blots consistently
detected two bands of ~60 kDa (full-length Tcpln) and
an immunoreactive fragment of ~40 kDa (Tcp1n(40)).
Increases in Tcpln(40), Hsp25, Hsp70, Hsp86, Hsp110
but not Hsp65 were observed in wild-type mice after
HS; the increases in all of the proteins were PPARa-
independent, as increases were also observed in HS-trea-
ted PPARa-null mice (Figure 5A, B, C). In contrast,
TCP1n exhibited decreased expression after HS in wild-
type and PPARa-null mice. WY exposure led to
increased expression in Tcpln, Hsp70, Hsp86, and
Hspl10 in wild-type mice that was partially or comple-
tely eliminated in PPARa-null mice. The increases in
protein expression after HS and WY were generally
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Figure 4 Expression of Acox1 and Cyp4a proteins after WY and heat shock in livers and kidneys. A. Expression of ACO and Cyp4a in
livers of wild-type or PPARa-null mice on control or WY diet, 24 hrs after HS or mock HS. Expression was assessed by Western blot using
primary antibodies against the indicated proteins. B. Quantitation of the western blots in C. C. Altered protein expression in the kidneys of wild-
type or PPARa-null mice on control or WY diet, 24 hrs after HS or mock HS. Expression was assessed by Western blot using primary antibodies
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consistent with the microarray and RT-PCR data for
Hspala and Hspalb (Hsp70), Hsp90aal (Hsp86/90),
Hsphl (Hsp105/110) and Cct7 (TCP1n). No transcrip-
tional changes by microarray were detected for Hspbl
(Hsp25), but RT-PCR showed increases after a 7 day
WY exposure in a previous study [12].

We assessed protein expression in the kidneys from
the animals described in this study. Tcpln, although not
affected by HS in liver was induced up to 8-fold by HS
in kidneys from both strains, indicating tissue-specific
induction by HS (Figure 5D). Hsp86 but not Hsp25,
Hsp70, and Hsp110 was induced by HS in the kidney
(Figure 5D and data not shown). After WY exposure
Hsp86, but not Tcpln, Hsp25, Hsp70, or Hspl110 was
weakly induced in the kidneys of wild-type, but not
PPARa-null mice.

Most of the Hsp genes/proteins that were induced by
WY (Hsp25, Hsp70, Hsp86, Hsp110, TCP1) carry out
protein folding in the cytoplasm in a coordinated man-
ner. For example, Hsp70 and Hsp110 cooperate to

sequentially fold proteins in the cytoplasm [36]. In con-
trast, we did not observe any mitochondrial chaperones
such as mtHsp70 altered on the transcriptional level; a
number of chaperones which operate in the endoplas-
mic reticulum including BiP/Grp78 [37] and Grp94 (our
study) were down-regulated. An earlier report showed
that the Grp94 gene and protein were increased after
exposure to WY or nafenopin [38]. Overall, our studies
indicate that WY coordinately regulates a number of
chaperones which operate in the cytoplasm.

What might the increased levels of chaperone proteins
be doing in the liver after WY exposure? Increased
levels of chaperones might allow tight control of the
inducibility of PPARa. Many nuclear receptors interact
with chaperone proteins including the ones induced by
WY in our studies [39]. PPARa interacts with Hsp72
[40] and is inhibited by Hsp90 [41]. Thus, induction of
Hsp90 and other family members may dampen the
PPARa transcriptional response. Additionally, Hsp
induction may help support the increases in protein



Vallanat et al. BMC Genomics 2010, 11:16
http://www.biomedcentral.com/1471-2164/11/16

synthesis associated with hepatocyte replication after
PPC exposure. In addition, increased expression of Hsp
family members has been associated with protection
from apoptosis [42,43] and PPC, at least under acute
exposure conditions decrease basal levels of apoptosis
[10]. PPC exposure leads to dramatic increases in per-
oxisome size and number and increased expression of
TCP1 subunits may be important for proper protein
insertion into the peroxisomal membrane [44].

It is generally appreciated that increased expression of
Hsps by mild HS can protect from subsequent chal-
lenges by more severe treatments [45]. Our microarray
and protein expression analysis showed that WY can
induce the gene and protein expression of a number of
chaperones. These same chaperones including Hsp25/27
[46,47], Hsp70 [45,48], Hsp86/90 [49-51] and Hspl105/
110 [36,52,53] when over-expressed can protect cells
from various stressors. Our results identify a number of
potential candidate genes/proteins that could protect
cells from environmental stressors by pretreatment with
PPARa agonists.

Global decreases in mitochondrial gene expression in
PPARo-null mice after heat shock are prevented by WY
pretreatment

HS can induce mitochondrial swelling, loss of mitochon-
dria and uncoupling of oxidative phosphorylation [45].
HS in PPARa-null mice led to dramatic decreases in
mitochondrial biogenesis and mitochondrial oxidative
phosphorylation genes regulated by PGC-1 family mem-
bers (Additional File 6). Coordinated down-regulation of
a curated set of genes regulated by PGC-1 was observed;
out of the 310 genes in this list shared by the U74Av2
array, 123 were down-regulated (Figure 6A). Pretreat-
ment of PPARo-null mice with WY led to resistance to
gene expression changes, as far fewer genes were altered
by both treatments compared to HS alone (774 genes
for HS alone vs. 68 genes for HS+WY). We compared
the two groups directly using GSEA and identified sig-
nificant increases in electron transporter genes after HS
+WY treatment compared to HS alone including those
that function in the mitochondria (Figure 6B). Signifi-
cant alterations in mitochondrial gene sets were not
observed in a comparison between control and HS+WY
groups using GSEA (data not shown). Thus, WY pre-
treatment of PPARa-null mice prevented decreases in
mitochondrial gene expression due to HS.

To identify candidates involved in resistance to HS-
induced decreases in mitochondrial gene expression, we
searched for genes regulated by WY independently of
PPARa. Our previous experiments indicated that WY
had minimal effects in the livers of PPARa-null mice,
altering only up to ~8% of the total number of genes
compared to wild-type mice [54]. These results were
based on transcript profiles generated using the
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Affymetrix gene chip U74Av2 which contains ~12,000
genes. Using full-genome arrays containing ~45,000
genes (Affymetrix MOE430_2 arrays), we examined
gene expression in PPARa-null mice after exposure to
WY for 6 hrs or 5 days. WY had minimal effects on
gene expression after 6 hrs in PPARa-null mice (1 gene
change) but at 5 days, 92 genes were significantly altered
in PPARo-null mice. A number of the changes would
affect intermediary metabolism and mitochondrial gene
expression, the most striking of these changes being
increases in PGC-1B (Ppargclb) (~2-fold, p = 0.01; Fig-
ure 6C). (This gene is not included on the U74Av2
array.) Genes known to be regulated by PGC-1B
included Cptl [55-57] and a number of others involved
in fatty acid oxidation including acetyl-Coenzyme A
acyltransferase 1B (Acaalb), aldehyde dehydrogenase
family 3, subfamily A2 (Aldh3a2), acetyl-Coenzyme A
acyltransferase 1A (Acaala), enoyl coenzyme A hydra-
tase 1, peroxisomal (Echl) and peroxisomal delta3,
delta2-enoyl-Coenzyme A isomerase (Peci) (Figure 6D).
PGC-1B is a master controller of hepatic energy home-
ostasis in part through regulation of mitochondrial oxida-
tive metabolism genes. Overproduction of PGC-1f leads
to increases in mitochondrial volume density in C2C12
myotubes [58], and defects in PGC-1p expression have
been associated with global decreases in mitochondrial
gene expression in the skeletal muscle of diabetics [30].
PGC-1p physically interacts with transcription factors
involved in mitochondrial biogenesis and lipid metabo-
lism including Nrf-1, PPARa and PPARy [55,59,60]. In
trans-activation assays, WY activates PPARB and PPARy,
albeit to a lesser extent than PPARa [61,62]. Increases in
PGC-1p co-activator function in the presence of the
weak agonist function of WY may lead to increased
expression of fatty acid oxidation genes regulated by
PPARB or PPARYy similar to what we have observed with
the PPC perfluorooctanoic acid in PPARa-null mice [54].
These results indicate that WY can alter the expression
and activity of effectors of mitochondrial biogenesis and
fatty acid oxidation, preventing HS from decreasing those
gene batteries in PPARa-null mice. This protective effect
of WY is reminiscent of thermotolerance induced by
prior treatment with a low temperature HS [45].
Hsp gene regulation by PPARo and HSF1
HSF1 controls expression of Hsp genes after HS [7,8].
We determined if there was any overlap in HS genes
regulated by HSF1 and PPARa. We identified a number
of classes of HSF1-dependent or -independent genes
regulated by HS as well as genes that require HSF1 for
basal expression (Additional File 10 and 11). We then
identified genes that overlapped with those regulated by
HS in wild-type and PPARa.-null mice from our study.
The expression of the 45 unique pairs of gene identifiers
from each array is shown in Figure 7A.
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Figure 6 Global decreases in mitochondrial gene expression in PPARa-null mice after heat shock are prevented by WY pretreatment.
A. Down-regulation of genes regulated by the co-activator PGC-1. Gene Set Enrichment Analysis (GSEA) was used to identify gene sets that
exhibited significant overlaps with those gene differences between control and HS in PPARa-null mice. Left, enrichment plot for genes regulated
by PGC-1. Black bars illustrate the position of probe sets belonging to the PGC-1 gene set in the context of all probes on the U74Av2 array. The
running enrichment score (RES) plotted as a function of the position within the ranked list of array probes is shown as a green line. The ranked
list metric shown in gray illustrates the correlation between the signal to noise values of all individually ranked genes according to the class
labels (experimental conditions). Right, individual expression profiles for leading edge probe sets contributing to the normalized enrichment
score are shown. Signal intensities are illustrated by varying shades of red (up-regulation) and blue (down-regulation). B. Prevention of down-
regulation of electron transporter gene expression by pretreatment with WY. Left, enrichment plot for genes with electron transporter activity as
described in A. Right, individual expression profiles for probe sets contributing to the normalized enrichment score are shown. C. Increased
expression of PGC1B and regulated genes involved in lipid homeostasis by WY in PPARa-null mice. GSEA-derived heat map of the top 100
differentially expressed probe sets enriched in the control or WY-treated groups from PPARa-null mice. Location of PGC1B (Ppargc1b) and
regulated genes are indicated. D. Increased expression of genes involved in fatty acid metabolism after exposure to WY for 5 days in PPARa-null
mice. Genes significantly altered in the GSEA set “fatty acid metabolism” are shown. These include a number that overlap with those that are
involved in mitochondrial fatty acid metabolism regulated by PGC-1.

An important question is why does PPARa expres-
sion/activation determine in part the profile of HS

The genes fell into 4 groups based on dependence on
PPARa and HSF1 (Figure 7B). The largest groups were

those that were PPARa-independent and were about
equally split between those that were dependent or
independent of HSF1. PPARa-dependent genes included
those that were HSF1-dependent (Cacybp, Dnajal,
Fkbp4) or independent (Apoe, Irakl). This comparison
reveals that although some genes were altered by HS
independent of both PPARa and HSF1, most genes
required one or both factors for HS regulation.

genes? We hypothesize that PPARa is required for the
induction of a subset of the HS genes. Class I and II
genes (Figure 2B) require PPARa for HS regulation
indicating that they could possess functional PPREs.
Genes have been identified that possess HSEs that bind
HSF1 but that were not HS-inducible. This provides evi-
dence that other cis-acting elements or interacting fac-
tors were required for HS inducibility [8]. A linkage
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Figure 7 Regulation of heat shock genes by HSF1 and PPARa. Genes which exhibited significant changes in expression due to HS from the
dataset of Trinklein et al. (2004) and from the present study were identified. A. Heat map of gene expression changes by HS in wild-type (W)
and PPARa-null (N) mice compared to the Trinklein et al. (2004) dataset. In the Trinklein et al. (2004) study, mouse embryonic fibroblasts were
subjected to HS followed by recovery for the indicated times in hrs. Genes were subjected to one-dimensional hierarchical clustering. Red, up-
regulation; green, down-regulation; grey, no data; black, no change. B. Classification of genes based on regulation by PPARa. and HSF1.
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between HSE and PPRE in the promoters of HS genes
was found as binding sites for PPAR family members
were significantly increased within the 1000 bp
upstream of the genes that were up- or down-regulated
by HS in a human epithelial cell line [63]. Follow-up
PPAR-HSF1 co-immunoprecipitation studies would
reveal the nature of the interactions. Our analysis
demonstrated major differences in the target genes of
HS between wild-type and PPARao.-null strains indicating
that in the absence of PPARa, major changes in chro-
matin accessibility to HSF1 and other factors leads to
greater sensitivity to HS alteration.

How are the HS genes regulated by PPC through
PPARa? Given that Hsp gene expression is controlled in
part by heat shock factor 1 (HSF1), one possibility is that
the increases in Hsp gene expression are secondary to
increases in the expression and activity of HSF1. How-
ever, we did not observe changes in HsfI expression in
our transcript profiling studies and earlier studies showed
that HSF1 and HSF2 expression and binding to HSE was
not altered by WY exposure in the rat liver [64]. To help
determine whether regulation of Hsp gene expression is
direct or indirect, we examined their promoters and

found that only a few genes possess a putative PPRE(s)
(data not shown) indicating indirect activation.

Many Hsp genes may be regulated indirectly through
increases in oxidative stress. There is abundant evidence
for the increased expression of chaperone gene expres-
sion under conditions that also increase oxidative stress
[5,45]. PPC exposure leads to increases in oxidative
stress and lipid peroxidation mediated through increased
activities of enzymes that generate reactive oxygen spe-
cies [10]. Although direct evidence that Hsp genes are
activated by PPC-mediated increases in oxidative stress
is lacking, the absolute increases in expression of some
Hsp genes was higher in mice nullizygous for Nrf2, a
transcription factor activated by oxidative stress that
regulates genes that decrease oxidative stress. Thus, in
the absence of Nrf2, increased levels of oxidative stress
may have contributed to the greater increases in the
Hsp genes by WY [12]. However, we cannot rule out
the induction of a HSP1 cofactor secondary to PPARa
induction.” In summary, PPARa. may regulate the Hsp
genes in a species-specific manner secondarily to
increases in oxidative stress. Further work is needed to
confirm this hypothesis.
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Conclusions

Our microarray analysis of HS in the livers of mice
uncovered a dramatic influence of PPARa on the overall
gene expression pattern. There were remarkable differ-
ences in the transcriptional response to HS between
wild-type and PPARa-null mice. A number of HS genes
required PPARa for induction. Many mitochondrial
genes were uniquely down-regulated in PPARa-null but
not wild-type mice. Pretreatment of PPARa-null mice
with WY prevented the down-regulation of these genes
possibly through the increased expression of PGC-13
and regulated genes. Our findings support the hypoth-
esis that PPARa in the liver acts as an integrator of che-
mical and physical stress signals manifested in the
regulation of stress gene responses in the liver.

Additional file 1: Sequences of primers. Sequences of primers used in
TagMan studies.
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Additional file 2: Gene expression changes after WY, heat shock or
heat shock+WY in wild-type and PPARa-null mouse livers. Table
represents the gene annotations and fold changes for gene expression
changes after WY, heat shock or heat shock+WY in wild-type and
PPARa-null mouse livers.
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Additional file 3: Table of genesets significantly up-regulated by
heat shock in wild-type mice. Table describes GSEA genesets
significantly up-regulated by heat shock in wild-type mice.
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Additional file 4: Table of genesets significantly up-regulated by
heat shock in PPARa-null mice. Table describes GSEA genesets
significantly up-regulated by heat shock in PPARa-null mice.
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Additional file 5: Table of genesets significantly down-regulated by
heat shock in PPARa-null mice. Table describes GSEA genesets
significantly down-regulated by heat shock in PPARa-null mice.

Click here for file
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Additional file 6: Table of transcription factor genesets significantly
up-regulated by heat shock in wild-type mice. Table describes the
GSEA transcription factor genesets significantly up-regulated by heat
shock in wild-type mice.
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Additional file 7: Table of transcription factor genesets significantly
up-regulated by heat shock in PPARa-null mice. Table describes the
GSEA transcription factor genesets significantly up-regulated by heat
shock in PPARo-null mice.
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Additional file 8: Analysis of interactions between WY and HS in
wild-type mice. Interactions between WY and HS in wild-type mice
using Ingenuity Pathway Analysis Tool.
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Additional file 9: Canonical pathways analysis using Ingenuity.
Canonical pathways in an Ingenuity comparison between genes only
regulated by WY or only by WY+HS in wild-type mice.
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Additional file 10: Excel spreadsheet of genes regulated by heat
shock or by strain differences between wild-type and HSF1-null
mice. Genes were originally from the Trinklein et al. (2004) study. Excel
spreadsheet of genes regulated by heat shock or by strain differences
between wild-type and HSF1-null mice.
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Additional file 11: Figures of expression of heat shock genes in
wild-type and HSF1-null mouse embryonic fibroblasts. Mouse
embryonic fibroblasts were given a HS and cells were harvested at the
indicated times as described (Trinklein et al, 2004). Genes which
exhibited significant changes after HS or that exhibited significant
differences between wild-type and HSF1-null strains were identified as
described in the Methods. A. HSF1-dependent HS genes. B. HSF1-
independent HS genes. C. Genes which exhibited differences in
expression between control wild-type and control HSF1-null strains.
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