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Abstract
Background: In bacteria, small non-coding RNAs (sRNAs) have been recognized as important regulators of various 
cellular processes. Approximately 200 bacterial sRNAs in total have been reported. However, very few sRNAs have been 
identified from phytopathogenic bacteria.

Results: Xanthomons campestris pathovar campestris (Xcc) is the causal agent of black rot disease of cruciferous crops. In 
this study, a cDNA library was constructed from the low-molecular weight RNA isolated from the Xcc strain 8004 grown 
to exponential phase in the minimal medium XVM2. Seven sRNA candidates were obtained by sequencing screen of 
2,500 clones from the library and four of them were confirmed to be sRNAs by Northern hybridization, which were 
named sRNA-Xcc1, sRNA-Xcc2, sRNA-Xcc3, and sRNA-Xcc4. The transcription start and stop sites of these sRNAs were 
further determined. BLAST analysis revealed that the four sRNAs are novel. Bioinformatics prediction showed that a 
large number of genes with various known or unknown functions in Xcc 8004 are potential targets of sRNA-Xcc1, sRNA-
Xcc3 and sRNA-Xcc4. In contrast, only a few genes were predicted to be potential targets of sRNA-Xcc2.

Conclusion: We have identified four novel sRNAs from Xcc by a large-scale screen. Bioinformatics analysis suggests that 
they may perform various functions. This work provides the first step toward understanding the role of sRNAs in the 
molecular mechanisms of Xanthomonas campestris pathogenesis.

Background
Numerous evidences show that small non-coding RNAs
(sRNAs) exist in all three domains of life, i.e. Eukarya,
Bacteria and Archaea. Bacterial sRNAs are normally
between 50 and 500 nucleotides in length. It has been
demonstrated that many bacterial sRNAs act as regula-
tors of gene expression, although the function of the
majority of identified bacterial sRNAs is still unknown.
Recent studies have revealed that in bacteria sRNAs con-
trol various cellular processes, including acid resistance
[1], iron homeostasis[2], sugar metabolism[3], envelope
stress response [4,5], quorum sensing [6], as well as viru-
lence [7,8]. Most bacterial sRNAs characterized to date
regulate gene expression either by pairing to their mRNA
targets and thus affecting their stability and/or transla-

tion, or by binding to proteins to modify their mRNA-
binding activity [9,10].

Several experimental strategies have been employed to
identify sRNAs[11,12] and approximately two hundred
bacterial sRNAs in total have been discovered thus far.
Among the identified bacterial sRNAs, almost half were
from Escherichia coli [12,13], and the other half were
mainly from Bacillus subtilis [14], Caulobacter crescentus
[15], Listeria monocytogenes [16], Mycobacterium tuber-
culosis [17], Pseudomonas aeruginosa [18], Salmonella
typhimurium [19], Sinorhizobium meliloti [20,21], Staph-
ylococcus aureus [22], and Vibrio cholerae [23]. Based on
bioinformatics analysis, it is estimated that per bacterial
genome may encode several hundred sRNAs[24,25].
Thus, there are still a large number of unknown sRNAs in
bacteria including the standard model bacterium E. coli.
Very few sRNAs have been reported from plant patho-
genic bacteria.

The Gram-negative bacterium Xanthomonas campes-
tris pathovar campestris (Xcc) is the causal agent of black
rot disease of cruciferous crops worldwide[26]. This
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pathogen infects almost all the members of crucifer fam-
ily (Brassicaceae), including important vegetables such as
broccoli, cabbage, cauliflower, mustard, and radish; the
major oil crop rape; and the model plant Arabidopsis
thaliana. In recent decades, the black rot disease has
become more prevalent and caused severe losses in vege-
table and edible oil productions in many countries[27]. In
addition, Xcc is the producer of the acid exopolysaccha-
ride xanthan, which is an important industrial biopoly-
mer and has been widely used as a viscosifer, thickener,
emulsifier or stabilizer in both food and non-food indus-
tries[28]. Because of its agricultural and industrial impor-
tance, molecular genetics of Xcc has attracted particular
attention for over two decades. The entire genome
sequences of three Xcc strains have been determined and
many important genes implicated in pathogenicity, xan-
than biosynthesis, and other cellular processes have been
characterized [27,29-33]. However, no sRNA has been
identified from Xcc so far. In this article, we report four
sRNAs identified from the Xcc strain 8004 by generating
and screening a cDNA library of low molecular weight
RNAs, providing the first step towards an understanding
of the function of sRNAs in Xanthomonas.

Results and discussion
Construction of a cDNA library of low molecular weight 
RNAs from Xcc
As mentioned above, to identify sRNAs in Xcc we
employed the approach based on a cDNA library of low
molecular weight RNAs (Additional file 1 Figure S1). This
strategy, also known as small RNA shotgun cloning,
allows detection of sRNAs that are expressed in the bac-
terial cells grown at given conditions but does not require
prior knowledge of sRNA characteristics [12,25]. This
method has been proven to be one of the most efficient
ways for sRNA identification in bacteria[12,25]. We con-
structed a cDNA library by reverse-transcribing the
RNAs with size ranging from about 50 to 500 nt, which
were selected from the total RNA isolated from the bacte-
rial cells of the Xcc strain 8004 [34] grown to the expo-

nential phase in the medium XVM2, a minimal medium
mimicking plant cells [35]. Since the RNAs with size
ranging from 50 to 500 nt overlap in length with the very
highly abundant 5S rRNA transcripts (119 nt), we excised
the RNA band with the size about 110 nt from the gel
after electrophoresis to deplete 5S rRNA and enrich for
other sRNAs. By using the method described in Methods,
a cDNA library containing approximately 10,000 individ-
ual clones was constructed.

Identification of sRNA candidates from the cDNA library
About 2,500 individual clones from the cDNA library
were exposed to sequence determination; of which, 2,104
recombinant plasmids with satisfactory cloned sequences
were obtained (Additional file 2 Table S1). The obtained
insert sequences of these recombinant plasmids were
individually aligned by BLASTN against the genomic
sequence of Xcc strain 8004 on NCBI GenBank data-
base[30] (GenBank accession number CP000050) and
2,048 of them match to the genome (Additional file 2
Table S1). Of the 2,048 matched sequences,
1,274(60.55%) were derived from tRNA genes, 444
(21.1%) from 5S rRNA genes, 67 (3.18%) from the 16S or
23S rRNA genes, 6 (0.29%) from ORF (open reading
frame)-coding regions, and 257 (12.22%) from intergenic
regions (IGRs) (Table 1 and Additional file 2 Table S1 to
Table S4). The sequences of the 6 ORF-matched clones all
correspond to the sense orientation; therefore, it is proba-
ble that they are degeneration products of the full length
mRNAs encoded by the ORFs. The 257 IGR-matched
clones are comprised 7 species. We considered these spe-
cies as potential candidates of sRNAs and named them
sRNA-C1 to sRNA-C7, respectively (Table 2 and Addi-
tional file 2 Table S4).

It is not surprising that 60.55% of the clones were
derived from tRNA genes, because the RNAs used for the
cDNA library construction overlap in length with the
highly abundant tRNA transcripts (about 70 nt in size),
which were not removed from the RNA templates used
for reverse-transcription in the library construction. The

Table 1: Distribution of the cDNA clones on the genome of Xcc strain 8004

Category Clone number Kinds % of total clones

5S rRNA 444 1 21.10

16S/23S rRNA 67 2 3.18

tRNAs 1274 43(53)a 60.55

Intergenic region 257 7 12.22

Protein-coding genes or ORFs 6 6 0.29

Unmatched 56 2.66

Total 2104 100

aA total of 53 tRNAs were annotated in the genome of Xcc 8004[30].
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genome of the Xcc strain 8004 harbours 53 copies of
tRNA genes consisting of 46 species distinguishable in
sequences[30]. The sequences of the 1,274 clones derived
from tRNA genes match respectively to 43 different
tRNA species (Table 1 and Additional file 2 Table S2). On
the contrary, it is surprising that there are still 21.1% of
the clones are 5S rRNA transcripts, although the 5S
rRNA-included band was removed from the RNA frac-
tionization gel during the cDNA library construction.

Identification of sRNAs from the candidates by Northern 
blotting
To further verify if the 7 sRNA candidates identified from
the cDNA library were authentic sRNAs, we performed
Northern blotting analysis using DNA probes comple-
mentary to the original cDNA clones of the candidates.
The results showed that a single Northern blotting signal
band was clearly observed for each of the sRNA candi-
dates, sRNA-C1 and sRNA-C2, and the sizes of the bands
were approximately 100 and 200 nt in length, respectively
(Figure 1), which are consistent with the sizes of the cor-
responding candidate cDNAs (Table 2). We concluded
that these two candidates are genuine sRNAs and named
them sRNA-Xcc1 and sRNA-Xcc2, respectively (Table 2).
For each of the candidates, sRNA-C3 and sRNA-C4, two
Northern blotting signal bands were observed; a major
band with small size and a very faint band with large size
(Figure 1). As shown in Figure 1, the sizes of the major
bands were about 50 and 100 nt in length, respectively,
which are consistent with the sizes of the corresponding
candidate cDNAs (Table 2). We concluded that they are
real sRNAs and named them sRNA-Xcc3 and sRNA-
Xcc4, respectively. The faint bands might result from arti-
ficial hybridization of the sRNA-C3 and sRNA-C4 probes
with unknown transcripts. The blots of the candidates

sRNA-C5, sRNA-C6 and sRNA-C7 showed signal
band(s) larger than 1000 nt, much larger than the sizes of
the cDNAs, thus they are not like to be sRNAs. A sum-
mary of the analysis of these sRNA candidates is pre-
sented in Table 2, and the locations of the four verified
sRNAs in the genome of the Xcc strain 8004 are shown in
Figure 2. Interestingly, the gene encoding sRNA-Xcc4
overlaps with the 5S rRNA gene.

To gain a clue to understanding the expression of the
identified sRNAs, we compared the expression levels of
the sRNAs in the bacterial cells grown to exponential
phase in different media by Northern blotting analysis.
As shown in Figure 1, the expression levels of the four
sRNAs in the rich medium NYG and the minimal media
MMX and XVM2 are very high and almost identical. This
suggests that in exponential growth phase the expression
of the four Xcc sRNAs is not nutrition dependent.

5' and 3' end mapping, secondary structure prediction, and 
target prediction of the identified sRNAs
Northern blots only provide information about the
expression level and the approximate size of a transcript,
but can not detect the exact position of the 5' and 3' ends
of RNA. To precisely ascertain the transcription start and
stop sites of the identified sRNAs, 5' and 3' RACE analysis
was performed (see Methods for details). The results are
given in Additional file 3 Tables S5 and S6. Since 5' and 3'
ends of a sRNA may vary by a few nucleotides, at least 10
clones for each 5' and 3' RACE analysis should be
sequenced, and the most upstream 5' nucleotide is
regarded as the transcription initiation site and the most
downstream 3' nucleotide is regarded as the transcription
termination site. The 5' and 3' termini of the four identi-
fied sRNAs were determined by the above strategy and
shown in Table 2.

Table 2: A summary of the analysis of the sRNA candidate

sRNA 
candidate

Clone 
number

Intergenic region strand Clone(s)

size (nt)a

Northern

size (nt)b

sRNA? 5' endc 3' endc sRNA size

(nt)d

sRNA-C1 1 XC0350-XC0351 + 83 ~100 Yes (sRNA-Xcc1) 410075 410162 88

sRNA-C2 214 XC0901-XC0902 - 187 ~200 Yes (sRNA-Xcc2) 1085474 1085288 187

sRNA-C3 2 XC3244-XC3245 - 70 ~100, >1000 Yes (sRNA-Xcc3) 3890134 3890025 110

sRNA-C4 5 XC3924-XC3925 - 36 ~100, >1000 Yes (sRNA-Xcc4) 4632459 4632338 122

sRNA-C5 3 XC4108-XC4109 - 20 >1000 No ND ND

sRNA-C6 28 XC4382-XC4383 - 70 >1000 No ND ND

sRNA-C7 4 XC4385-XC4386 - 63 >1000 No ND ND

aThe size of the largest clone if more than 1 clone obtained.
bSize observed on Northern blots.
cEnds determined by 5'- or 3'- RACE mapping.
dSize calculated according to the 5'- and 3'-ends determined by RACE mapping.
ND, not done.
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After the 5' and 3' termini of the transcripts were iden-
tified, we assigned the most probable boundaries for the
sRNAs, and the secondary structure of each of the result-
ing sequences was analyzed by using SFold [36]. The pre-
dicted secondary structures of the four Xcc sRNAs are
shown in Figure 3.

It has been demonstrated that most characterized
sRNAs regulate gene expression by pairing to their
mRNA targets[9,10]. As a first step in gaining an under-
standing of the function of the identified Xcc sRNAs, we
employed the computational software sRNATarget devel-
oped by Cao and associates[37] to predict their potential
targets. The results, as shown in Additional file 4 Table
S7, reveal that a large number of genes with various pre-
dicted or known functions, including some known viru-
lence-related genes, are potential targets of sRNA-Xcc1,
sRNA-Xcc3 and sRNA-Xcc4, suggesting that these sRNAs
are probably implicated in the regulation of different cel-
lular processes including pathogenesis. In contrast, only a
few genes were predicted (at a very low score) to be
potential targets of sRNA-Xcc2, implying that sRNA-Xcc2
might be a structural rather than a regulatory RNA. To
ascertain the indisputable biological significance of these
sRNAs in Xcc needs further experimental investigations.

Distribution of the identified sRNA genes in other bacteria
To determine whether the sRNAs identified above have
any sequence similarity to other known bacterial sRNAs,
a BLAST[38] was used to search the sequences of the
sRNAs against the small RNA database http://ncr-
nadb.trna.ibch.poznan.pl/blast.html. None of the four
identified sRNAs displayed sequence similarity with any
known sRNAs, indicating that these four Xcc sRNAs are
novel. To further verify whether homologous DNA
sequences of these sRNA coding genes exist in other
microorganisms, we used the complementary DNA
sequences of these sRNA genes to perform BLAST
searches against the NCBI total sequence database http://
www.ncbi.nlm.nih.gov/Genbank/index.html. The result,
which is given in Table 3, showed that: (i) to sRNA-Xcc1,
homologous sequences were only found in the genomes
of the Xcc strains ATCC33913 and B100 but not in any
other sequenced bacterial species including the very
closely related bacteria X. campestris pv. vesicatoria and
X. oryzae pv. oryzae, indicating that sRNA-Xcc1 may be
an Xcc specific sRNA; and (ii) to sRNA-Xcc2, sRNA-Xcc3
and sRNA-Xcc4, highly homologous sequences were
found in other species of Xanthomonas and its closely
related genus Xylella, in addition to the Xcc strains

Figure 1 Northern blots verify the presence of Xcc sRNAs. RNA samples isolated from exponential phase cells cultured in NYG, XVM2 and MMX 
medium were analyzed by Northern blotting using DNA probes complementary to cDNA clones of the sRNA candidates (for more detail see Meth-
ods). A to G represent the Northern blotting results using DNA probes complementary to cDNA clones of the sRNA candidates sRNA-C1 to sRNA-C7, 
respectively. Transcript sizes are approximate and compared to RiboRulerTM RNA ladder Low Range (Fermentas) that labeled by Turbo LabelingTM 
Kit (KPL) (M). Corresponding ethidium bromide stained gels show equal loading of total RNA in all lanes.
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ATCC33913 and B100; however, no homologous
sequence was found in any other bacteria.

Conclusion
A cDNA library was constructed with the low molecular
weight RNA prepared from the Xcc cells grown to expo-
nential phase in the minimal medium XVM2 and seven
sRNA candidates were obtained by sequencing screen of
approximately 2,500 clones randomly selected from the
library. Four of the candidates were confirmed to be
sRNAs by Northern blotting. Bioinformatics analysis
revealed that all of the four sRNAs are novel. Their tran-
scription start and stop sites were further determined by
5'- and 3'-end mapping. The secondary structure and
potential targets of the four sRNAs were predicted bioin-
formaticsly, suggesting that a large number of genes
related to various cellular processes of Xcc may be regu-
lated by the sRNAs. To the best of our knowledge, this is
the first report on identification of sRNAs from a plant
pathogen by a large-scale screen. The results provide use-

ful information for further studies on the molecular
mechanisms of Xanthomonas campestris pathogenesis.

Methods
Bacterial strains, plasmids and growth conditions
The E. coli strain JM109 [39] was grown in L medium[40]
at 37°С. The Xcc strain 8004 [34] was grown in the rich
medium NYG [34] and the minimal media MMX [41] or
XVM2 [35] at 28°С. Antibiotics were used at the follow-
ing final concentrations: ampicillin, 100 μg/ml; rifampi-
cin, 50 μg/ml.

cDNA library construction
A cDNA library of the Xcc low molecular weight RNA
was constructed using the TaKaRa small RNA cloning kit
DRR065 (TaKaRa, Dalian, China) and the experimental
steps were performed according to the manufacturer's
instructions. A schematic diagram displaying the experi-
mental procedure used for the cDNA library construc-
tion was shown in Additional file 1 Figure S1. In brief,

Figure 2 Genomic positions of the identified sRNA genes. Schematic showing genome locations of the four sRNAs in the Xcc strain 8004. sRNA 
genes are shown as black arrows with names of the sRNAs under the arrows. The distances between a sRNA gene and its up and downstream genes 
and the genome ID of the flanking genes are indicated (the annotated function of the flanking genes are shown under the arrow). The orientation of 
the arrow indicates the transcriptional orientation of the corresponding gene.
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overnight cultures, grown in the rich medium NYG, of
the Xcc strain 8004 were diluted to 1/100 in the minimal
medium XVM2 and grown at 28°C. Bacterial cells were
harvested at OD600 = 0.6 (representing exponential phase)
and total RNA was isolated using the hot phenol method

[42]. 200 μg RNA were subsequently fractionated by
denaturing 8% polyacrylamide gel (7 M urea, 0.5 × TBE
buffer) electrophoresis (PAGE). The gel containing target
RNAs with size ranging from about 50 to 500 nt were
excised after removing the RNA band with the size about

Figure 3 The predicted secondary structures of Xcc sRNAs. The secondary structures of the four identified Xcc sRNAs were predicted by using 
SFold program [36].

sRNAxcc1 sRNAxcc2 sRNAxcc3 sRNAxcc4sRNA-Xcc4sRNA-Xcc3sRNA-Xcc2sRNA-Xcc1sRNAxcc1 sRNAxcc2 sRNAxcc3 sRNAxcc4sRNA-Xcc4sRNA-Xcc3sRNA-Xcc2sRNA-Xcc1

Table 3: Distribution and conservation of the identified sRNA gene sequence in closely related bacteria

Bacterial 
species

Xcc Xcv Xoo Xf Xac

Strain ATCC33913 B100 85-10 KACC10331 MAF311018 PXOO99A 9a5c Temecule1 306

sRNA-Xcc1 100% 87% N N N N N N N

sRNA-Xcc2 100% 98% 95% 94% 94% 94% 84% 84% 94%

sRNA-Xcc3 100% 100% 100% 100% 99% 99% 91% 91% 100%

sRNA-Xcc4 100% 100% 100% 100% 100% 100% 95% 94% 100%

Xcc, X. campestris pv. campestris; Xcv, X. campestris pv. vesicatoria; Xoo, X. oryzae pv. oryzae; Xf, Xylella fastidiosa; Xac, Xanthomonas axonopodis pv. 
citri, N, no similar sequence found.
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110 nt to deplete 5S rRNA, and RNAs were extracted
from the excised gel using the small RNA Gel Extraction
Kit D9106 (TaKaRa, Dalian, China). The purified RNAs
were then dephosphorylated by bacterial alkaline phos-
phatase (BAP) treatment and a biotin tagged 3' adaptor
(5' phosphorylated) (Additional file 5 Table S8) was
ligated to the RNA molecules by T4 RNA ligase (Pro-
mega, Shanghai, China). The 3' adaptor-containing RNAs
were purified using the Strepto Avidin-labelted Magnet
Bead MAGNOTEX-SA (TaKaRa, Dalian, China), which
binds specifically to biotin, and a 5' adaptor (Additional
file 5 Table S8) was ligated to the small RNA by T4 RNA
ligase, and again, the 3' and 5' adaptor-containing small
RNAs were purified using the Magnet Bead MAGNO-
TEX-SA. These RNAs were then reverse-transcribed
using primer complementary to the 3' linker sequence,
and finally PCR amplified using primers on both linkers.
The amplified products were gel-extracted and digested
using Sse8387 I (TaKaRa, Dalian, China), and cloned into
the vector pUC19 [43] and transferred into E. coli JM109
by transformation. Transformed bacterial cells were
plated on LB plates containing ampicillin and grown
overnight. Individual transformants were picked and
screened for presence of inserts by colony PCR. Clones
with inserts were uses for sequencing analysis.

DNA sequencing
The cDNA clones were sequenced using the M13 reverse
primer and the BigDye terminator cycle sequencing reac-
tion kit (Applied Biosystems, Foster City, CA, USA) on an
ABI Prism 377 (Applied Biosystems, Foster City, CA,
USA) sequencer.

Biocomputational analysis
Mapping of the cDNA clones on the genome of the Xcc
strain 8004 was carried out by performing a BLASTN
search against the genome sequence [30] on GenBank
database (NCBI GenBank accession number CP000050).
The Vector NTI (Invitrogen, Carlsbad, CA, USA)
sequence analysis program package was used for
sequence alignment. The SFold program[36] was used for
RNA secondary structure prediction. sRNA targets were
predicted by using the software developed by Cao and
associates [37].

Northern blotting
Xcc overnight cultures were diluted 1/100, grown at 28°C
in the rich medium NYG and the minimal media XVM2
or MMX, and bacterial cells were harvested at exponen-
tial phase (OD600 = 1.0 for NYG and 0.6 for MMX or
XVM2). Total RNA was isolated using the SV total RNA
Isolation System Kit (Promega, Shanghai, China) and
treated by DNase. RNA samples (about 30 μg but normal-
ized to equal 5S rRNA hybridization signals in final
experiments) were denatured for 10 min at 68°C in RNA

sample loading buffer [62.5% (v/v) deionized formamide,
1.14 M formaldehyde, 1.25×MOPS-EDTA-sodium ace-
tate buffer, 200 μg/ml bromophenol blue, 200 μg/ml
xylene cyanol FF and 50 μg/ml ethidium bromide]
(Sigma, Missouri, USA), separated on agarose (1.5%) gel
electrophoresis in 1× Running Buffer (per liter contain-
ing: 100 ml 10× MOPS Buffer, 40 ml 37% formaldehyde,
and 860 ml DEPC treated H2O) (Generay Biotech Co.,
Ltd, Shanghai, China), and transferred to Biodyne® B
nylon Membrane (KPL, Inc., Gaithersburg, MD, USA) by
capillary blotting. Membranes were hybridized with
gene-specific Biotin-labeled oligodeoxyribonucleotides
(Additional file 5 Table S8) using the DetectorTM AP
Chemiluminescent Blotting Kit (KPL, Inc., Gaithersburg,
MD, USA) according to the manufacturer's instructions,
and hybridization signals were visualized by exposure to a
medical X-ray film (Super RX, Fujifilm). For each probe,
at least three biological repeats of hybridizations were
performed.

5' and 3' RACE
5'-rapid amplification of cDNA ends (5'RACE) was car-
ried out using the 5'RACE System for Rapid Amplifica-
tion of cDNA ends kit (Invitrogen), following the
manufacturer's instructions. After purified using the
Watson Gel Extraction Mini Kit (Watson Biotechnolo-
gies, Inc), the PCR products of 5'RACE were cloned into
the T-vector pMD18-T (TaKaRa, Dalian, China) and the
cloned cDNA fragments were sequenced and analyzed.
3'-RACE was conducted using the TaKaRa Small RNA
cloning Kit (TaKaRa, Dalian, China), following the manu-
facturer's instructions, and the 3'-RACE PCR products
were cloned and sequenced using the same method for 5'-
RACE. Primers and RNA adaptors used for 5'- and 3'-
RACE are listed in Additional file 5 Table S8.
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