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Abstract
Background: Osmotic stress is caused by sudden changes in the impermeable solute concentration around a cell, 
which induces instantaneous water flow in or out of the cell to balance the concentration. Very little is known about 
the detailed response mechanism to osmotic stress in marine Synechococcus, one of the major oxygenic phototrophic 
cyanobacterial genera that contribute greatly to the global CO2 fixation.

Results: We present here a computational study of the osmoregulation network in response to hyperosmotic stress of 
Synechococcus sp strain WH8102 using comparative genome analyses and computational prediction. In this study, we 
identified the key transporters, synthetases, signal sensor proteins and transcriptional regulator proteins, and found 
experimentally that of these proteins, 15 genes showed significantly changed expression levels under a mild 
hyperosmotic stress.

Conclusions: From the predicted network model, we have made a number of interesting observations about WH8102. 
Specifically, we found that (i) the organism likely uses glycine betaine as the major osmolyte, and others such as 
glucosylglycerol, glucosylglycerate, trehalose, sucrose and arginine as the minor osmolytes, making it efficient and 
adaptable to its changing environment; and (ii) σ38, one of the seven types of σ factors, probably serves as a global 
regulator coordinating the osmoregulation network and the other relevant networks.

Background
Osmotic stress refers to the stress on a cell induced by
sudden changes in impermeable solute concentrations
around a cell that affect the equilibrium with the solution
inside the cell. When this happens, water molecules will
move in and out of cells by diffusion via the lipid bilayer
or the aquaporin channels to regain the equilibrium. The
induced water flow across the cell membrane will tend to
cause changes in the cell volume, specifically in the cyto-
plasmic volume, and will induce a number of cellular
responses to maintain the homeostasis of the cell's water
content [1]. When the solute concentration inside a cell is
higher than around the cell, i.e., when under hypoosmotic
stress, water molecules will flow inwards, potentially
causing animal cells to swell and increasing the turgor
pressure in plant and bacterial cells. Alternatively when
the impermeable solute concentration inside a cell is

lower, i.e., when under hyperosmotic stress, water will
flow outwards, hence shocking the cell. In this paper, we
focus on the response system to the hyperosmotic stress
caused by salt shock knowing that the general knowledge
about the hypoosmotic-stress associated response system
in prokaryotes is very limited. Throughout this paper
osmoregulation refers to osmoregulation in response to
the hyperosmotic stress caused by salt shock.

During evolution, all organisms have developed mecha-
nisms to respond to osmotic stresses (or shocks) through
tightly regulating a cell's osmolarity so it stays constant, a
vitally important condition for cells to survive under
changing environments. This regulation process is called
osmoregulation. Prokaryotes are known to use two basic
osmoregulation mechanisms: (i) the salt-in-cytoplasm
mechanism involves adjusting the salt concentration in
the cytoplasm according to the environmental osmolar-
ity, and (ii) the organic-osmolyte mechanism involves
accumulating uncharged, water-soluble organic com-
pounds to maintain an osmotic equilibrium with the sur-
rounding medium [2]. Previous studies have found that
most of the known prokaryotes use the second mecha-
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nism [2], that is to use organic osmolytes such as polyhy-
dric alcohols, sugars, free amino acids and their
derivatives, and combinations of urea and methylamines
[3] to adjust a cell's osmolarity. It has been observed that
the least salt-tolerant organisms tend to use disaccharides
as the osmolytes, whereas the more halo-tolerant and
halophilic species use sugar-polyols and nitrogen-con-
taining solutes [2].

Typically when a cell is under hyperosmotic stress, Na+

and Cl- quickly move into the cell cytoplasm within sev-
eral seconds; the excessive toxic Na+ are actively exported
by Na+/H+ antiporters and the nontoxic K+ are also
actively transported into the cell from the environment
through its K+ antiporters or symporters to maintain the
osmolarity needed by the cell in the first hour; and then
transport some compatible osmolytes into the cell from
the environment or synthesize them in the cell to replace
the K+ surplus within the following several hours [4]. To
date, osmoregulation has been well studied in Bacillus
subtilis, Escherichia coli and yeast, but very little is known
about how osmoregulation works in marine cyanobacte-
ria such as Synechococcus and Prochlorococcus. Synechoc-
occus sp. strain WH8102 is a model organism for
organisms that are known to play a key role in global car-
bon fixation. Since osmolytes represent an important
fraction of the fixed carbon, understanding its allocation
among different compounds is useful in building a pre-
dictive model of these microorganisms.

We have recently carried out a computational study
aiming to predict the osmoregulation network in
WH8102 by extending and applying a computational pro-
tocol for biological network prediction that our group
previously developed [5]. This prediction capability con-
sists of three key steps for network prediction, namely (i)
construction of template network models for related
(model) organisms that have substantial experimental
data and possibly known information about the target
network, (ii) prediction of operons and functional relat-
edness among genes in the target genome, and (iii) map-
ping the template network models to the target genome
through orthologous gene mapping that is consistent
with the predicted operons and gene associations. This
computational protocol has been used to predict the
phosphorus assimilation network, the carbon fixation
network and the nitrogen assimilation regulatory net-
work in WH8102 [5-7]. By adapting this protocol to our
target model, we have constructed a (partial) osmoregu-
lation network for each of five selected organisms, i.e.,
Aphanothece halophytica (A. halo), Corynebacterium glu-
tamicum ATCC 13032 (C. glut), Escherichia coli K12 (E.
coli), Persephonella marina EX-H1 (P. mari), Synechocys-
tis sp. PCC6803 (PCC6803), that have available experi-
mental data related to osmoregulation; made
computational prediction of operons as well as of gene

functional relatedness in WH8102; and then predicted a
model for osmoregulation in WH8102 through mapping
the template models to WH8102 in conjunction and vali-
dating some of these predictions with experimental data.

Our study has led to a number of new discoveries about
osmoregulation in WH8102, including identification of
key transporters, synthetases, signal sensor proteins and
transcription regulator proteins involved in WH8102
osmoregulation. Through analyses of the predicted regu-
latory network, we have gained a number of new insights
about WH8102: (i) WH8102 likely accumulates and uses
glycine betaine as the major osmolyte, and glucosylglyc-
erol, glucosylglycerate, trehalose, sucrose and arginine as
the minor osmolytes; and (ii) σ38, one of the seven types
of σ subunits of the RNA polymerase, probably serves as a
global regulator in the osmoregulation network in
WH8102. To the best of our knowledge, this is the first
published study on construction of the osmoregulation
network using computation methods for cyanobacteria
or any prokaryote.

Results and Discussion
Template networks
The osmoregulation process in prokaryotes typically con-
sists of two components. First, under hyperosmotic
stress, Na+ will be exported out of the cell and K+ will be
transported into the cell as a transient response; and sec-
ond, some compatible osmolytes will be transported from
the environment into or synthesized inside the cell to
replace the K+. The selection of the osmolytes depends on
the duration of the osmotic stress and the availability of
the substrates and osmolytes in the surroundings. Differ-
ent species may prefer different osmolytes.

We have collected, through extensive literature search,
63 genes known to be involved in the osmoregulation
network in five species, Aphanothece halophytica (A.
halo), Corynebacterium glutamicum ATCC 13032 (C.
glut), Escherichia coli K12 (E. coli), Persephonella marina
EX-H1 (P. mari), Synechocystis sp. PCC6803 (PCC6803),
for which the osmoregulation has been studied. The fol-
lowing summarizes what is known about each of the
osmoregulation networks in the five species (see Table 1
for details):

• A. halo has three genes encoding a Na+/H+ anti-
porter to export Na+ out of the cell [8] and two syn-
thetases known to be involved in the betaine
biosynthesis from glycine, compared to the widely
used betaine biosynthesis pathway from choline [9].
• C. glut has a two-component system known for
sensing osmotic stress [10] and a transporter for
uptaking betaine [11];
• E. coli has 31 genes known to be involved in the
osmoregulation process, namely a two-component
system for regulating two major porin-encoding
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Table 1: Components in the template models

Organism Gene Symbol Function

AB094497 GsmT Betaine synthetases with glycine as the

A. halo AB094498 SdmT substrate

BAB69459 apNhaP Na+/H+ antiporter

cg1016 BetP Betaine transporter

C. glut cg0864 MtrB Two-component system that senses osmotic

cg0862 MtrA stress

b0019 NhaA Na+ antiporter

b1186 NhaB

b0020 NhaR Na+/H+ antiporter regulator

b3290 TrkA Predominant K+ channel

b1291 TrkE

b1363 TrkG

b3893 TrkH

b3747 Kup K+ channel playing a major role in neutral or slightly alkaline 
environments

b0698 KdpA High-affinity K+ channel playing a major role

b0697 KdpB under osmotic stress

b0696 KdpC

b4513 KdpF

b0694 KdpE Two component system activating Kdp

E. coli b0695 KdpD expression under osmotic stress

b0311 BetA Betaine synthetases with proline as the

b0312 BetB substrate

b0314 BetT Proline transporter

b1896 OtsA Trehalose synthetases with UDPG as the

b1897 OtsB substrate

b2677 ProV Betaine/proline transporter

b2678 ProW

b2679 ProX

b2938 SpeA Arginine synthetase

b3404 EnvZ Two-component system regulating OmpC and

b3405 OmpR OmpF under osmotic stress
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b0929 OmpF Porin-encoding genes

b2215 OmpC

b4111 ProP Betaine/proline transporter

b2741 σ38 RNA polymerase, Sigma 38 (Sigma S) factor

b1126 PotA Putrescine/spermidine transporter

b1125 PotB

b1124 PotC

b1123 PotD

b0854 PotF Putrescine transporter

b0855 PotG

b0856 PotH

b0857 PotI

P. mari ABX75857 GpgS Glucosylglycerate synthetase

ABX75858 GpgP

sll0689 NhaS3 Na+/H+ antiporter

sll0493 KtrA Predominant K+ transporter playing a major

slr1509 KtrB role in K+ uptake under osmotic stress

slr1508 KtrE

slr1728 KdpA High-affinity K+ channel playing a minor role

slr1729 KdpB in K+ uptake under osmotic stress

slr1730 KdpC

PCC6803 slr1731 KdpD Two component system activating Kdp expression under osmotic 
stress

sll0045 SpsA Sucrose synthetase

slr1312 SpeA Arginine synthetase

slr0662 SpeA

slr0747 GgtA Glucosylglycerol/trehalose/sucrose

slr0529 GgtB transporter

slr0530 GgtC

slr0531 GgtD

sll1546 GgpS Glucosylglycerol synthetases

slr0746 GgpP

sll0306 RpoD RNA polymerase, Sigma 70 (sigma D) factor

Table 1: Components in the template models (Continued)
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genes [12], two Na+ antiporters [4] and three active K+

transport systems whose activation is determined by
the environmental condition [3,13,14], and a number
of transporters and synthetases for betaine [3], treha-
lose [15,16], putrescine and spermidine [17], respec-
tively. σ38, one of the seven types of σ subunits of RNA
polymerase, is a master regulator in a complex regula-
tory network that governs the expression of many sta-
tionary-phase-inducible genes, and was recently
proposed as a global regulator in the osmoregulation
network [18,19];
• P. mari has two genes known for glucosylglycerate
synthesis [20];
• PCC6803 has 18 genes known to be involved in
osmoregulation process, including two K+ uptake sys-
tems in which Ktr plays a major role in K+ uptake
under osmotic stress [21], a Na+/H+ antiporter [22]
and a number of transporters and synthetases for glu-
cosylglycerol [23,24], sucrose [25] and arginine [26];
and

We have used these data as the templates and mapped
them to WH8102, and built the initial target network in
WH8102.

The initial osmoregulation model of WH8102
By using P-MAP [27] and BLAST [28], we were able to
map the genes from the five (partial) template networks
outlined above to 28 genes in WH8102 (Additional files 1,
2, 3, 4 and 5), providing the components of our initial
osmoregulation network model of WH8102. P-MAP
maps a template network onto a target genome by finding
the orthologous genes of the template in the target
genome using both sequence similarity information and
operon information [27]. When multiple genes from dif-
ferent organisms are mapped to the same gene in
WH8102, we choose the mapping from the organism
with a closer evolutionary relationship. For example, both
OtsA (b1896) in E. coli and GgpS (sll1566) in PCC6803
are mapped to SYNW1281 in WH8102, we have accepted
the mapping from PCC6803. Table 2 shows the mapped
gene list, along with a numerical score for each (mapped)
gene, representing the level of similarity between the two
protein domain structures.

When mapping the template networks onto WH8102,
we noticed that only the Na+/H+ antiporter in PCC6803
maps to SYNW0157 (CPA2 family Na+/H+ antiporter) in
WH8102, while Na+/H+ antiporters in E. coli and A.halo
do not have any hits. The three K+ uptake systems in the
template organisms can only be partially mapped to
WH8102 (see Template networks); and only KtrBAE
(SYNW2168-2169, 0663), is found in WH8102 through
mapping, while the other two systems, Kdp and Kup,
could not be mapped (see Table 2). This mapping result
seems to make sense since (i) it has been reported that

the Ktr system, not the Kdp system, plays a major role in
the K+ uptake under osmotic stress in PCC6803; and (ii)
the Kup system functions in a low pH environment in E.
coli [13] while the living environment of WH8102 has a
pH value 8.1, suggesting that Kup may not be useful for
WH8102.

A number of key osmolyte accumulation systems have
been found in WH8102 through mapping (see Table 2).
Multiple transporters and synthetases for the major
osmolyte betaine [11] are identified in WH8102: BetT
(SYNW0229), BetP (SYNW2494) and ProVWX
(SYNW1915-1917) are probably used to uptake betaine
from the environment when it is available; GsmT
(SYNW1914) and SdmT (SYNW1913) are responsible for
synthesizing betaine from glycine; and BetB
(SYNW1956) are likely used to synthesize betaine from
proline. In addition to the major osmolyte, SpsA
(SYNW2520) and SpeA (SYNW2359) are two key
enzymes in the sucrose synthesis pathway and arginine
synthesis pathway respectively; GgtCDA (SYNW1283-
1285) are likely used to uptake glucosylglycerol, trehalose
and/or sucrose, and GgpSP (SYNW1281, 0860) are for
glucosylglycerol biosynthesis; and GpgSP (SYNW2436,
2434) are used to synthesize glucosylglycerate.

The overall initial osmoregulation model can be sum-
marized as follows: (i) under hyperosmotic stress,
WH8102 first uptakes K+ possibly through the Ktr sys-
tem, and then accumulates the major osmolyte betaine as
well as some minor osmolytes such as glucosylglycerol,
glucosylglycerate, trehalose, sucrose and arginine
through the flexible osmolyte accumulation systems; and
(ii) σ38 (SYNW1621) may serve as a global regulator to
coordinate the K+ uptake and the osmolyte accumulation
processes. We have noted that some key subunits of an
osmoregulation network are missing from the initial
model based on template mapping alone, such as GgtB
(see Table 2), so additional information is needed to
expand and refine the model.

The expanded osmoregulation model in WH8102
We have expanded the initial network model through
"guilt by association" based on co-location (operons), co-
regulation and co-evolution information that we can cal-
culate through comparative genomic analyses. The basic
idea of such association-based prediction is that if protein
A is in the initial model but B is not, we will consider add-
ing B to the model if A and B are related based on the
aforementioned "co-" analyses. Additional file 6 lists the
expanded model of the osmoregulation network through
execution of the following steps.
Expansion based on operon prediction
It is well known that genes in the same operon are func-
tionally related, such as enzymes catalyzing subsequent
steps in a metabolic pathway, or forming a protein com-
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plex [29]. We added 24 new genes into the initial model
based on operon predictions for WH8102 [30] (see Addi-
tional file 6). Specifically, we added SYNW2165-2167 and
2170 since they share the same operon with SYNW2168-
2169 (KtrBA), which could be candidates for the missing
subunits of the potassium transporter complex Ktr (see
Table 2), although additional experimental studies are
needed to validate the prediction. SYNW1279-1280,
1282, 1286 are added to the model since they share the
same operons with GgpS (SYNW1281) and GgtCDA
(SYNW1283-1285), which are the WH8102 candidates
for GgtB (b0529) in E. coli. We noted that this prediction
is also supported by phylogenetic profile-based predic-
tion (see Expansion based on phylogenetic profile analy-
sis). SYNW0230-0233 and SYNW2495 are added since

they share operons with BetT (SYNW0229) and ProP
(SYNW2494), respectively, which are possible candidates
for the missing betaine osmolyte transporter subunits.
SYNW2435 is added since it shares the same operon with
GpgP (SYNW2434), which might be involved in the glu-
cosylglycerate synthesis pathway. SYNW0552 and
SYNW2247-2250 are added since they share the same
operon, respectively, with SYNW0552 and SYNW2246,
which might be used for osmotic signal transduction.
SYNW0664-0667 are added since they share the same
operon with KtrE (SYNW0663); and SYNW0101 is added
since it shares the same operon with RpoD (SYNW0102).
Expansion based on predicted protein-protein interactions
Protein-protein interactions, derived from large-scale
two-hybrid experiments [31] or predicted based on pro-

Table 2: Components in the initial network model

Source Synonym Source Symbol Target Synonym Operon DA1 Score Organism

b3404 EnvZ SYNW0807 SYNW0807-0808 1 E. coli

b3405 OmpR SYNW0808 SYNW0807-0808 0.99 E. coli

sll0689 NhaS3 SYNW0157 0.99 PCC6803

sll0493 KtrA SYNW2169 SYNW2165-2170 0.56 PCC6803

slr1509 KtrB SYNW2168 SYNW2165-2170 0.99 PCC6803

slr1508 KtrE SYNW0663 SYNW0663-0667 0.99 PCC6803

b2741 σ38 SYNW1621 1 E. coli

sll0306 RpoD SYNW0102 SYNW0101-0102 1 PCC6803

b0312 BetB SYNW1956 0.99 E. coli

b0314 BetT SYNW0229 SYNW0229-0233 0.99 E. coli

b4111 ProP SYNW2494 SYNW2494-2495 E. coli

b2677 ProV SYNW1915 SYNW1915-1917 0.56 E. coli

b2678 ProW SYNW1916 SYNW1915-1917 0.99 E. coli

b2679 ProX SYNW1917 SYNW1915-1917 0.99 E. coli

AB094497 GsmT SYNW1914 PCC7418

AB094498 SdmT SYNW1913 PCC7418

sll1566 GgpS SYNW1281 SYNW1279-1286 0.99 PCC6803

slr0746 GgpP SYNW0860 PCC6803

slr0747 GgtA SYNW1285 SYNW1279-1286 0.99 PCC6803

slr0530 GgtC SYNW1283 SYNW1279-1286 0.99 PCC6803

slr0531 GgtD SYNW1284 SYNW1279-1286 0.99 PCC6803

ABX75857 GpgS SYNW2436 P.marina

ABX75858 GpgP SYNW2434 P.marina

slr0662 SpeA SYNW2359 0.99 PCC6803

sll0045 Sps SYNW2520 0.69 PCC6803

b0855 PotG SYNW1544 0.99 E. coli

YP_225044 MtrA SYNW2246 C. glut

YP_225045 MtrB SYNW0551 C. glut

1. DA: domain architecture
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tein fusion analyses [32], provide another source of infor-
mation for expanding our initial network. We used the set
of protein-protein interactions in WH8102 predicted pre-
viously by our group [5], which contains 950 interactions
http://www.cs.uncc.edu/~zcsu/pathways/nitrogen/nitro-
gen. Specifically, SYNW0798 (a putative transcriptional
regulator, ArsR family) and SYNW2141 (possibly a sterol-
C-methyltransferase) are added into the network since
they are predicted to form a protein complex with SdmT
(SYNW1913) and gdmT (1914), respectively, which are
already in the initial model. SYNW1232 (possibly a type-
3 alternative RNA polymerase sigma factor), SYNW1416
(ABC transporter, nitrate-like) and SYNW2486 (putative
cyanate ABC transporter) are added since they are pre-
dicted to form a protein complex with ProVWX
(SYNW1915-1917). SYNW0412 (hypothetical protein),
SYNW0641 (possible glycosyltransferase) and
SYNW0645 (putative glycosyltransferase family 2 pro-
tein) are added since they are predicted to form a protein
complex with Sps (SYNW2520). SYNW2236 (two-com-
ponent response regulator) and SYNW2289 (two-com-
ponent response regulator) are added since they are
predicted to form a protein complex with SYNW0551.
SYNW0125 (putative sugar-binding protein) is added
since it is predicted to form a protein complex with
SYNW2246. SYNW0034 (biotin carboxyl carrier protein
subunit of acetyl-CoA carboxylase) and SYNW2324
(guanosine-3',5'-diphosphate) are added since they are
predicted to form a protein complex with BetB
(SYNW1956). SYNW0134 (SsrA-binding protein) is
added since it is predicted to form a protein complex with
SpeA (SYNW2359). SYNW0729 (hypothetical protein) is
added since it is predicted to form a protein complex with
KtrE (SYNW0663). Overall, 15 new proteins are added
into the network based on their predicted interactions
with proteins already in the network model (see Figure 1).
Expansion based on the σ38 regulon prediction
σ38 has been suggested as a global regulator in the
osmotic control of gene expression in E. coli [18], so we
added additional genes based on orthology mapping of
the σ38 regulon of E. coli to WH8102. We first tested and
validated our regulon mapping method in PCC6803 (see
Materials and Methods) since there are multiple microar-
ray datasets for this organism. We first collected 103
genes of the σ38 regulon in E. coli from RegulonDB 6.3
[33], and mapped 49 genes to their orthologs in PCC6803
(see Additional file 7). To assess the reliability of our reg-
ulon mapping, we collected microarray data of PCC6803
under hyperosmotic stress from the public domain (see
Additional file 8). We found that 11 of the 49 mapped
genes showed more than two-fold change in their expres-
sion levels. This result has a significant P-value 0.099 (see
Materials and Methods), suggesting that our prediction is
statistically significant. The possible reason for the P-

value being not any lower could be that (i) the effect of
the osmotic stress is rather local; or (ii) the time points at
which the expression data are collected do not coincide
well with the timing of the relevant response process.

Having demonstrated the reliability of the σ38 mapping
on PCC6803, we then applied the same mapping to
WH810, and mapped 41 genes onto WH8102 (see Addi-
tional file 9). We noticed that some genes in the initial
network model, e.g., GgpS (SYNW1281), ProVWX
(SYNW1915-1918), BetB (SYNW1956) and ProP
(SYNW2494), are predicted as targets of σ38, indicating
that our mapping functions properly.
Expansion based on phylogenetic profile analysis
It has been well demonstrated that genes with highly sim-
ilar phylogenetic profiles are functionally related [34]. We
used the same 810 bacterial genomes mentioned earlier
to construct a phylogenetic profile for each gene in
WH8102 http://csbl.bmb.uga.edu/~xizeng/research/
osmoregulation. Using the phylogenetic profile informa-
tion, we identified 7 genes already in our initial network
and added 13 additional genes to our network model, as
shown in Figure 2. Specifically, EnvZ (SYNW0807) and
OmpR (SYNW0808), ProVWX (SYNW1916-1918), and
KtrBA (SYNW2168-2169) already in our initial network
are identified again. SYNW0689, SYNW0746,
SYNW0853, SYNW1282, SYNW1526-1527, and
SYNW1530-1531 are added since they have very similar
phylogenetic profiles with those of GgtCDA

Figure 1 Genes recruited based on predicted protein-protein in-
teractions. Circles represent genes in the initial network, and the trian-
gles are the new genes recruited based on protein-protein 
interactions. The fold-change of gene expression levels in WH8102 un-
der hyperosmotic stress against normal conditions is color-coded. (the 
Cytoscape program [46]).

http://www.cs.uncc.edu/~zcsu/pathways/nitrogen/nitrogen
http://www.cs.uncc.edu/~zcsu/pathways/nitrogen/nitrogen
http://csbl.bmb.uga.edu/~xizeng/research/osmoregulation
http://csbl.bmb.uga.edu/~xizeng/research/osmoregulation
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(SYNW1283-1285). We believe that they may be candi-
dates for GgtB (b0529) of E. coli, and probably involved in
glucosylglycerol synthesis. SYNW0754, SYNW0765,
SYNW1250, SYNW2099 and SYNW2471 are added since
they have very similar phylogenetic profiles with those of
GpgSP (SYNW2436, 2434), and they are probably
involved in glucosylglycerate synthesis.

Overall, 86 new genes are added to the initial osmoreg-
ulation network model, 24 based on co-operon informa-
tion, 15 based on protein-protein interactions, 41 based
on σ38 regulon, and 13 based on predicted co-evolution-
ary relationships, among which some genes are added by
more than one method. For some of these newly added
genes, we have predicted their possible functional roles in
osmoregulation but for others, all we can say is that we
believe that they are involved in osmoregulation in
WH8102 but we do not have further information about
their functional roles. Experimental studies are clearly
needed to elucidate the detailed functions of these genes.

Validation and refinement
To validate the components in the predicted osmoregula-
tion network and refine it based on the validation results,
we have checked our predictions against (i) the published
literature related to osmoregulation in WH8102; (ii)
whole-genome microarray gene expression data of both

WH8102 and PCC6803. Our WH8102 data is collected
under mild salt shock (see Materials and Methods), and
the PCC6803 data under multiple conditions were col-
lected from public databases; and (iii) protein domain
architecture information from public databases.

Our predicted osmoregulation model is highly consis-
tent with the published literature. Lu et al. showed exper-
imentally that WH8102 synthesizes betaine from glycine
using SYNW1913-1914 (SdmT and GsmT) [11], both
genes in our initial model. A recent review by Scanlan et
al. summarized 15 WH8102 genes known to be involved
in the biosynthesis and uptake of betaine and glucosylg-
lycerol [35], all of which are in our model. Notably, BetAB
is considered missing across all cyanobacteria genomes
except for Trichodesmium erythraeum and Crocosphaera
watsonii, according to this review. We found a homolog
(SYNW1956) in WH8102 with an E-value 1.67 × 10-23,
and included this homolog in our in our model based on
the significance of the E-value. Clearly further experi-
ments are needed to study its possible role relevant to
osmotic stress.

We have checked our predicted genes against one
microarray dataset (Additional file 10) that we collected
under mild salt shock. 102 WH8102 genes show differen-
tial expressions under this condition compared to no salt
shock, which is estimated at 1% false discovery rate (see
Materials and Methods). Among the 114 genes that we
predicted to be involved in the osmoregulation process of
WH8102, 15 genes show differential expressions under
this condition, giving rise to a P-value of 3.44 × 10-5,
which is the probability of seeing this many genes with
differential expressions among 114 randomly selected
genes out of the 2,520 WH8102 genes. Among these 15
genes, 9 are in the initial model, 4 are added based on
operon information, 1 added based on protein-protein
interaction data, 3 added based on the regulon prediction
and 1 added based on co-evolutionary analyses (see Table
3).

We also used conservation information of protein
domains to validate the gene pairs predicted by P-MAP
mapping with one gene from a template genome and the
other being the mapped gene in WH8102. The consider-
ation is that true orthologous genes across two (related)
genomes should in general have the same domain archi-
tecture. For each gene in our initial network model as well
as genes mapped from the σ38 regulon and its orthologous
gene from the corresponding reference genome, we cal-
culated a conservation score for their protein-domain
architectures, having the score ranging from 0 to 1, with 1
representing two domain architectures being identical
and 0 for being totally different (see Materials and Meth-
ods). For 63 such gene pairs, 56 pairs have domain-con-

Figure 2 Genes recruited based on phylogenetic analyses. Circles 
represent genes in the initial network model, and the triangles are 
genes recruited based on phylogenetic analyses. All nodes are color-
coded, representing different levels of fold-changes in gene expres-
sion in WH8102 under hyperosmotic stress versus normal conditions. 
(the Cytoscape program [46])
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servation scores almost being 1, indicating that our
orthology mapping works properly. seven gene pairs did
not have good domain conservation scores, possibly indi-
cating that these gene pairs may not be correctly mapped,
which include the following: SYNW2169 (KtrA) does not
have PFPF02080, the TrkA C-terminal domain;
SYNW1915 (ProV) does not have PF00571, the CBS
domain; SYNW2520 (SpsA) does not have PF00862, the
sucrose synthase domain; SYNW0944 (idcC) does not
have the PF03709, the Orn/Lys/Arg decarboxylase, N-ter-
minal domain; SYNW1884 (SohB) does not have
PF08496, the peptidase family S49 N-terminal;
SYNW2260 (NhaR) does not have PF03466, the LysR
substrate binding domain; and SYNW1759 (TalA) has
two additional tandem PF00036, the EF hand domain.

Crosstalk between osmoregulation and other pathways
We have carried out a pathway-enrichment analysis on
our osmoregulation model using KOBAS [36,37] in con-
junction with an application of the expression data of
WH8102 (see Materials and Methods). 87 out of the 114
genes in our model are mapped onto 82 KEGG pathways
(see Additional file 11), and 11 pathways are enriched
with P-value ≤ 0.05 (see Figure 3), including transporters,
valine, leucine and isoleucine degradation, ABC trans-
porters, fatty acid biosynthesis, aminophosphonate
metabolism, limonene and pinene degradation, two-com-
ponent system, protein kinases, glycerolipid metabolism,
urea cycle and metabolism of amino groups, lysine degra-
dation. These enrichment results suggest that these path-
ways may have direct cross-talk with the osmoregulation
process.

A working model for osmoregulation network
We now describe a working model for the osmoregula-
tion network in WH8102 based on our prediction and
validation results (see Figure 4). Our model consists of
114 genes, 94 of which have predicted functional roles in
osmoregulation and the remaining 20 are predicted to be
involved in the network but without predicted functions.

Our overall model can be summarized as follows, which
consists of the following key components and gene
assignments.

1. Na+ export system: SYNW0157 functions as a Na+/
H+ antiporter to export the excessive Na+ out of the
cell under hyperosmotic stresses;
2. K+ uptake systems: SYNW0663, SYNW2168-2169
consist of a Ktr system and may play a major role in
active K+ uptake under hyperosmotic stresses;
3. Osmolyte accumulation systems: SYNW0229
(BetT), SYNW1915-1917 (ProVWX) and SYNW2494
(ProP) are used to uptake the major osmolyte betaine
if available in the environment, while SYNW1913-
1914 (SdmT and GsmT) are used to synthesize
betaine from glycine when needed; SYNW2436
(GpgS) and SYNW2434 (GpgP) are used to synthesize
glucosyl glycerate or mannosylglycerate from glucose;
SYNW1281 (GgpS) and SYNW0860 (GgpP) are used
to synthesize glucosylglycerol from glucose, while
SYNW1283-1287 (GgtABCD) uptake glucosylglyc-
erol when available in the environment; SYNW2359
(SpeA) is for synthesizing the minor osmolyte argin-
ine; and SYNW2520 (Sps) for synthesizing the minor
osmolyte sucrose;
4. Global regulator: SYNW1621 (σ38) functions as a
global transcription regulator possibly to bridge the
K+ uptake and osmolyte accumulation processes and
to coordinate osmoregulation with other biological
processes; and
5. Two-component signal transduction systems:
SYNW0807-0808 (EnvZ and OmpR) regulate water
across the outer membrane and gene responses of
some osmoregulatory elements; and SYNW0551 and
SYNW2246 may be responsible for sensing external
osmotic stress and/or activating a number of genes
relevant to osmoregulation, which suggests other
member genes should also be relevant to osmosens-
ing but further experiments are needed to derive
more information about this.

Table 3: Validation of the added genes based on different information sources. The P-value is calculated using hyper-
geometric distribution.

Methods Number of recruited genes Differentially-expressed genes (false 
discovery rate ≤ 0.01)

P-value

Initial model 27 9 5.24 × 10-7

Operon 24 4 1.44 × 10-2

Protein-protein interactions 16 1 0.48

Regulon prediction 41 3 0.23

Phylogenetic profile 13 1 0.42

Expanded model 114 15 3.44 × 10-5
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Conclusions
From our predicted model, we found that (i) WH8102
likely accumulates and uses glycine betaine as the major
osmolyte, and glucosylglycerol, glucosylglycerate, treha-
lose, sucrose and arginine as the minor osmolytes; and (ii)
σ38, one of the seven types of σ subunits of the RNA poly-
merase, probably serves as a global regulator in the osmo-
regulation network in WH8102. We believe that this
working model provides useful information to experi-
mental biologists in their research design for further
studying the osmoregulation process in WH8102. To the
best of our knowledge, this model represents the first
published study on construction of the osmoregulation
network using computation methods for cyanobacteria
or any prokaryote.

Methods
Data
All the used genome sequences and annotations were
retrieved from NCBI FTP (ftp://ftp.ncbi.nih.gov/
genomes/Bacteria, 05-02-2008). The σ38 regulon of E. coli
are downloaded from RegulonDB 6.3 [33].

Mapping of template networks
We used the P-MAP program [27] with E-value ≤ 10-6, in
conjunction with BLAST [28] with E-value ≤ 10-20, to
map template networks to WH8102. The mapping results

from different organisms were then merged, which gives
the initial network model. When different functional
roles are assigned to the same gene or one functional role
is assigned to different genes based on different tem-
plates, we resolved the conflict by assessing the informa-
tion of evolutionary distance of organism, the
conservation of protein domain architectures, and avail-
able gene expression values (see below).

Expansion of initial network
We downloaded the predicted operons of WH8102 from
the DOOR database [30] and the protein-protein interac-
tions from http://www.cs.uncc.edu/~zcsu/pathways/
nitrogen/nitrogen.

We have predicted the σ38 regulon in WH8102 based on
the following observation: σ38 candidate (SYNW1621) in
WH8102 has high sequence similarity as well as domain
architecture and 3D protein structure similarities with its
counterpart b2741 (σ38) in E. coli (see Figure 5). So we
assume that the two regulons, the one in E. coli and the
one in WH8102, have similar sets of components, and
hence we have mapped the σ38 regulon of E. coli to
WH8102.

The functional relatedness among WH8102 genes is
assessed based on the similarities of their phylogenetic
profiles calculated against n = 810 bacterial genomes. A
phylogenetic profile of a WH8102 gene in reference to the

Figure 3 The enriched pathways within the osmoregulation model of WH8102. The proportion of the up-regulated genes against all the genes 
in the pathway under consideration is color-coded.

ftp://ftp.ncbi.nih.gov/genomes/Bacteria
ftp://ftp.ncbi.nih.gov/genomes/Bacteria
http://www.cs.uncc.edu/~zcsu/pathways/nitrogen/nitrogen
http://www.cs.uncc.edu/~zcsu/pathways/nitrogen/nitrogen
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n genomes [G1,..., Gn] is a binary string a1, ..., an with ai = 1
if the gene has a detectable ortholog in Gi and ai = 0 oth-
erwise [34]. Let mj be the number of WH8102 genes hav-
ing an ortholog in the jth reference genome. Traditionally,
the functional relatedness between two genes has been
estimated using the Euclidean distance between the phy-
logenetic profiles of the two genes. Our initial analysis
indicates that this is not a very effective way for measur-
ing the functional relatedness of genes so we have modi-
fied it as follows. We define the likelihood of the ith gene
of WH8102, LHi, having orthologs across all the reference

genomes as , with pj = mj/n if the gene has an

ortholog in the jth reference genome and pj = 1 − mj/n oth-

erwise. The functional relatedness between genes, gi and
gj, is defined as

with , dH is

the Hamming distance between the phylogenetic profiles
of gi and gj, α is a weighting factor (the default is α = 2),
and h is the number of genomes that have orthologs of
both gi and gj.

Using this measure, we can define for each WH8102
gene its functionally most related genes. For each gene g
in our initial model, we recruit all genes into the model,

−
=
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Figure 4 A working model for the osmoregulation network of WH8102. When under hyperosmotic stress, N+ is actively exported by the NhaS3 
antiporter; K+ is actively transported into the cell by the Ktr systems, and stabilizes the global transcription regulator σ38; this then activates other genes 
in relation with osmotic response, all represented as deep grey ellipses, including osmolyte transporters or synthetases, such as BetT, ProVWX, GgtAB-
CD and GgpS; hyperosmotic stress also activates the two component system of EnvZ and OmpR to regulate porin protein OmpC and OmpF located 
in the periplasmic membrane; Besides sigma factor-regulated genes, SdmT and GsmT synthesize the major osmolyte betaine, and GpgS and GpgP to 
synthesize glucosylglycerol.
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Figure 5 Comparison between SYNW1621 (σ38 candidate) and b2741 (σ38) at three levels. (a) Sequence alignment between SYNW1621 and 
b2741 by the water program in EMBOSS [47]; (b) Protein domain architectures of SYNW1621 and b2741, which represent as a series of colourful shapes, 
respectively; (c) the protein 3D structures of SYNW1621 and b2741 predicted using the LOMETS software [48] and Rasmol [49].
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which are more closely related to g than any gene already
in the initial model.

Genome-wide search for domain architecture similarity
We used the Pfam database [38] as the source of protein
domain definitions, and the InterproScan program [39]
to identify all protein domains in the template genomes
and the target genome. To measure the similarity
between two given domain architectures, we imple-
mented a domain-architecture similarity score, which
was originally defined by Lin et al [40] as a linear combi-
nation of three different indices: the Jaccard index, which
measures the number of common domains that the two
architectures contain; the Goodman-Kruska γ function,
which estimates the similarity of the arrangement of the
distinct domains shared by the two architectures; and the
domain duplicate index, which assess the similarity
among the duplicated domains in the two architectures.
The related scripts can be downloaded from http://
csbl.bmb.uga.edu/~xizeng/research/osmoregulation.

Prediction of differentially expressed genes
We implemented a script based on BioRuby http://bio-
ruby.org to calculate the average fold-change of expres-
sion levels for each gene under two conditions if
microarray data is available, otherwise we have collected
genes from published papers, which were found to be dif-
ferentially expressed (see Additional file 12). We have
used fold-change = 2.0 and 0.5 as the cutoffs for calling a
gene up- or down-regulated, respectively, and no change
for values in-between.

DNA microarray transcriptional profiling for WH8102
Microarray data was obtained using a whole-genome
microarray, design of which was described previously
[41]. Cultures of Synechococcus sp. strain WH8102 were
grown in synthetic ocean water-based media with supple-
mented nutrients as described previously [6]. This
medium is 75% seawater salinity. Triplicate cultures were
grown to mid-exponential at which point RNA was
extracted from half of each culture and designated as
control RNA; and 0.125 M NaCl was added to the other
half of each culture bringing its salinity up to approxi-
mately that of seawater. After two hours RNA was
extracted from the remaining half of the culture. RNA
was harvested using a Trizol-based method and purified
with a Qiagen RNeasy kit according to the manufacturer's
specifications. Microarray hybridization was performed
as described previously [6]. Briefly, an indirect labeling
method was used to label cDNA with Cy3 (control sam-
ples) or Cy5 (treated samples), samples were then pooled
and hybridized to the same array. This was done in dupli-
cate for each biological replicate. Additionally, reverse
labelling was performed for each biological replicate,
resulting in three total technical replicates per biological
replicate. Following hybridization, slides were promptly

scanned at a 10-μm resolution using an Axon 4000B
scanner with GenePix 4.0 software. Processing of the
TIFF images from hybridized arrays was performed using
TIGR-Spotfinder http://www.tigr.org/software, and the
datasets normalized by applying the LOWESS algorithm,
using block mode and a smooth parameter of 0.33, avail-
able in the TIGR-MIDAS package http://www.tigr.org/
software. Statistical analysis was performed on the mean
of log2-transformed signal ratios of the replicate spots
using the Statistical Analysis of Microarrays (SAM) algo-
rithms [42] with a false discovery rate (FDR) of less than
1%.

P-value calculation based on microarray data
We use the following hyper-geometric distribution to
estimate the cumulative probability that our predictions
may happen by randomly drawing genes from all the dif-
ferentially expressed genes:

where N is the number of all genes in the genome, and
A is the number of differentially expressed genes under
hyperosmotic stress; K is the number of genes in our net-
work; and V is the number of predicted genes in our net-
work that are differentially expressed under
hyperosmotic stress.

Pathway enrichment analysis
Pathway enrichment analysis can usually give biological
insights about the genes showing differential expressions
under two conditions [43,44]. We used the KOBAS pro-
gram [36] to identify significantly enriched pathways by
genes in our predicted osmoregulation network against
all known genes in WH8102 as the background. KOBAS
maps interested genes onto known KEGG pathway [45]
using BLAST with E-value ≤ 1e-5 and rank ≤ 10, and then
uses hyper-geometric distribution to calculate the statis-
tical significance of each pathway populated by the inter-
ested genes with respect to all the genes encoded in the
whole genome as the background. The relevant formulas
have been well described in previous work [36].

Additional material

Additional file 1 Gene Mapping from A. halo to WH8102. This file con-
tains genes mapped from the template organism A. halo to WH8102 in the 
initial osmoregulation network. The file has nine columns: basic gene infor-
mation including synonym, GI number and symbol in the first-fifth col-
umns, operon information if applicable in the sixth column, and 
comparison of protein domain architecture if applicable in the seventh-
ninth columns. The score in the seven column measures the similarity of 
protein domain architectures: 1 and 0 means completely identical and dif-
ferent, respectively, and values between them means partially identical.
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