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Abstract
Background: American ginseng (Panax quinquefolius L.) is one of the most widely used herbal remedies in the world. 
Its major bioactive constituents are the triterpene saponins known as ginsenosides. However, little is known about 
ginsenoside biosynthesis in American ginseng, especially the late steps of the pathway.

Results: In this study, a one-quarter 454 sequencing run produced 209,747 high-quality reads with an average 
sequence length of 427 bases. De novo assembly generated 31,088 unique sequences containing 16,592 contigs and 
14,496 singletons. About 93.1% of the high-quality reads were assembled into contigs with an average 8-fold coverage. 
A total of 21,684 (69.8%) unique sequences were annotated by a BLAST similarity search against four public sequence 
databases, and 4,097 of the unique sequences were assigned to specific metabolic pathways by the Kyoto 
Encyclopedia of Genes and Genomes. Based on the bioinformatic analysis described above, we found all of the known 
enzymes involved in ginsenoside backbone synthesis, starting from acetyl-CoA via the isoprenoid pathway. 
Additionally, a total of 150 cytochrome P450 (CYP450) and 235 glycosyltransferase unique sequences were found in the 
454 cDNA library, some of which encode enzymes responsible for the conversion of the ginsenoside backbone into 
the various ginsenosides. Finally, one CYP450 and four UDP-glycosyltransferases were selected as the candidates most 
likely to be involved in ginsenoside biosynthesis through a methyl jasmonate (MeJA) inducibility experiment and 
tissue-specific expression pattern analysis based on a real-time PCR assay.

Conclusions: We demonstrated, with the assistance of the MeJA inducibility experiment and tissue-specific expression 
pattern analysis, that transcriptome analysis based on 454 pyrosequencing is a powerful tool for determining the 
genes encoding enzymes responsible for the biosynthesis of secondary metabolites in non-model plants. Additionally, 
the expressed sequence tags (ESTs) and unique sequences from this study provide an important resource for the 
scientific community that is interested in the molecular genetics and functional genomics of American ginseng.

Background
American ginseng (Panax quinquefolius L.) is a perennial
understory herb from the Araliaceae family, which is
native to the eastern forests of North America [1]. It is
one of the most extensively used medicinal plants in both

East Asia and the West as a remedy or adaptogen to pro-
mote vitality, enhance physical performance, and increase
resistance to stress and aging [2,3]. The major bioactive
components of American ginseng are the triterpene
saponins known as ginsenosides. To date, more than 30
ginsenosides have been isolated from American ginseng
and are classified into two main groups, the dammarane
type and the oleanane type, based on the structures of
their aglycones. The major ginsenosides are the damma-
rane type, and include Rb1, Rc, Rd, Re, and Rg1. The
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oleanane type is represented by only one saponin, Ro,
which is a minor component in American ginseng [4,5].
Each ginsenoside reportedly has different pharmacologi-
cal effects, including nervous system regulation, immune
system modulation, and anticancer, antioxidant, and anti-
hypertensive activities [6-9]. Ginsenosides are synthe-
sized by the isoprenoid pathway and share the same
precursor, 2,3-oxidosqualene, with sterol [10]. Due to the
biological importance of sterol, the common steps in its
conversion from acetyl-CoA to 2,3-oxidosqualene have
been widely studied in many plant species. The cycliza-
tion of oxidosqualene is the branch point for the biosyn-
thesis of ginsenosides and phytosterols. The 2,3-
oxidosqualene cyclases (OSCs) that synthesize β-amyrin
[11] and dammarenediol-II [12,13] have been character-
ized in Panax ginseng; however, the portion of the path-
way that lies downstream of cyclization remains largely
unknown. According to the proposed pathway (Shown in
Figure 1), some specific CYP450s and UDP-glycosyltrans-
ferases (UGTs) may catalyze the conversion of dam-
marenediol-II or β-amyrin to various ginsenosides [14].
To date, no CYP450s or UGTs involved in ginsenoside
biosynthesis have been identified from American ginseng
or other ginsenoside-producing plants.

The sequencing and analysis of ESTs are the primary
tools for the discovery of novel genes, especially in non-
model plants for which full genome sequencing is not
economically feasible. EST sequencing represents a rapid
and relatively economical method for analyzing the tran-
scribed region of the genome [15]. Furthermore, EST
analyses have identified the genes involved in plant sec-
ondary metabolism. For example, a licorice-amyrin 11-
oxidase gene was successfully identified by the analysis of
a collection of ESTs from the stolons of Glycyrrhiza ura-
lensis; this gene encodes a CYP450 that plays a key role in
the biosynthesis of the triterpene sweetener glycyrrhizin
[16]. Additionally, a dammarenediol synthase was func-
tionally characterized from the ESTs generated from a P.
ginseng flower cDNA library [13]. ESTs can also be used
for other functional genomic projects, including gene
expression profiling, microarrays, molecular markers,
and physical mapping [15,17].

Over the last few years, next-generation sequencing
(NGS) technologies have led to a revolution in genomics
and genetics and provided cheaper and faster delivery of
sequencing information [18,19]. The first commercial
NGS platform, 454 GS20 http://www.454.com, was
released in 2005 and produces about 200,000 reads with
an average read length of 100 bases per run [20,21]. Since
then, 454 sequencing technology has experienced a rapid
improvement in throughput, read length, and accuracy.
Now, the newest 454 sequencing platform, the GS FLX
Titanium, can generate one million reads with an average
length of 400 bases at 99.5% accuracy per run. To date,

the 454 pyrosequencing technique is the most widely
used NGS technology for the de novo sequencing and
analysis of transcriptomes in non-model organisms.

Despite the commercial and medicinal importance of
American ginseng, little genomic research has been per-
formed with this species. In this study, with the Roche GS
FLX Titanium platform, we obtained more than 200,000
high-quality (HQ) reads from a cDNA library generated
from an American ginseng root. Those reads were assem-
bled into 31,088 unique transcripts, containing 16,592
contigs and 14,496 singletons. The average lengths of the
HQ reads and the contigs were comparable to those gen-
erated from an American ginseng root cDNA library in
our previous study using the Sanger method [22]. Bioin-
formatic analysis indicated that all genes encoding
enzymes involved in the biosynthesis of the ginsenoside
backbone existed in the transcriptome of the American
ginseng root. Furthermore, a few candidate genes puta-
tively responsible for ginsenoside backbone modifica-
tions were screened out of a gene pool containing 150
CYP450 and 235 UGT unique sequences. To the best of
our knowledge, this study is the first exploration to dis-
cover the genes responsible for triterpene saponin bio-
synthesis through the analysis of large-scale ESTs
produced from a next-generation sequencer. Addition-
ally, the method described here can be widely applied to
the profiling of transcriptomes, facilitating the discovery
of novel genes in other non-model organisms.

Results
Sequencing and de novo assembly of 454 ESTs
A cDNA library constructed by SMART technology from
the total RNA of an American ginseng root was subjected
to a one-quarter plate run with the 454 GS FLX Titanium
platform. This one-quarter run produced 209,747 HQ
reads with an average sequence length of 427 bases (SD =
128, range = 20-1135). Of the HQ reads, 90.5% contained
more than 200 bases, whereas 73.5% had more than 400
bases. The size distribution of the reads is shown in Fig-
ure 2-A. After trimming the adapter sequences and
removing the short sequences of less than 50 bases,
207,311 reads remained for assembly with an average
length of 422 ± 123 bases. A total of 89.7 Mb of HQ
sequence data were generated, of which 87.4 Mb (97.5%
of the HQ sequence data) were used for assembly. All HQ
reads were also deposited in the National Center for Bio-
technology Information (NCBI) and can be accessed in
the Short Read Archive (SRA) under the accession num-
ber SRX012184. An overview of the sequencing and
assembly is given in Table 1.

The reads produced by the GS FLX Titanium platform
were long enough for de novo assembly. Therefore, size-
selected reads were assembled into 16,592 contigs by
Roche Newbler software, while 14,496 reads remained as
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singletons. The sequencing coverage ranged from 1 to
3,102 fold, with an average 8-fold coverage. In total,
195,251 reads were assembled into contigs, accounting
for 93.1% of the assembled reads. Contigs ranged from 92
to 3,713 bases, with an average size of 526 ± 333 bases.
About 81.6% of the contigs were assembled from three or
more reads. The size distribution for these contigs is
shown in Figure 2-B.

Functional annotation by sequence comparison with 
public databases
All unique sequences were first compared with the
sequences in the non-redundant database (Nt) of the
NCBI using the BLASTN algorithm and were then com-

pared with the sequences in the three major public pro-
tein databases (listed in the Methods section) using the
BLASTX algorithm. When the E-value cutoff was set at
10-5, a total of 21,684 unique sequences were annotated,
which accounted for 69.8% of the total unique sequences.
Under a more stringent condition (cutoff = 10-10), 19,779
unique sequences were annotated, which accounted for
63.6% of the total unique sequences (shown in Additional
File 1).

Of all the contigs, a total of 16 contained more than
1,000 reads, which represented the most abundant tran-
scripts in the 454 EST cDNA library (Additional File 2).
The 16 most abundant transcripts included some that
encoded abundant root proteins that were previously

Figure 1 Putative ginsenoside biosynthetic pathway in American ginseng. AACT, acetyl-CoA acetyltransferase; AS, β-amyrin synthase; CAS, cy-
cloartenol synthase; DS, dammarenediol-II synthase; FPS, farnesyl diphosphate synthase; GT, glycosyltransferase; HMGR, HMG-CoA reductase; HMGS, 
HMG-CoA synthase; IDI, isopentenyl diphosphate isomerase; MDD, mevalonate diphosphate decarboxylase; MK, mevalonate kinase; P450, cyto-
chrome P450; PMK, phosphomevalonate kinase; Rb-1, ginsenoside Rb-1; Rg-1, ginsenoside Rg-1; Ro, ginsenoside Ro; SQE, squalene epoxidase; and 
SQS, squalene synthase.
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characterized in Chinese ginseng (P. ginseng) or Ameri-
can ginseng (P. quinquefolius), such as Ribonuclease-like
storage protein, P. quinquefolius-specific abundant pro-
tein-like protein 1, and P. ginseng major latex-like protein
(mlp151) [23,24]. The most abundant transcript, which
had 3,102 reads, was annotated as "regulator of Ribonu-
clease-like protein 1," a possible inhibitor of the endonu-
clease activity of RNase. Interestingly, we also found an
abundant transcript encoding RNase 1. It is not surpris-
ing that some transcripts encoding the enzymes involved
in sugar and energy metabolism were highly expressed,
because starch is the most abundant component of the
American ginseng root, and these enzymes included
sucrose synthase and 1, 4-alpha-glucan-branching
enzyme. Some transcripts encoding peroxidases were
also highly expressed, and these enzymes may play a role
in resistance to abiotic or biotic stresses [25].

Functional classification by KEGG
Functional classification and pathway assignment was
performed by the Kyoto Encyclopedia of Genes and
Genomes (KEGG). First, the 31,088 unique sequences
were compared using BLASTX with an E-value cutoff of
<10-5 against the KEGG database. Of these unique
sequences, 16,480 (53.0%) had significant matches in the
database sequences. Among those, 4,097 unique
sequences having enzyme commission (EC) numbers
were assigned to metabolic pathways. As shown in Addi-

tional File 3, the KEGG metabolic pathways that were
well represented by the American ginseng unique
sequences were carbohydrate metabolism, amino acid
metabolism, energy metabolism, and lipid metabolism. In
the subclass of secondary metabolism, the greatest num-
ber of unique sequences was mapped to phenylpropanoid
biosynthesis and limonene and pinene degradation. Gin-
senosides belong to the terpenoid saponins, which share a
common pathway from acetyl-CoA to 2,3-oxidosqualene
with sterol; therefore, we focused more of our attention
on sterol and terpenoid biosynthesis. Surprisingly, in the
KEGG map of sterol biosynthesis (Shown in Additional
File 4), most enzymes were mapped to transcripts in the
454 cDNA library and included all of the enzymes
involved in sterol backbone synthesis and in brassinoster-
oid and stigmasterol biosynthesis. This result demon-
strated the powerful ability of high-throughput
sequencing to identify genes in metabolic pathways.

Candidate enzymes involved in ginsenoside biosynthesis
OSCs and other known enzymes responsible for the 
biosynthesis of ginsenoside backbones
As shown in Figure 1, it is generally thought that ginseno-
sides are synthesized via the mevalonate pathway. Based
on the KEGG pathway assignment, we found all of the
genes encoding enzymes involved in ginsenoside back-
bone biosynthesis (Table 2). In most cases, more than one
unique sequence was annotated as the same enzyme.

Table 1: Overview of the sequencing and assembly

Sequence (n) Bases (bp)

Sequencing

High-quality (HQ) reads 209,747 89,664,715

Average HQ read length 427 ± 128 bp

Reads used in assembly 207,311 87,443,477

Average read length after trimming 422 ± 123 bp

Contigs

Reads assembled as contigs 195,251

Number of contigs 16,592 8,722,777

Average length of contigs 526 ± 333 bp

Range of contig length 92 - 3713 bp

Depth on contigs 8.46

Singletons

Number of singletons 14,496 5,276,139

Average length of singletons 364 ± 166 bp

Range of singleton length 50 -- 643 bp

Unique sequence 31,088 13,998,916
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Such unique sequences may represent different frag-
ments of a single transcript, different members of a gene
family, or both.

The cyclization of 2,3-oxidosqualene is the branch
point of sterol and ginsenoside biosynthesis and controls
the carbon flux through the branched biosynthetic path-
ways. Four OSC genes of American ginseng, cycloartenol
synthase (CAS) [26], dammarenediol-II synthase (DS)
[12,13], β-amyrin synthase 1 (AS1), and β-amyrin syn-
thase 2 (AS2) [11], exist in the 454 cDNA library. We
investigated their expression levels in different plant tis-
sues by real-time PCR. As shown in Figure 3-A, DS was
highly expressed in all selected tissues, and its highest
expression was found in flowers. In contrast, CAS expres-
sion was the lowest in flowers. Furthermore, CAS was
expressed at a lower level than DS in other tissues. Com-
pared with DS and CAS, AS1 and AS2 displayed a low
level of expression in all tested tissues. In fact, AS2 tran-
scripts were not detected in the leaves. We also compared
the results from the real-time PCR and EST number
counting (shown in Figure 3-B). Their significant agree-
ment indicated that the abundance of the 454 sequences
from the non-normalized cDNA library closely mirrors

the actual expression level, although amplification can
introduce some biases.
Cytochrome P450s
Cytochrome P450 proteins are the largest family of plant
proteins and catalyze most of the oxidation steps in plant
secondary metabolism [27,28]. In the biosynthetic path-
way of dammarane-type ginsenosides, two steps are cata-
lyzed by CYP450s: the conversion from dammarane to
protopanaxadiol and the conversion from protopanax-
adiol to protopanaxatriol. A total of 150 unique
sequences, 92 contigs and 58 singletons, were annotated
as CYP450s (Additional File 5). To find the CYP450s
involved in dammarane-type ginsenoside biosynthesis,
these unique sequences were further screened according
to classification, abundance, MeJA inducibility, and tis-
sue-specific expression. As shown in Figure 1, damma-
rane and protopanaxadiol, which are triterpenes, have a
structure that is similar to plant sterols. Thus far, all
known triterpenes and sterol hydroxylases have been
classified into two clans: the CYP71 clan and the CYP85
clan [16,29-32]. DS had 36 ESTs, and we estimated that
the CYP450s of moderate abundance were more likely to
be involved in ginsenoside biosynthesis. Therefore, a total
of 27 CYP450s containing 4-100 reads, which belonged to
the CYP71 and CYP85 clans, were chosen for the MeJA
inducibility experiment. The plant signaling compound
MeJA induces or increases the biosynthesis of many sec-
ondary metabolites [33]. It has been reported that MeJA
stimulates ginsenoside production in cultured ginseng
cells [34] and adventitious roots [35], and up-regulates
the genes involved in the biosynthesis of dammarane-
type ginsenosides, such as SS (squalene synthase),
Squalene epoxidase (SE), DS [13,34]. As shown in Figure
4-A, DS expression increased about 6-fold after MeJA
treatment. Six CYP450s were up-regulated by MeJA,
while eight CYP450s were down-regulated. The expres-
sion pattern of the six CYP450s in different tissues was
then determined by real-time PCR. As shown in Figure 4-
B, the highest level of DS expression was in the flower,
while its expression in other three tissue types was much
lower. Of all six CYP450s, only contig00248 had a similar
tissue-specific expression pattern as DS, indicating that
contig00248 and DS were coexpressed in different tissues.
This result suggests that the two enzymes may be located
in the same biosynthetic pathway. Contig00248 was clas-
sified into the CYP716 family, which is close to the
CYP88 family in the phylogenetic tree of Arabidopsis
thaliana CYP450s. Recently, CYP88D6 from Glycyrrhiza
was identified as β-amyrin 11-oxidase, one of two charac-
terized triterpenes hydroxylases [16]. Therefore,
contig00248 is a promising candidate that may catalyze
the oxidation of dammarane or protopanaxadiol.

Figure 2 Size distribution of the 454 HQ reads and the contigs as-
sembled from them. A) 454 HQ reads; B) contigs.
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Glycosyltransferases
Glycosyltransferases are another large multigene family
in plants. In general, glycosylation is the last step in the
biosynthesis of secondary metabolites. From a chemical
point of view, sugar conjugation results in both increased
stability and water solubility [36-38]. The 454 cDNA
library contained 235 glycosyltransferase unique
sequences composed of 148 contigs and 87 singletons
(shown in Additional File 5). Thus far, almost all func-
tionally characterized glycosyltransferases involved in the
biosynthesis of secondary metabolites belong to UGTs
and have a so-called plant secondary product glycosyl-
transferase (PSPG) motif, which is generally located in
the C-terminal portion of the protein [37,39]. Unique
sequences containing the PSPG motif were selected by a
PSPG motif search in the glycosyltransferase pool. The
remaining glycosyltransferases were screened again by
annotation to avoid missing target sequences because
most of them are not full-length sequences. The glycosyl-
transferases were picked up, which were annotated as the
UGTs obviously involved in biosynthesis of secondary
metabolites. In total, 27 UGTs were selected and con-
tained reads that varied from 4 to 100 bases. Among
them, a total of 11 UGTs were up-regulated by MeJA,
whereas only three UGTs were obviously down-regulated
in the MeJA inducibility experiment (shown in Figure 5-
A). In the tissue-specific expression pattern assay, among
11 up-regulated UGTs by MeJA, the expression pattern of

four UGTs showed strong similarity to that of DS (shown
in Figure 5-B). These UGTs included contig01001,
contig14976, contig15451, and contig16321. They were
regarded as candidate UGTs encoding enzymes responsi-
ble for ginsenoside biosynthesis and will be the subject of
further study.

Discussion
EST analysis is one of the most popular tools for gene dis-
covery. However, deep EST sequencing using the Sanger
method is time-consuming, labor intensive, and expen-
sive. With the development of NGS technologies, these
limitations have been overcome, and EST analysis is
becoming the premier choice for gene discovery on a
genome-wide scale in non-model plants. In addition to
advantages with regard to cost and speed, another major
advantage of the NGS platform is elimination of the bac-
terial cloning step that can bias the composition of the
cDNA library. To date, Roche GS FLX is the most widely
used NGS platform for de novo EST sequencing. Using
this technology, a number of EST libraries have been suc-
cessfully constructed from plants, including maize [40],
chestnut [41], olive [42], the model plant A. thaliana [43],
and the medicinal herb Artemisia annua [44], as well as
fish [45,46], insects [47,48], and worms [49,50].

In this study, we produced more than 200,000 HQ reads
in a one-quarter run with the Roche 454 GS FLX Tita-
nium platform. To avoid the negative effect of polyA on

Table 2: Known genes involved in ginsenoside backbone biosynthesis

Gene Name EC number Unique sequence EST number

AACT 2.3.1.9 contig02881, contig06048 204

HMGS 2.3.3.10 contig08477 23

HMGR 1.1.1.34 contig02603, contig02626,
contig03619, contig06897,
contig06899

62

MK 2.7.1.36 contig05022 21

PMK 2.7.4.2 contig04341, contig12148, 
FW1NBNE03GNFKM

8

MDD 4.1.1.33 contig06712 61

IDI 5.3.3.2 contig05719, contig10448 23

FPS 2.5.1.10 contig12444, contig15186 47

SQS 2.5.1.21 contig08056, contig08936, 
contig15530

32

SQE 1.14.99.7 contig00302, contig00303,
contig02846, contig11541,
contig15180, contig15497

173

DS contig02334, contig03192, 
contig10031

36

AS FW1NBNE03FS0YO(AS1), 
FW1NBNE03GOEZN(AS1), 
FW1NBNE03GJOPM(AS2)

3
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sequencing quality, a cDNA library preparation based on
SMART technology was improved by the removal of
polyA with BsgI digestion, leading to an approximately
40% increase in sequencing output (data not shown).
Although the Roche 454 company now prefers to resolve
the polyA problem by cDNA synthesis primed with ran-
dom hexamers, our study proved that enzyme digestion is
at least an effective alternative way to eliminate polyA
and is a promising method in 454 cDNA library prepara-
tion starting from total RNA.

Based on de novo sequencing and analysis of the Amer-
ican ginseng root, we found all of the known genes
encoding enzymes involved in ginsenoside backbone bio-
synthesis, including OSCs: DS, and AS. Cyclization of 2,3-
oxidosqualene is the branch point of sterol and ginseno-
side biosynthesis, and OSCs play important roles in the
control of carbon flux through different metabolic
branches. EST number counting and real time PCR dem-
onstrated that in the root of American ginseng, DS
expression was highest, followed by CAS, and finally AS.
This result suggested that the biosynthesis of damma-
rane-type ginsenosides is more active than the biosynthe-
sis of phytosterols or oleanolic acid-type ginsenosides.
Surprisingly, based on the KEGG pathway assignment,
we found all of the genes involved in the biosynthesis of
brassinosteroid, a phytosteroid hormone. We estimated

that expression of the brassinosteroid biosynthetic genes
is lower than that of the genes involved in the biosynthe-
sis of dammarane-type ginsenosides. Therefore, these
results strongly indicate that most of the genes involved
in the synthesis of dammarane-type ginsenosides are
contained within the 454 cDNA library.

As compared to ginsenoside backbone biosynthesis, we
know little about the late stages of ginsenoside biosynthe-
sis. This part of the pathway includes multiple oxidation
and glycosylation steps catalyzed by enzymes from the
CYP450 and glycosyltransferase superfamilies, respec-
tively. These families of enzymes display a wide range of
substrate specificities and are responsible for the diversity
of many plant secondary metabolites. About 120 UGT
genes and 272 CYP450 genes were identified in the model
plant A. thaliana. Because of the biological, pharmaco-
logical, and agricultural importance of secondary metab-
olites, UGTs and CYP450s have attracted considerable
interest for decades, but only a few have been character-
ized by traditional biochemistry and genetics. In the
dammarane-type ginsenoside biosynthetic pathway,
CYP450s catalyze the C12 hydroxylation of dammarene-
diol-II and the C6 hydroxylation of protopanaxadiol,
while glycosylation generally occurs on C3, C6, and C20
of the aglycones. To date, only two CYP450s involved in
triterpene saponin biosynthesis are functionally charac-
terized: CYP88D6, a β-amyrin 11-oxidase from Glycyr-
rhiza uralensis [16] and CYP93E1, a β-amyrin and
sophoradiol 24-hydroxylase from Glycine max [29]. Also,
three UGTs in triterpene saponin biosynthesis have been
identified: UGT73K1 and UGT71G1 from Medicago
truncatula [51]and UGT74 M1 from Saponaria vaccaria
[52]. However, all of the aforementioned enzymes are
involved in oleanane-type ginsenoside biosynthesis. No
CYP450s or UGTs in the dammarenediol-type ginseno-
side biosynthetic pathway have been previously function-
ally characterized. Therefore, this study focused on the
discovery of CYP450s and UGTs involved in the biosyn-
thesis of dammarenediol-type ginsenosides, which are
the major ginsenoside type in the American ginseng root.

Compared to the traditional Sanger method, 454
pyrosequencing provides a tremendous genetic resource
in a fast and economical way. In total, 150 CYP450
unique sequences and 235 UGT unique sequences were
found in the American ginseng cDNA library. We only
found 11 CYP450s (one contig and 10 singletons) and two
UGTs (two singletons) from more than 6,000 Sanger
ESTs in our previous study [22]. With regard to the EST
analysis of another Panax genus plant, P. ginseng, four
CYP450s and four UGTs were found from about 3,000
ESTs generated from the P. ginseng leaf [53]; nine
CYP450s and 12 UGTs were found from more than
11,000 ESTs from five ginseng library [54]. However, the

Figure 3 Expression patterns of OSCs in different plant tissues. A) 
OSC expression in the root, stem, leaf, and flower of American ginseng. 
B) Comparison of the relative abundance of OSC transcripts in Ameri-
can ginseng roots resulting from real-time PCR and EST counting, re-
spectively.
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large number of candidate genes produced by 454 pyrose-
quencing leads to difficulty in the characterization of the
enzymes that are actually involved in this pathway.
Therefore, MeJA inducibility experiments and tissue-spe-
cific expression pattern assays were carried out to elimi-

nate the CYP450s and UGTs that were not involved in
ginsenoside biosynthesis. After this screening, only one
CYP450 and four UGT unique sequences were selected.
They will ultimately be identified by their heterologous
expression in Escherichia coli or yeast and then by an in

Figure 4 Real time PCR analysis of CYP450s in MeJA-treated materials and different plant tissues. CK represents the uninduced material; 6H 
represents the material treated for 6 h with MeJA; and DS represents dammarenediol-II synthase. The corresponding contigs represented by numbers 
1 - 27 are listed in Additional File 6. A) Changes in the gene expression of CYP450s induced by MeJA. B) The gene expression of CYP450s in different 
tissues.
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vitro enzymatic assay. A similar procedure was previously
described in the characterization of other CYP450s or
UGTs involved in the biosynthesis of triterpene
saponins[16,51]. Based on the knowledge that many sec-

ondary metabolites can be induced by MeJA and that
most of the enzymes in the same pathway are coex-
pressed, the MeJA inducibility experiments and the tis-
sue-specific expression pattern assays are useful in the

Figure 5 Real-time PCR analysis of UGTs in MeJA-treated materials and different plant tissues. R represents root; S represents stem; L represents 
leaf; F represents flower and DS represents dammarenediol-II synthase. The corresponding contigs represented by numbers 1 - 27 are listed in Addi-
tional File 6. A) Changes in gene expression of UGTs induced by MeJA. B) The gene expression of UGTs in different tissues.
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identification of enzymes involved in the biosynthesis of
secondary metabolites.

Conclusions
American ginseng is a suitable subject for the study of
triterpene saponin (ginsenoside) biosynthesis. The iden-
tification of enzymes involved in ginsenoside biosynthe-
sis not only facilitates functional studies in the plant but
also sets the stage for improving production levels in
plant or microbial hosts by metabolic engineering. Based
on de novo sequencing and analysis of the transcriptome
using the Roche GS FLX Titanium platform, we found all
of the known genes encoding enzymes involved in the
biosynthesis of the ginsenoside backbone and established
a gene pool containing 150 cytochrome P450 and 235 gly-
cosyltransferase unique sequences. These enzymes repre-
sent two of the most important superfamilies in high
plants, and a large number of them are involved in the
biosynthesis of secondary metabolites. More importantly,
a few candidate genes encoding enzymes responsible for
hydroxylation and glycosylation in the ginsenoside bio-
synthetic pathway were obtained by screening with func-
tional annotation and conducting MeJA inducibility
experiments and tissue-specific expression pattern analy-
ses. Additionally, this study represents the first example
of a large-scale EST analysis from the Araliaceae family.
These EST data will provide the foundation for other
functional genomic research in American ginseng or its
closely related species, such as P. ginseng and P. notogin-
seng.

Methods
Sample collection and preparation
Routinely, the American ginseng root (including the rhi-
zome) is harvested between the fourth to seventh years
after the initial planting for medicinal use. Therefore,
four-year-old American ginseng (P. quinquefolius L.) was
collected from the field in Huai-rou County, Beijing,
China. To analyze expression induction, 200 μM MeJA
(dissolved in 0.25% ethanol) was sprayed onto the leaves
for 6 hours, whereas 0.25% ethanol was sprayed on the
control leaves. The plant tissues were then cut into small
pieces and were immediately stored in liquid nitrogen
until further processing.

RNA extraction
Total RNA was isolated using a Plant RNA Isolation Mini
Kit (BioTeke, Beijing, China). RNA samples were treated
with recombinant DNase I (TURBO DNase; Ambion,
TX, USA) at a concentration of 1.5 units/μg of total RNA.
Total RNA purity and degradation were checked on 1%
agarose gels before proceeding.

cDNA library construction and 454 sequencing
About 2 μg of total RNA extracted from the root of
American ginseng was converted into cDNA using a
modified SMART cDNA synthesis protocol (Clontech,
CA, USA). The long poly(A/T) tails in cDNA may lead to
low-quality sequencing reads from the GS FLX system.
To overcome this limitation, we designed a modified
poly(T) primer with a BsgI site between the adaptor and
the poly(T) (5'-AAGCAGTGGTATCAACGCAGAG-
TACT(20)VN-3'). For cDNA synthesis, this poly(T)
primer was used in combination with the Clontech
SMART IV primer. Double-stranded (ds) cDNA was
purified with a PureLink™ PCR Purification Kit (Invitro-
gen, CA, USA), using Buffer HC to remove cDNAs of less
than 300 bp. The cDNA was then treated overnight with
BsgI (NEB, MA, USA) at a concentration of 3 units/μg of
cDNA. This restriction enzyme cuts within the poly(A)
tail, reducing its length to 4 bases, therefore greatly
increasing the quantity and quality of the 454 reads.
Digested cDNA was recovered with a QIAquick PCR
Purification Kit (Qiagen, Germany). About 7 μg of ds
cDNA was sent to the Roche 454 Company (Branford,
CT, USA) for pyrosequencing using the GS FLX Titanium
Kit.

454 EST assembly
Using the GS FLX pyrosequencing software, we selected
high-quality sequences (> 99.5% accuracy on single base
reads) for further processing and assembly. Adapter trim-
ming and poly(A/T) and short sequence (< 50 bp)
removal were performed by in-house Perl scripts to
obtain clean ESTs. The Newbler software (provided with
the Roche GS FLX sequencer) was used for sequence
assembly, and the quality score threshold was set at 40.

Functional annotation with the BLAST program
The assembled unique transcripts were compared with
the sequences in GenBank's non-redundant database
using the BLASTN algorithm to find and remove ribo-
somal RNA sequences [55]. The remaining sequences
that putatively encoded proteins were searched against
the Arabidopsis protein database in the Arabidopsis
Information Resource (TAIR; http://www.arabidop-
sis.org), the Swiss-prot protein database http://
www.expasy.ch/sprot, and the NCBI non-redundant pro-
tein (Nr) database http://www.ncbi.nlm.nih.gov using the
BLASTX algorithm. A typical cutoff value of E < 1.0-5 was
used.

Pathway assignment with KEGG
Pathway assignments were carried out according to
KEGG mapping [56]. Enzyme commission (EC) numbers
were assigned to unique sequences that had BLASTX
scores with cutoff values of E < 1.0e5, as determined upon

http://www.arabidopsis.org
http://www.arabidopsis.org
http://www.expasy.ch/sprot
http://www.expasy.ch/sprot
http://www.ncbi.nlm.nih.gov
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searching the protein databases. The sequences were
mapped to the KEGG biochemical pathways according to
the EC distribution in the pathway database.

PSPG motif searching
The PSPG motif exists in all known UGTs that are
involved in the biosynthesis of secondary metabolites
[37]. A consensus PSPG motif sequence was used to
search against the glycosyltransferase database generated
from the collection of 235 glycosyltransferases by the
BLASTX program.

Real-time PCR analysis
Approximately 1 μg of DNase I-treated total RNA was
converted into single-stranded cDNA using a Prime-
ScriptTM 1st Strand cDNA Synthesis Kit (TaKaRa,
Dalian, China). The cDNA products were then diluted
50-fold with deionized water before use as a template in
real-time PCR. The quantitative reaction was performed
on an IQ5 Multicolor Real-Time PCR Detection System
(Bio-Rad, USA) using the Power SYBR Green PCR Mas-
ter Mix (Applied Biosystems, CA, USA). The reaction
mixture (20 μL) contained 2× Power SYBR Green PCR
Master mix, 0.9 μM each of the forward and reverse
primers, and 1 μL of template cDNA. PCR amplification
was performed under the following conditions: 50°C for 2
min and 95°C for 30 s, followed by 40 cycles of 95°C for 15
s and 62°C for 1 min. The gene expressions of OSCs,
CYP450s and UGTs were normalized against an internal
reference gene, glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH). For OSC expression analysis, AS2 expres-
sion in the flower tissue was arbitrarily chosen to be the
calibrator of tissue gene expression. For the MeJA induc-
ibility experiment, the expression of each gene in the
uninduced material was used as the calibrator; for tissue-
specific expression assay, expression in root was used as
the calibrator for each gene. The relative gene expression
was calculated using the 2-ΔΔCt method [57]. All primers
used in this study are listed in Additional File 6.
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