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Abstract
Background: Unmethylated stretches of CpG dinucleotides (CpG islands) are an outstanding property of mammal 
genomes. Conventionally, these regions are detected by sliding window approaches using %G + C, CpG observed/
expected ratio and length thresholds as main parameters. Recently, clustering methods directly detect clusters of CpG 
dinucleotides as a statistical property of the genome sequence.

Results: We compare sliding-window to clustering (i.e. CpGcluster) predictions by applying new ways to detect 
putative functionality of CpG islands. Analyzing the co-localization with several genomic regions as a function of 
window size vs. statistical significance (p-value), CpGcluster shows a higher overlap with promoter regions and highly 
conserved elements, at the same time showing less overlap with Alu retrotransposons. The major difference in the 
prediction was found for short islands (CpG islets), often exclusively predicted by CpGcluster. Many of these islets seem 
to be functional, as they are unmethylated, highly conserved and/or located within the promoter region. Finally, we 
show that window-based islands can spuriously overlap several, differentially regulated promoters as well as different 
methylation domains, which might indicate a wrong merge of several CpG islands into a single, very long island. The 
shorter CpGcluster islands seem to be much more specific when concerning the overlap with alternative transcription 
start sites or the detection of homogenous methylation domains.

Conclusions: The main difference between sliding-window approaches and clustering methods is the length of the 
predicted islands. Short islands, often differentially methylated, are almost exclusively predicted by CpGcluster. This 
suggests that CpGcluster may be the algorithm of choice to explore the function of these short, but putatively 
functional CpG islands.

Background
The methylation of CpG dinucleotides is an important
epigenetic modification of DNA, required in mammals
for embryonic development, genomic imprinting and X-
chromosome inactivation [1-3]. Around 80% of all CpG
dinucleotides are methylated in mammal genomes. The
exceptions are short stretches of CpG dinucleotides (CpG
islands or CGIs), which are predominantly hypomethy-
lated in healthy tissues [4,5]. CGIs are thought to be pre-
dominantly located in the promoter region of genes;
around 70% of all genes have a CGI overlapping its pro-

moter region. Moreover, virtually all housekeeping genes
are associated to CGIs, while only half of the tissue spe-
cific genes show such association [6]. Given its location in
the promoters, CGIs may play important roles in the reg-
ulation of gene expression. An example is the aberrant
methylation of CGIs observed in many cancer types [7-
11]. Moreover, evidence exist that the differential or tis-
sue specific methylation of CpG islands may be involved
in the regulation of tissue specific genes [12].

Accurate prediction tools are therefore needed and a
considerable effort has been carried out over the last
decade to detect CGIs in mammal genomes. Many differ-
ent algorithms have been proposed, most of them based
on the criteria of Gardiner-Frommer [1]. These authors
proposed in 1987 thresholds for the detection of CGIs:
GC-content (50%), CpG observed/expected (O/E) ratio
(0.6) and length (200 bp). Many of the published methods
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simply readjust these thresholds. However, it has been
shown that filtering criteria-based definitions of CpG
islands are mathematically incomplete and non-opera-
tional, as the sliding window methods frequently fail to
identify a large percentage of subsequences that meet the
filtering criteria [13].

Recently, methods based on the clustering of CpGs
along the genome sequence detect CGIs as a statistical
property, thereby not relying on thresholds of GC-con-
tent, O/E ratio and length. The first algorithm published
in this category was the CpGcluster method [14], which
detects the CGIs by means of the distances between
CpGs, then assigning a statistical significance to each
cluster of CpG dinucleotides. Subsequently, CpGcluster
was followed by other methods detecting CGIs by means
of the CpG densities [15-18]. In the same way, many other
features could also contribute to determine the boundary
of individual CpG-islands, such as transcription factors
and nucleosome location. The nucleosome code could be
an important ingredient of future CGI models, although
sequence features will probably remain as the principal
component (see, for example, [19]). Epigenetic informa-
tion may be also of help in detecting CGIs by making use
of contextual information [20].

Given the conceptual differences between sliding win-
dow algorithms (SWA) using a high parameter space and
those detecting CGIs as a statistical property of the CpG
clustering in DNA sequences, disagreement exist on the
way CGIs should be predicted. Recently, a comparison
between islands detected by the window-based Takai-
Jones (TJ) program [21] and those detected by CpGclus-
ter was published [22]. The comparison evaluated mainly
the co-localization of CGIs and known promoters and
concludes an overall advantage for the TJ approach over
CpGcluster.

We present here new ways to detect putative function
of CGIs, emphasizing the basic difference between CpG-
cluster and SWA predictions: the statistical significance
introduced by CpGcluster instead of the conventional
length threshold. We show that the statistical significance
assigned to each CpGcluster island is a key criterion to
control the overlap with promoter regions, evolutionarily
conserved elements and spurious Alu elements. Finally,
we show that many short (<200 bp) islands (CpG islets)
may be also functional, given its overlap with either pro-
moter or evolutionary conserved regions and the absence
of methylation in at least one tissue. As many of these
islets are exclusively predicted by CpGcluster, this may be
the algorithm of choice for experimental essays aimed to
verify the function of these short islands.

Results and Discussion
The way sliding-window approaches and CpGcluster
detect CGIs are conceptually different. While SWA

detect regions above the thresholds of G + C, O/E, min
CpG and length, CpGcluster predicts statistically signifi-
cant clusters of CpGs as CGIs. As a first consequence, the
statistical properties of the predicted islands are different
as well (Figure 1); e.g. in SWA approaches the distribu-
tions of important CGI properties like %G + C and O/E
ratio are heavily biased towards the user thresholds.

Therefore, the first part of this work is basically aimed
to clarify: 1) the differences between the length threshold
used by SWA and the statistically significance used by
CpGcluster; and 2) the consequences that the differences
in the number of predicted islands and the mean length
might have on the prediction quality.

Prediction quality has been assigned conventionally by
the percentage of overlap with promoter regions and spu-
rious Alu elements. In the original publication of CpG-
cluster [14] we added the overlap with evolutionarily
conserved elements or PhastCons [23] as an indicator of
putative functionality. Here, we add several new types of
analysis to assess the prediction quality, namely the capa-
bility to distinguish between different methylation
domains or different alternative Transcription Start Sites
(TSSs).

CpG islands in the promoter region
Since CpG islands are preferentially located in the pro-
moter region of genes, this fact has been extensively used
to assess the quality of CGI predictions [24]. Recently, it
has been claimed [22] that a higher percentage of TJ
islands (35%) are located within the promoter when com-
pared to CpGcluster islands (14.7%). In Table 1, we show a
similar analysis as carried out in [22], but extending the
comparison to other window based programs and differ-
ent prediction sets for the CpGcluster algorithm. When
considering CpGcluster islands with p-value ≤ 1E-5 (the
original relaxed set), the CGI fraction overlapping the
promoter region is effectively smaller than for the other
programs. However, note that the numbers of CGIs pre-
dicted by window-based methods are far below the num-
ber predicted by CpGcluster. To allow for an unbiased
comparison, we obtained a second, strict set of CpGclus-
ter islands simply by increasing the required statistical
significance to p-value ≤ 1E-20 (i.e. filtering out the less
significant islands), then obtaining a total 25,454 CGIs.
This number is within the range of recent estimates for
the complete human somatic cell CGI complement [25].
The strict, more statistically significant set of CpGcluster
islands shows now the highest overlap (52.4%) with the
promoter region. This advantage looks even more impor-
tant when considering that the genome coverage of our
strict set (0.65%) was the lowest one. This indicates a high
specificity of CpGcluster, which strongly supports our
original claim that the p-value is the most important



Hackenberg et al. BMC Genomics 2010, 11:327
http://www.biomedcentral.com/1471-2164/11/327

Page 3 of 14
parameter to distinguish promoter CGIs from the rest of
genome islands [14].

A comparison of length and p-value thresholds
The main quality parameter in SWA is the window size
(CGI length threshold). Originally, the window size was
set to 200 bp to assure that the detected regions surpass
the G + C and O/E criterion not due to chance alone [1].
Subsequently, this threshold was increased to 500 bp in
order to reduce the false positive rate by eliminating spu-
rious Alu elements [21]. This criterion was replaced in
CpGcluster by the statistical significance (p-value), a
more robust and reliable way to distinguish true CGIs
from stochastic noise, disregard island length [14]. Note
that the p-value is not just a different expression for the
island length. A non-linear relation exists between the p-
values and the lengths of the predicted CpGcluster
islands, as the p-value depends on both the island length
and the island density (Figure 2).

To evaluate the discrimination power of CpGcluster p-
value against window size, we generated a series of
island-set predictions, each one containing the same
number of islands, by appropriately varying the window
size or the p-value thresholds. Next, we determined the
overlap of the resulting islands with the promoter
regions, PhastCons elements [23] and Alu repeats. The
island sets selected by p-value clearly outperformed those
selected by length: a higher percentage of CpGcluster
islands overlap with promoters (Figure 3) and PhastCons
elements (Figure 4) along the entire range of the two
parameters, at the same time reducing the overlap with
spurious Alu elements (Figure 5). Table 2 shows the cor-
respondence between the number of predicted islands, p-
value and window length.

The results in Figures 3, 4, 5 are straightforward in
comparing the relative strengths of the two main parame-
ters involved in CGI quality (length and p-value). The
increased stringency in the conventional parameters used
by the TJ program excluded contaminating Alu elements,

Figure 1 Comparison of the distributions of the island length for both the CpGcluster and Takai/Jones algorithm (top left); the observed to 
expected ratios of CpG frequencies (top right); the island GC-content (bottom left); and the island CpG density (bottom right). It can be seen 
that, for all this four properties, the SWA distributions are heavily biased towards their respective thresholds. However, CpGcluster distributions do not 
show this artifact.
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but it also reduced the number of gene promoter associ-
ated islands, suggesting that bona fide CGIs were also
being discarded [25]. However, raising the statistical sig-
nificance (i.e. decreasing the p-value) of CpGcluster leads
to an exponential increase in the overlap with promoters
or PhastCons, simultaneously decreasing the overlap
with Alu elements. CpGcluster algorithm is, therefore, a
more rational and powerful way to increase CGI predic-
tion quality. An additional advantage is that CpGcluster
p-value would be particularly useful in comparative
genomics of CGIs, making possible the comparison of
CGIs with the same statistical significance, but obtained
from different species, despite variations in G + C content
or CpG density.

Prediction of unmethylated regions
The most important criterion to assess putative function-
ality of a CpG island is the absence of methylation. There-
fore, the comparison to experimentally verified,
unmethylated regions is another important analysis type
to establish prediction quality.

Recently, the methylation status of 697 hypermethy-
lated and 6,987 hypomethylated promoter regions in
WI38 primary lung fibroblast [26] have been used to
compare the prediction quality of TJ and CpGcluster
algorithms [22]. In this study, the prediction quality was
measured in the following way: i) true positives (TP):
hypomethylated promoters containing a predicted island,
ii) false positives (FP): hypermethylated promoters con-
taining a predicted island, iii) true negatives (TN): hyper-
methylated promoters not containing a predicted island,
and iv) false negatives (FN): hypomethylated promoters
not containing a predicted island.

However, in our opinion, there is an important pitfall in
such an approach. It is known that the methylation state
of a given region can change among different tissues;
therefore, assigning a "false positive" label to a predicted
island which has been shown to be methylated in a single
tissue may be misleading, as the same prediction could be
perfectly "true positive" if measured in a different tissue.

Fortunately, Weber et al. [26] also determined the
methylation states in sperm. Analyzing fibroblast and
sperm data together, we observed that 11,260 regions are
unmethylated in both tissues but 1,550 are unmethylated
in one tissue but methylated in the other one. This means
that around 12% of the regions are differentially methy-
lated; therefore, a substantial number of FPs were actually
TPs. Given these data, in our opinion, without the knowl-

Table 1: Co-localization of CpG islands and the promoter region.

Method Number of predicted islands Genome coverage (%) Promoter overlap (R13)

Number of islands %

TJ 37,323 1.43 14,034 37.60

UCSC 27,639 0.74 13,369 48.40

CpGproD 76,886 2.81 14,814 19.30

CpGcluster:

relaxed set* 198,702 1.90 30,660 15.43

strict set** 25,454 0.65 13,349 52.40

*p-value ≤ 1E-5;** p-value ≤ 1E-20

Figure 2 The length of CpGcluster islands vs. the logarithm of the 
assigned p-value. It can be seen that no linear correlation exists and 
that the relation between p-value and length is more complex, e.g. the 
p-value depends on both the island length and the island density.
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edge of the methylation state in a vast number of different
tissues, the number of "false positive predictions" cannot
be assessed in this way.

We therefore based our quality assessment on sensitiv-
ity, a measure not dependent on the false positive rate, as
well as on the estimation of the lower bound for the posi-

tive predictive value (PPV, see Data and Methods), a mea-
sure used in the gene prediction field under the name of
specificity [27]. We used two different experimentally val-
idated sets of unmethylated regions (see Data and Meth-
ods) to assess the quality of the 5 sets of predicted islands.
Table 3 depicts the results when taking genome-wide,
experimentally verified unmethylated CpG islands as ref-
erence (Bird's islands, [28]). The table shows that the
CpGcluster relaxed set shows the highest sensitivity while
the strict set shows the lowest one. When considering the
lower boundary of the PPV (i.e. the method is at least as
specific as this value), we observed the contrary pattern,
the CpGcluster strict set now shows the highest PPV,
while the relaxed set shows the lowest one. Table 4 seems
to confirm this trend when using unmethylated regions
which are mainly related to promoters [26]. These results
indicate that CpGcluster is either the most sensitive or
the most specific algorithm, depending on the applied p-

Table 2: Correspondence between the number of predicted 
islands, log (p-value) and window length.

No. of predicted islands log (p-value) Window length

193,856 5.06509 200

139,013 6.1864 250

109,907 7.19943 300

69,477 9.82744 350

52,687 11.85626 400

42,392 13.73824 450

37,293 14.96788 500

33,691 15.95388 550

30,881 16.8824 600

28,162 18.18919 650

26,192 19.45203 700

Figure 3 Variation of the overlap fraction of predicted islands 
with RefSeq promoter regions. The different sets of predicted islands 
have been obtained by varying the CpGcluster p-value and the SWA 
window length.
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Figure 4 Variation of the mean coverage by PhastCons in differ-
ent predicted island-sets obtained by varying the CpGcluster p-
value and the SWA window length.
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Figure 5 Variation of the mean coverage by Alus in different pre-
dicted island-sets obtained by varying the CpGcluster p-value and 
the SWA window length.
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value threshold. The finding for the relaxed set confirms
the result reported by Han and Zhao [22]. Note, however,
that CpGcluster strict set reaches the highest specificity
but the lowest sensitivity. Interestingly, a recent study
[29] also emphasizes that the CpGcluster p-value is a key
attribute for distinguishing between constitutively meth-
ylated and unmethylated CGIs.

CpG islands in the domains bound by polycomb repressive 
complex 2
Functional clusters of CpGs are not limited to promoter
regions, they are also found in other genomic locations.
An example are the hyperconserved CpG domains largely
overlapping the domains bound by polycomb repressive
complex 2 (PRC2) [30], located far from the promoter

and playing an important role in transcriptional silencing
during development. We determined the overlap of the
CGIs predicted by different finders with the domains
bound by PRC2. Table 5 shows that all the finders show
high sensitivities and low PPVs in predicting these sites,
being CpGcluster the algorithm obtaining the highest
sensitivity (relaxed set).

Functional specificity vs. length of CpG islands
One of the most striking differences between SWA and
the CpGcluster approach is the length of the predicted
islands. SWA islands are on average much longer than
CpGcluster islands (TJ = 1,094.9; UCSC = 764.5; CpG-
ProD = 1,046.1; CpGcluster = 273.2 (relaxed set), or 727.5
(strict set)). Originally, CGIs were estimated to be on

Table 4: Prediction of unmethylated regions (Weber's regions, N = 13,277).

Method Number of 
predicted 

islands

Number of 
islands 

overlapping a 
Weber's region

Number of 
Weber's regions 
'touched' by the 

prediction

SN PPV

TJ 37,293 10,179 9,965 0.755 0.273

UCSC 27,639 9,788 9,552 0.724 0.354

CpGproD 76,886 10,320 10,257 0.774 0.134

CpGcluster:

relaxed set* 198,702 18,967 10,372 0.867 0.095

strict set** 25,454 9,633 8,378 0.663 0.378

*p-value ≤ 1E-5; ** p-value ≤ 1E-20

Table 3: Prediction of unmethylated regions (Bird's islands, N = 17,383).

Method Number of predicted 
islands

Number of islands 
overlapping a Bird's island

Number of Bird's islands 
'touched' by the prediction

SN PPV

TJ 37,293 14,315 14,942 0.854 0.384

UCSC 27,639 13,858 14,256 0.816 0.501

CpGproD 76,886 14,250 15,346 0.875 0.185

CpGcluster:

relaxed set* 198,702 29,235 15,497 0.939 0.147

strict set** 25,454 14,809 12,623 0.757 0.582

*p-value ≤ 1E-5; **p-value ≤ 1E-20
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average 1 kb long [1]. Frequently, more than one CpG-
cluster island can be found within the promoter region
and furthermore, several CpGcluster islands are often
embedded within one single conventional, SWA island.
For instance, around 53% of all TJ islands host more than
one CpGcluster island (Figure 6).

Given these facts, it might be that either conventional
SWA predictions erroneously merge smaller islands into
longer ones, or that CpGcluster erroneously fragments
longer islands into many smaller ones. Next, we use alter-
native TSSs and single CpG resolution methylation data
to shed light on these questions.
Alternative promoters
Frequently, CpGcluster predicts more than one island
within the promoter region. It has been shown [22] that
37.8% of all RefSeq genes have more than one CpGcluster
island, while only 3.2% have more than one TJ island. Fol-
lowing the premise "one promoter one CpG island", this
observation was interpreted as a disadvantage of CpG-
cluster [22]. However, in recent years, new insights into
the regulation of gene expression became available, show-
ing among other things a frequent use of alternative TSSs.
The existence of alternative TSSs opens the possibility
that more than one island per gene might exist. There-
fore, the high percentage of genes with more than one
CpGcluster island might instead indicate a more specific
relation of CpGcluster islands to alternative promoters or
TSSs. To check this possibility, we used the DBTSS data-
base [31]. Out of 15,194 RefSeq genes annotated in the
latest DBTSS release, 7,895 (52%) have at least one alter-
native TSS. With such scenario, one might expect up to
52% of all promoters having more than one island in its
promoter (one for each TSS). Given these numbers, the

reported 37.8% of genes with more than one CpGcluster
island might look not so inadequate.

Conversely, this finding might indicate that the TJ algo-
rithm artificially joins several functional islands into one
single longer island. To further investigate this possibility,
we estimated the number of islands simultaneously over-
lapping multiple TSSs annotated in the DBTSS database.
Table 6 shows that the CpGcluster sets, both relaxed and
strict, overlap a higher fraction of unique, and a lower
fraction of multiple TSSs than the islands predicted by
other programs, thus making CpGcluster predictions
much more specific in overlapping individual TSSs.

Figure 7 shows a particular example of a bidirectional
promoter region. The TSSs of the two genes, UFD1L and
CDC45L, are overlapped by the same TJ or UCSC island,
while CpGcluster predicts separate islands. This is inter-

Table 5: Overlap of different CGIs with 3,465 domains bound by the polycomb repressive complex 2 (PRC2).

Method Number of predicted 
islands

Number of islands 
overlapping PRC2 domains

Number of PRC2 domains 
'touched' by the prediction

SN PPV

TJ 37,293 3,523 3,033 0.891 0.094

UCSC 27,639 3,179 2,790 0.825 0.115

CpGproD 76,886 3,321 3,159 0.916 0.043

CpGcluster:

relaxed set* 198,702 9,097 3,097 0.961 0.046

strict set** 25,454 3,424 2,372 0.758 0.135

*p-value ≤ 1E-5; **p-value ≤ 1E-20

Figure 6 Distribution of the number of CpGcluster islands includ-
ed within SWA (TJ) islands.
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esting, as these two genes have very different expression
breadths. Using the GeneAtlas2 expression data [32], we
determined for UFD1L an expression breadth of 97.3%
(expressed in 71 out of 73 healthy tissues), being therefore
a housekeeping gene, while the CDC45L gene is
expressed in just 15.1% (11 of 73) of all tissues. Given this
differential gene expression pattern, a shared CpG island
seems to be less specific than the scenario where each of
the genes has its own island, as suggested by the predic-
tion of CpGcluster.

In the human genome, there are a total of 166 bi-direc-
tional promoter pairs which share one long SWA CGI but
two separated CpGcluster CGIs. The gene-pair shown in
Figure 7 may be just an example of extreme differentia-
tion in gene-expression: while the first member of the
gene-pair is a housekeeping gene, the second one is a tis-
sue-specific gene. However, one cannot reasonably
expect that this may be the rule for all the bidirectional
gene-pairs. In fact, after analyzing the expression profiles
in a sample of 73 healthy tissues, only 16 (or 9.64%) gene-
pairs show a completely divergent pattern of gene-expres-
sion (coexpression value ≤ 0.2, see Methods), while 13 (or
7.83%) exhibit complete coexpression (coexpression value
= 1). The remaining gene-pairs show intermediate values
of coexpression.

On the other hand, by using single base resolution
methylation data [33], we also analyzed methylation dif-
ferences between the CGIs overlapping bi-directional
promoters. We found that 10 (or 11.24%) of these island-
pairs in H1 stem cells, and 15 (or 16.85%) in the IMR90
fetal lung fibroblasts, show significant differences (Mann-
Whitney non-parametric test) in their methylation aver-
age (p ≤ 0.05).

Heterogeneous methylation in long SWA islands
A functional CpG island should show a rather homoge-
nous methylation profile among the different CpGs and
over the different tissues. For example, the existence of
more than one methylation domain within a predicted
island might indicate an erroneous merging of two small
islands into a single longer island.

Here, we used single base resolution methylation data
from different sources (see Data and Methods) to decide
whether CpGcluster predicts too many short islands or
SWA predict too many long islands. In doing so, we
detect all TJ islands which harbor at least two CpGcluster
islands. Next, we calculate the mean methylation for each
CpGcluster island and the maximal difference in methyla-
tion over the different tissues. If many TJ islands exist
with high methylation differences inside, this might indi-
cate an erroneously joining of different methylation
domains into a single island. Figure 8 shows a particular
example from human chromosome 22. The region for
which HEP data were available is just 317 bp long, show-
ing a very pronounced change of the methylation values
in embryonic liver cells. All SWA programs predict a very
long island in this region, including completely the inter-
esting region where the un-methylation/methylation bor-
der occurs. Only CpGcluster predicts precisely one CGI
for each of the methylation domains.

Figure 9a shows the distribution of the maximum dif-
ferences in the methylation of CpGs inside TJ islands for
HEP data. It can be seen that very high differences occur,
around 12% of all tested islands having higher differences
than 30% in methylation. Methylation HEP data are avail-
able for only 5% of all tissues, and therefore the 12% of
heterogeneous TJ islands merging several methylation
domains might increase when data for more tissues

Table 6: Co-localization of CpG islands and alternative promoters.

Numbers of overlapping islands

Method All the TSSs Unique TSS Multiple TSSs

TJ 13,759 8,868 (64.45%) 4,891 (35.55%)

UCSC 11,826 8,143 (68.86%) 5,518 (31.14%)

CpGproD 15,319 9,801 (63.98%) 5,518 (36.02%)

CpGcluster islands:

relaxed set* 15,095 12,034 (79.72%) 3,061 (20.28%)

strict set** 10,325 7,659(74.18%) 2,666 (25.82%)

*p-value ≤ 1E-5; ** p-value ≤ 1E-20
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becomes available. A similar conclusion can be reached
when methylation data for two human methylomes [33]
were used (Figure 9b). Note that the complex methylation
structure within CpG islands has been reported before
within a different context, but also showing that many
long CpG islands contain more than one methylation
domain [34].

CpG-islets
CpG "islets", genomic regions not conventionally classi-
fied as CGIs because of their short length (<200 bp), but
having a GC content and observed-to-expected CpG
ratio characteristic of a CGI, have recently been identified
in a 6.76-Mbp chromosomal region (10q25) containing a

neocentromere [35]. Some of these islets remain unmeth-
ylated, corresponding to sites of active transcription and/
or boundaries that separate major chromatin sub-
domains. This suggests that, as conventional islands, the
islets can also participate in the maintenance of a particu-
lar genomic pattern of methylated/unmethylated CpGs,
thus contributing to the differential regulation of gene
expression [3-5].

Given their tiny size, islets remain undetected by SWA,
conventional CGI finders [2,21,36-40], as all these pro-
grams share a length threshold above 200, or even 500 bp.
Such length thresholds make conventional finders useless
for the detection of CpG islets, since a relaxation of the
length threshold will lead to a strong increment of false

Figure 7 A bidirectional promoter region in human chromosome 22 which is overlapped by one TJ or UCSC island but by several CpGcluster 
islands. The two genes show very different expression profiles, and therefore it is very likely that the prediction of different islands for the different 
TSSs as done by CpGcluster is the better choice. The figure was obtained by using the UCSC Genome Browser [46].

�

Figure 8 A 317 bp long region of human chromosome 22 showing strong heterogeneity in methylation. CpGcluster predicts separate islands 
for each methylation domain, while TJ and all the remaining tested sliding-window approaches predict only one longer island overlapping the differ-
ent methylation domains.
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positives. However, since CpGcluster [14] does not use
any length threshold, it allows to identify short, but statis-
tically significant CpG islets. A genome-wide search
identifies a total of 88,137 CpG islets in the human
genome with p-value ≤ 10E-5. Table 7 shows that rela-
tively high percentages of CpG islets overlap with differ-
ent sets of promoters and evolutionarily conserved
elements, thus suggesting a functional role for many of
the predicted islets. Noteworthy, a high proportion of
these overlapping islets are exclusively predicted by CpG-
cluster, but not by any of the remaining finders. This indi-
cates that: 1) many of the small islands predicted by
CpGcluster are not fragments of conventional islands,
and 2) given the co-localization with functional regions,
the islets might be indeed functional.

Using HEP data [41,42] and Lister et al. methylation
levels of single cytosines [33], we also determined the
number of unmethylated and differentially methylated

CpG 'islets' (Table 8). A high proportion of the sampled
CpG islets were unmethylated or differentially methy-
lated, thus again suggesting a functional role for CpG
islets. This is a very important point, as differential meth-
ylation of islands/islets may be involved in the regulation
of gene expression. Again, the proportion of these CpG
islets exclusively predicted by CpGcluster is very high.

Conclusions
We systematically compared conventional SWA for
detecting CGIs to a clustering method, namely the CpG-
cluster algorithm. We showed than both approaches per-
form very similar when predicting long, unmethylated
regions or polycomb sites. However, we found three sce-
narios where the CpGcluster algorithm seems to have
advantages. First, the statistical significance assigned to
each CpGcluster island seems to be a better quality
parameter than the window size of conventional finders,
as it reduces more efficiently false positive predictions.
Second, we have shown that CpGcluster islands co-local-
ize in a more specific way to alternative TSSs and methy-
lation domains. Third, we have shown that many of the
small islands predicted by CpGcluster might be func-
tional, given the overlap with conserved elements or pro-
moter regions. Moreover, 30% of the differentially
methylated islets are exclusively predicted by CpGcluster,
which suggests this method as the option of choice for
the experimental verification of islet functionality.

Methods
Sequence Data
We used human genome assembly NCBI 36.1 (hg18),
downloaded from the UCSC genome browser http://
hgdownload.cse.ucsc.edu/downloads.html#human.

Promoter data
To quantify the co-localization of the predictions with
promoter regions and principal transcription start sites
we used the RefSeq gene annotation [43]. We further-
more used the DBTSS database version 6.0 [44], as it
annotates also alternative transcription start sites, as well
as start sites which cannot be assigned to a known RefSeq
transcript. From both, the RefSeq and DBTSS annotation,
we extracted the coordinates of two regions; the tran-
scription start site (TSS) and the promoter regions,
defined as TSS-1500 bp to TSS+500 bp.

Genomic elements
We determined the overlap of CGIs with conserved ele-
ments (PhastCons) and spurious Alu elements. The evo-
lutionarily conserved elements [23] and the
RepeatMasker [45] annotation of repeated elements
where downloaded from the UCSC table browser [46]. In
general, we consider two measures to quantify the over-

Figure 9 Distribution of the maximal methylation differences be-
tween CpGcluster islands within SWA (TJ) islands. a) HEP methyla-
tion data; b) Lister's methylation data [33].
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lap between CGIs and genomic elements. First, we define
the mean coverage of a CGI prediction as the mean value
of all coverage fractions. The coverage fraction can be
calculated as the number of bases of an island corre-
sponding to a given genomic element divided by the
island length. Furthermore, we calculate the overlap frac-
tion as the number of islands which overlap in at least one
base with a given genomic element divided by the total
number of predicted islands.

Island predictions
For SWA CGI finders, a CpG island was at least 200 bp
long, which excluded the detection of any shorter tracts.
To detect CpG-rich regions, disregarding its length, we
used a recently published CpG island finder algorithm
(CpGcluster, [14]) which does not rely on any length
threshold but directly predicts statistically significant
CpG clusters. Briefly, the CpGcluster algorithm can be
divided into two steps. First, based on a distance thresh-
old, the individual CpGs which are below this threshold
are clustered along the DNA sequence. Second, by means

of the negative binomial distribution a p-value is assigned
to each CpG cluster, which allows the prediction of highly
significant clusters such as CpG islands.

We considered five computational predictions of CpG
islands. For the CpGcluster algorithm [14], we generated
two prediction sets by setting the assigned p-value to two
different thresholds. We generated a relaxed set with p-
value <= 1E-5 and a strict set by setting the threshold to
1E-20. We implemented the TJ algorithm, as explained in
[21], by setting the thresholds to: length ≥ 500 bp, GC
content ≥ 55%, ObsCpG/ExpCpG ≥ 0.65 and minCpG >=
0.6*Lisland/16 (to avoid "mathematical" islands). We gener-
ated the CpGproD prediction [38] running the program
http://pbil.univ-lyon1.fr/software/cpgprod.html with
default parameters. Finally, we downloaded the UCSC
CpG island predictions from the UCSC table browser
[46].

Gene coexpression analysis
We used the GeneAtlas2 expression data [32] to deter-
mine the co-expression of gene pairs sharing a bi-direc-

Table 7: Overlap of CpG islets (N = 88,137) with different sets of promoters and evolutionarily conserved elements.

Genome element Number of overlapping CpG islets Number of overlapping CpG islets 
exclusively predicted by CpG cluster

Promoters from RefSeq database 9,826 (11.15%) 1,218 (12.40%)

TSSs from DBTSS database 1,868 (2.12%) 398 (21.31%)

Promoter regions from DBTSS database 6,510 (7.39%) 4,869 (74.79%)

PhastCons 17,613 (19.98%) 8,219 (46.66%)

Table 8: Number of unmethylated and differentially methylated CpG 'islets'.

Dataset Methylation state* Number of CpG islets CpG 'islets' exclusively 
predicted by CpGcluster

HEP (12 tissues)** Unmethylated 126 1

Differentially methylated 26 8

Lister et al. 2009 (2 cell lines)*** Unmethylated 4,460 1,472

Differentially methylated 373 295

*Unmethylated: average methylation ≤ 0.2; differentially methylated: average methylation <= 0.2 in at least one tissue & average methylation 
>= 0.8 in at least one other tissue.
**The methylation state of 246 CpG 'islets' from chromosomes 6, 20 and 22 was determined by using 3,168 individual CpG sites (HEP project). 
We only included CpGs which have been detected in at least 2 clones or in at least 6 different tissues.
***We used the sequence reads obtained by MethylC-Seq for two human cell lines [33], H1 human embryonic stem cells and IMR90 fetal lung 
fibroblasts, to get the average methylation level of single cytosines at both DNA strands for these two methylomes. All islands need more 
than 50% of its CpGs covered. Only cytosines covered by at least 10 reads were counted.

http://pbil.univ-lyon1.fr/software/cpgprod.html
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tional promoter. The "coexpression value" for a couple of
genes is the ratio of the number of tissues in which both
genes are simultaneously expressed (signal levels > 200)
or simultaneously not expressed (signal levels <= 200),
and the number of healthy tissues with expression data.

Methylation data
Since the lack of methylation of a CpG island is a very
good indicator of function [25], we used several different
sources of experimental methylation data. Weber et al.
[26] detected methylation states in two different tissues,
fibroblast and sperm. We extracted 13,277 non-overlap-
ping regions which are unmethylated in at least one of the
two tissues (scaled 5mC log2 ratio < 0.3). Next, we used
17,383 CpG island recently detected in blood cells by
means of a new technique [28].

Finally, we assigned methylation states (unmethylated,
methylated and differentially methylated) to our CpG-
cluster predictions by means of the data from the HEP-
human epigenome project [42]. The data comprises
about 1.9 million CpG methylation values, obtained from
the analysis of 2,524 amplicons across chromosomes 6, 20
and 22 in 43 samples (derived from 12 different tissues).
We first calculated the mean methylation of each CpG
dinucleotide over the different clones, then deleting all
CpGs which have been detected in less than 2 clones or in
less than 6 different tissues. Subsequently, the individual
CpGs were labeled as methylated (mean methylation >=
80), intermediate methylated (80-20) and unmethylated
(under 20) for each of the different tissues. Next, we
define the methylation states of the CpGs over the differ-
ent tissues in the following way: i) methylated CpG:
methylated in more than 50% of tissues and never unm-
ethylated, ii) unmethylated CpG: unmethylated in more
than 50% of tissues and never methylated, iii) differen-
tially methylated CpG: both, methylated and unmethy-
lated in different tissues, the number of intermediate
methylation states being smaller than 50%. Finally, we
assign a methylation label to the CpG islands which have
methylation data for more than 50% of its CpGs: i) meth-
ylated: more than 50% of the CpGs are methylated and no
unmethylated CpG exist, ii) unmethylated: more than
50% of the CpGs are unmethylated and no methylated
CpG exist, iii) differentially methylated: more than 50% of
all CpGs need to be differentially methylated.

We also used the sequence reads obtained by MethylC-
Seq for two human cell lines [33], H1 human embryonic
stem cells and IMR90 fetal lung fibroblasts, to get the
average methylation level of single cytosines at both DNA
strands for these two methylomes. All islands need more
than 50% of its CpGs covered. Only cytosines covered by
at least 10 reads were counted.

Assessing prediction quality
When comparing the prediction of CpG islands to a gold
standard (e.g. experimentally verified islands), we define:

• True Positives (TP): An island overlapping in at least
1 bp with the gold standard
• False Positives (FP): An island not overlapping with
the gold standard
• False Negative (FN): An island in the gold standard
that has not been predicted.

By means of these values, we then calculate the sensi-
tivity and the Positive Predictive Value (also known as
specificity in the gene prediction field [27]):

Note that we consider all islands not overlapping with
the gold standard as false positive predictions. However,
no complete gold standard exists, and therefore an
unknown number of these islands will be actually true
positive predictions. This assumption does not affect the
sensitivity, as FP does not occur in the equation, but it
affects the PPV. Consequently, and since the PPV can
only increase when some FPs turn out to be TPs, the
value used in this work is the lower boundary PPV of the
prediction, e.g. the worst case scenario when all islands
which do not overlap with the gold standard are indeed
false positives.

List of abbreviations
CGI: CpG island; CpG O/E ratio: Ratio between observed
and expected CpG frequencies; CpG: dinucleotide CG; G
+ C content, %G + C: Molecular fraction of guanine and
cytosine; PhastCons: Phylogenetic Conserved Elements;
Sn: The sensitivity of the prediction; PPV: Positive Pre-
dictive Value of the prediction; SWA: Sliding-window
approaches; TJ: Takai/Jones program or island; TSS:
Transcription Start Site
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