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Abstract

Background: Recent developments in high-throughput methods of analyzing transcriptomic profiles are promising
for many areas of biology, including ecophysiology. However, although commercial microarrays are available for most
common laboratory models, transcriptome analysis in non-traditional model species still remains a challenge. Indeed,

close species is available.

confirmed by real-time PCR on 10 genes out of 11 tested.

hybridization conditions.

the signal resulting from heterologous hybridization is low and difficult to interpret because of the weak
complementarity between probe and target sequences, especially when no microarray dedicated to a genetically

Results: We show here that transcriptome analysis in a species genetically distant from laboratory models is made
possible by using MAXRS, a new method of analyzing heterologous hybridization on microarrays. This method takes
advantage of the design of several commercial microarrays, with different probes targeting the same transcript. To
illustrate and test this method, we analyzed the transcriptome of king penguin pectoralis muscle hybridized to
Affymetrix chicken microarrays, two organisms separated by an evolutionary distance of approximately 100 million
years. The differential gene expression observed between different physiological situations computed by MAXRS was

Conclusions: MAXRS appears to be an appropriate method for gene expression analysis under heterologous

Background

During the last decade, the use of DNA microarrays has
become a key tool in molecular biology. This technology
is commonly used for physiological and medical studies
to generate snapshots of gene expression patterns in tis-
sues of organisms exposed to different environmental
conditions, allowing us to infer regulatory pathways
involved in cellular responses to these conditions. The
increased prevalence of microarray technology has bene-
fited from the emergence of easily available commercial
arrays. However, commercial microarrays target a limited
number of species. Moreover, for many non-traditional
model organisms, the insufficient amount of sequence
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data prevents the development of dedicated microarrays.
Therefore, a few studies have investigated the use of het-
erologous array hybridization, [i.e. hybridization on
arrays designed for a particular species (hereafter called
the reference species) to explore modifications of gene
expression patterns of another species (hereafter called
the studied species)] and highlighted the difficulties
inherent to this approach.

Heterologous hybridization is usually considered a
non-standard utilization of microarrays [1]. Indeed, it
raises a number of difficulties, essentially due to the
sequence divergence between the reference and the stud-
ied species [2]. A major consequence of heterologous
hybridization is a global reduction of hybridization fluo-
rescence signal ([1] and references therein). This reduc-
tion artificially decreases the number of differentially
expressed genes detected by standard statistical tests,
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leading to a misrepresentation of the variation in tran-
scriptomic profiles ([1] and references therein). Another
issue of heterologous hybridization is cross-hybridization
[3]. Indeed, microarrays are designed so that each probe
is specific to one transcript sequence in the dedicated
species. However, this specificity is not guaranteed when
transcripts from another species are hybridized onto the
array. On the other hand, the use of heterologous hybrid-
ization does not amplify the problem of differentiating
paralog expression levels compared to the use of the ded-
icated platform species.

For all these reasons, the use of heterologous hybridiza-
tion should be preceded by a careful choice of the type of
microarray to use and followed by an appropriate analysis
of the results.

To choose the most appropriate microarray to use, one
has to select the model organism with the lowest
sequence divergence from the studied species [4]. Due to
the lack of sufficient sequence data for all studied species,
expression profiling results are the most robust when
using microarrays dedicated to the reference species with
the smallest phylogenetic distance from the studied spe-
cies [5].

Once the reference species is chosen, one has to choose
the best type of probe to use: either short oligonucleotide
probes, such as those on Affymetrix GeneChips’, or lon-
ger probes, such as long oligomers or even full-length
cDNAs. Microarrays with long probes might be less sen-
sitive to sequence mismatches and thus facilitate heterol-
ogous hybridization [1-3,6]. However, most arrays with
long probes contain only one probe per transcript. It can
be advantageous to use arrays with several short probes
targeting the same transcript: the sequence of some
probes may be more similar to the orthologous sequence
in the species of interest than others. Therefore, one can
consider only those the probes that recognize conserved
areas of genes between reference and studied species
[3,7,8]. These specific probes can be determined from
sequence comparison [3,8] or experimentally after
hybridizing genomic DNA to the microarray [7]. How-
ever, the lack of sufficient sequence data in many species
prevents the determination by sequence comparison, and
the hybridization of genomic DNA raises the problem of
setting the threshold of fluorescence to accept or reject
the information provided by a probe [7].

In the present study, we were interested in gene expres-
sion changes in the pectoralis muscle of juvenile king
penguins at a key step of their development, during the
transition from terrestrial to marine life. Strictly terres-
trial during their first year after hatching, king penguin
chicks must then depart to sea to become self-sufficient,
and pectoralis muscle is largely involved in penguin adap-
tation to the marine environment [9]. We choose the
chicken as our reference species, as this is the closest
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model species for which microarrays are available.
Chicken and king penguin are separated by approxi-
mately 100 millions years of phylogenetic divergence [10].
We decided to use Affymetrix GeneChip’ Chicken
Genome Arrays because they present on average 11 dif-
ferent probe pairs per probe set (i.e., a set of perfect-
match and mismatch probes targeting one given tran-
script), which should increase the probability that at least
one probe will hybridize with the heterologous transcript.
We then developed a new method (MAXRS, for maximum
rank sum) to analyze heterologous hybridization tran-
scriptomic profiles. This method takes advantage of the
design of Affymetrix microarrays with different probes
targeting the same transcript. Statistical analyses were
then conducted to identify differentially expressed genes
in the pectoralis muscle between never-immersed and
sea-acclimated penguins. Finally, we confirmed by quan-
titative PCR the expression profiles of 10 up- or down-
regulated genes exhibiting a wide range of fold changes,
out of 11 tested. MAXRS therefore appears to be an appro-
priate method of gene expression analysis under heterol-
ogous hybridization conditions and provides new
perspectives in the application of microarray technology
to ecological physiology studies.

Results and Discussion

Heterologous hybridization

Two sets of juvenile king penguins (Aptenodytes patago-
nicus) were captured at different degrees of acclimation
to marine life. In the first group, four penguins were cap-
tured just before they underwent their first immersion in
cold sea water (thereafter called NI for never-immersed),
while the second group was composed of three penguins
that had completely accomplished their acclimation to
marine life (thereafter called SA for sea-acclimated). For
each of these penguins, an Affymetrix GeneChip’
Chicken Genome Array was hybridized with RNA from a
pectoralis muscle biopsy.

Global characterization of the fluorescence signal
Figure 1 compares the distribution of signal intensities in
our arrays with those on the same type of array hybrid-
ized with chicken cRNA. This latest dataset corresponds
to public gene expression data downloaded from the
Gene Expression Omnibus (GSM157808). The same fig-
ure also appears with other public chicken microarray
datasets: the fluorescence signal on our arrays hybridized
with penguin RNA is relatively low compared with arrays
hybridized with chicken RNA, as expected. Thus, the
mean fluorescence intensity is lower in heterologous than
in homologous hybridization, as previously documented
in [1,3,5] for other species.

This probably results from the sequence divergence
between chicken and penguins, that diverged approxi-
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Figure 1 Comparison of the distribution of fluorescence in microarrays with homologous (C, chicken) or heterologous (NI1 to NI4, never-
immersed penguins and SA1 to SA3, sea-acclimatized penguins) hybridizations. All samples were hybridized on Affymetrix GeneChip® Chicken
Genome Arrays. Data for the homologous hybridization (C) were downloaded from the Gene Expression Omnibus (GSM157808). A: Fluorescence in-

tensity boxplot. B: Fluorescence intensity density plot.
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mately 100 Myr ago [10]. Very few penguin sequences
have already been published, but the comparison of these
sequences with the orthologous chicken sequences gave
us a first estimation of the sequence divergence between
these two species: we found between 89.4% and 91.7%
identity between these sequences (see Additional file 1).

After these general considerations, we will describe the
method we designed to analyze our heterologous hybrid-
ization data (we will hereafter only consider these data in
our analysis).

Characterization of the probes with fluorescence intensity
above background

To determine which probe signal was sufficient to be
exploited as a measure of gene expression, we considered
the intensities of the spots located in the region of the
array without any probe as a measure of the background
intensity distribution. Only 40% of the spots correspond-
ing to perfect match probes had fluorescence intensity
above the 95t percentile of the background intensity dis-
tribution (hereafter called the background level). As the
global fluorescence signal intensity was low, we did not
take into account the mismatch probes in our analysis.
Therefore, we further call a probe set the collection of
perfect-match probes targeting one given transcript, and
the perfect-match probes will hereafter be referred to as
probes. Additionally, we considered only the probes with
a fluorescence intensity above the background level in at

least one of the microarrays analyzed (this corresponded
to 171,384 probes belonging to 36,897 probe sets).

We took advantage of the design of Affymetrix arrays,
with, on average, 11 probes per probe set and compared
the fluorescence intensity of all probes belonging to the
same probe set. For most of the probe sets, at least one
probe had a relatively high signal: we found that 96% of
the probe sets had at least one corresponding probe with
a signal above the background level (corresponding to
36,897 out of the 38,536 probe sets of the array). More-
over, if we ranked probes belonging to a given probe set
according to their fluorescence intensity, these rankings
were similar among slides for the vast majority (94%) of
the probe sets (Friedman p-value < 0.05). For a given
probe set, the same probe had the greatest fluorescence
intensity in the majority of arrays (Figure 2). We denote p
= 1..P, the different probes belonging to a given probe set,

M
m = 1.M the microarrays analyzed and RS, = 2 Timip
m=1

the rank sum of a probe p from a probe set t in all
microarrays analyzed. This figure represents the distribu-

tion o for all probe sets. If, for a given probe

set, the same probe has the highest fluorescence intensity
in all seven microarrays considered, we expect that
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Figure 2 For a given probe set, the same probe had the largest fluorescence intensity in the majority of arrays. This figure represents the dis-
tribution of the maximum rank sum of the probes in each probe set divided by the number of probes corresponding to this probe set. If, for a given
probe set, the same probe had the highest fluorescence intensity in all 7 microarrays considered here, we expected that this maximum rank sum di-

max_ RSy,
p=1. P, = 7. This figure therefore indicates that heter-
ologous hybridizations are highly reproducible, even if
the microarray is dedicated to a phylogenetically distant
species. These observations led us to develop the MAXRS
method.

The maximum rank sum (MAXRS) method
This method is based on the observation that for the
majority of the probe sets, the same probe had the high-

est fluorescence intensity in almost all arrays. We there-
fore hypothesized that among the different probes
belonging to a probe set, the one with the greatest inten-
sity should target the most conserved region between
chicken and penguin mRNA. This probe should be the
most appropriate to study the expression level of the pen-
guin gene. Therefore, the MAXRS method consists in
determining the probe with the highest fluorescence
intensity in most microarrays. More precisely:
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1. For each microarray m = 1..M and for each probe
set t = 1..T, we sort the fluorescence intensity values
on microarray m of all probes p = 1..P, belonging to
the probe set t in increasing order. We denote by r,,
these ranks.

2. For each probe set t = 1..T and for each probe p =
1..P, belonging to the probe set t, we calculate the

rank sum of this probe in all microarrays:

M
RSZP = z Totp -
m=1

3. For each probe set t = 1..T, we keep the probe p with
the highest RS,,,. If several probes have the same RS,
and this is the highest one, we keep the probe with the
highest mean fluorescence intensity on all microar-
rays. The intensity of the selected probe on all
microarrays is therefore used as an estimator of the
expression of the gene represented by the probe set t.

We then normalized the data to make them comparable
across microarrays and searched for differentially
expressed genes by using the empirical Bayes moderated
t-statistics proposed by Smyth [11]. We then used the
method proposed by Benjamini and Hochberg [12] to
ensure a false discovery rate of 10%. This led us to iden-
tify 240 significantly up-regulated and 154 down-regu-
lated genes in pectoralis muscle of penguin juveniles after
their acclimation to marine life (Figure 3).

We finally compared the results of the MAXRS method
with results obtained by the Affymetrix software GCOS
(GeneChip Operating Software). For this purpose, we
applied the statistical test described above to the data
obtained by GCOS. This resulted in the identification of
40 significantly up-regulated and 21 down-regulated
genes.

Validation of the differentially expressed genes

We first quantified by quantitative PCR (qPCR) the rela-
tive expression levels of significantly differentially
expressed genes from the MAXRS method, exhibiting vari-
ous gene expression levels and fold changes (see Figure 3;
the fold change of the selected genes varied from 1.6 to
8.4). For 10 out of 11 tested genes, qPCR confirmed the
microarray results concerning the direction of gene
expression variation, even for weak gene expression
changes (Figure 4). As we do not know the penguin
sequence of these mRNA, the qPCR primers were
designed against chicken mRNA sequences. However, we
confirmed those variations using penguin-specific prim-
ers we designed for six mRNA sequences that we
sequenced (see Additional file 2). For the validated genes,
the fold change assessed by qPCR was not always the
same as assessed by the microarrays, and the change was
more often higher with qPCR than with microarrays, as
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previously described for homologous hybridization
[13,14].

We then quantified by qPCR the relative expression lev-
els of several significantly differentially expressed genes
from the GCOS Affymetrix method. The direction of
gene expression variation was confirmed for four out of
six tested genes (see Additional file 3). Considering this
rate of validation and the small number of differentially
expressed genes from GCOS, our method seems to be
more sensitive and more specific than GCOS. Actually,
the GCOS algorithm used the 11 probe pairs (perfect-
match and mismatch probes) of each probe set to evalu-
ate the expression of each gene. Considering cross-
hybridization and the effect of sequence divergence, the
use of GCOS is clearly not suitable for heterologous
hybridization analyses.

The differentially expressed genes from MAXRS allowed
us to highlight the onset of biologically meaningful physi-
ological pathways. Indeed, using the Gene Ontology
annotations of differentially expressed genes, we high-
lighted differentially expressed genes implicated in
energy metabolism or involved in cellular defenses
against reactive oxygen species and associated injuries
[15]. The use of this tool could therefore offer a new per-
spective to elucidate the remarkable adaptation of pen-
guins to their environment.

The MAXRS method enabled us to extract biological
information even though the global fluorescence inten-
sity signal on our microarrays was low. Candidate genes
were highlighted, and the direction of expression varia-
tion of 90% of these genes was confirmed by qPCR. This
shows that gene expression analysis in species genetically
distant from model organisms is possible with heterolo-
gous hybridization and an appropriate analysis method.
As there are very few transcript sequences available in the
penguin, we could not quantify the extent to which our
results were affected by cross-hybridization. For this rea-
son, we consider heterologous hybridization as a first step
of gene expression analysis, a step that allows us to high-
light candidate genes that must be validated by another,
complementary method. However, the high rate of vali-
dation of our results by qPCR is promising and shows
that, even if cross-hybridization should affect our results,
this effect should be slight. This method could be useful
to analyze microarray results for species highly diverged
from the reference species and for those without any
sequence data, such as models used in ecophysiology.
Finally, we think that this approach is still relevant despite
the recent development of next-generation sequencing
technologies and RNA-Seq. Indeed, without any refer-
ence genome, the RNA-Seq data must be de novo assem-
bled, and this is a difficult challenge, as the level of
coverage varies greatly between transcripts with different
expression levels [16].



Degletagne et al. BMC Genomics 2010, 11:344
http://www.biomedcentral.com/1471-2164/11/344

Page 6 of 9

14
1

SA

10

.
'.'."‘ H
2% -
. . :-‘_u.t'.
DRI X
n'.’
wr.
%
.e
.
. .

Adjusted p-value > 0.1

* Adjusted p-value < 0.1

¥ gPCR tested and validated transcripts

< gPCR tested and non-validated transcripts

8 10

Figure 3 Scatter plot comparing gene expression between penguins before (NI) and after sea acclimation (SA). Each point represents the
mean expression level of a gene in NI and SA conditions. Black dots represent differentially expressed genes between both situations. Red symbols
represent the differentially expressed genes tested by gPCR: red stars correspond to the validated genes and red crosses to non-validated ones.

T T

12 14
NI

Conclusions

We present MAXRS, a new method to analyze heterolo-
gous hybridization on microarrays. This method enabled
us to analyze the transcriptome of king penguin by using
microarrays dedicated to the chicken. Despite the large
phylogenetic distance between these two bird species, we
identified differentially expressed genes in the pectoralis
muscle of king penguin during the transition from terres-
trial to marine life, and we confirmed 90% of the tested
gene variations by quantitative PCR. These results are
promising for the use of microarray technology in species

genetically distant from laboratory models. It will be
valuable to transfer this technology to biological fields
dealing with non-traditional model organisms, like eco-
logical physiology.

Methods

Assessment of sequence divergence between penguin and
chicken

For this purpose, we used all Aptenodytes patagonicus
mRNA sequences available in GenBank. For each of these
sequences, we identified the most similar gene family in
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the Hovergen homologous gene families database [17].
We then replaced the penguin sequence in the phyloge-
netic tree of the family, which allowed us to identify the
putatively orthologous chicken sequence, if available.
This analysis was performed with HoSeql [18]. We then
aligned the penguin and chicken sequences by using the
water EMBOSS tool [19]. The GenBank accession num-
ber of penguin sequences, the accession number of their
orthologous chicken sequences, the corresponding Hov-
ergen family identification number and the percent iden-
tity between each pair of sequences are available in
Additional file 1.

Animals

Penguin muscle samples were collected at the Crozet
archipelago (French Southern Territories) during the aus-
tral summer (December 2005 to March 2006), following
the ethical recommendations granted by the Ethics Com-
mittee of the French Polar Research Institute (IPEV) and
by the French Ministry of Environment.

Two sets of juvenile king penguins (Aptenodytes patag-
onicus) were captured according to their degree of accli-
mation to marine life. In the first group, four penguins
were captured just before they underwent their first
immersion to cold sea water (called NI for never-
immersed), while the second group was composed of
three penguins that had completely accomplished their
acclimation to marine life (called SA for sea-acclimated).
Penguins were anesthetized by isoflurane inhalation, and
approximately 100 mg of pectoralis muscle was surgically
excised, frozen in liquid nitrogen and kept at -80°C until
molecular analysis. At the end of the experiment, birds

were monitored for a few days and then released at the
site of their capture.

Microarray analysis

Total RNA was extracted using the TriReagent procedure
(Invitrogen, Cergy Pontoise, France) following the manu-
facturer's instructions. The quality of extracted RNA was
assessed using a Bioanalyzer 2100 (Agilent technologies,
Inc, Palto Alto, CA, USA). RNA integrity numbers of all
samples were greater than 8.

Labeling and hybridization were performed following
the Affymetrix protocol [20] using the ProfileXpert plat-
form (Lyon, France) on Affymetrix GeneChip® Chicken
Genome Arrays.

Heterologous hybridization analysis

The MAXRS method we developed for the analysis of het-
erologous hybridization profiles is described in the
Results section.

After using the MAXRS method, results among microar-
rays were normalized using the quantile method [21], and
the test for differential expression between the two condi-
tions was performed with the empirical Bayes moderated
t-statistics implemented in the Bioconductor package
limma [11]. The resulting p-values were then adjusted for
multiple testing by using the Benjamini and Hochberg
method [12] implemented in the Bioconductor package
multtest. All analyses were done using the R statistical
software.

The raw and processed microarray data are available in
the Gene Expression Omnibus [22]. For each probe set,
the mean intensity value of each probe with an intensity



Degletagne et al. BMC Genomics 2010, 11:344
http://www.biomedcentral.com/1471-2164/11/344

above background and its rank are available in Additional
file 4.

Validation of microarray data analysis using real-time PCR
Quantitative PCR was performed using the same RNA
samples to test the accuracy of our analysis. For each
sample, 1 ug of total RNA was converted into double-
stranded cDNA using 200 U of RT-MMLYV reverse tran-
scriptase (Invitrogen, Cergy Pontoise, France), 100 ng of
random primers, 1 mM deoxyribonucleotides and 40 U
RNase inhibitor, according to the manufacturer's instruc-
tions. Then, real-time PCR was performed in a MyiQ
thermal cycler (Bio-Rad, Marnes La Coquette, France)
using IQ SYBR Green Supermix (Bio-Rad). We designed
primers specific to the chicken sequence recognized by
the microarray for 15 genes (see Additional file 5) using
the information available on the NetAffx website [20] and
Primer3 software [23]. To confirm our results with pen-
guin-specific primers, we sequenced the PCR products,
designed primers specific to the penguin sequences (see
Additional file 5) and performed qPCR using these new
primers.

We used the following qPCR conditions: 3 min at 95°C,
followed by 40 cycles of denaturation for 10 s at 95°C and
annealing/extension for 45 s at 60°C, according to the
manufacturer's instructions. All samples were run in
duplicate along with dilutions of known amounts of tar-
get sequence to quantify the initial cDNA copy number
(Concentration = Efficiency2Ct). The results are
expressed as the ratio of the target gene over 18 S rRNA
concentration (ng/pg) [which was verified to exhibit non-
significant variation between the two groups of cDNAs
using REST 2009 software (0.29 < p < 0.70)] [24].

Additional material

Additional file 1 Penguin and chicken orthologous sequences. Gen-
Bank accession numbers of penguin sequences together with the acces-
sion numbers of their orthologous chicken sequences, the corresponding
Hovergen family identification number and the percent identity between
each pair of sequences.

Additional file 2 Comparison of the gene expression differences
between qPCR using primers designed against chicken and against
penguin transcript sequences. Expression fold changes of the six genes
tested by quantitative PCR using primers designed against chicken (black
bars) vs. penguin sequences (gray bars). These fold changes correspond to
SA/NIfor the genes up-regulated during the transition from terrestrial to
marine life (represented above the x-axis) and to NI/SA for the down-regu-
lated genes (represented below the x-axis).

Additional file 3 Comparison of the gene expression differences
assessed by GCOS analysis and by qPCR. Expression fold changes of the
six differentially expressed genes determined with GCOS and with gPCR.
These fold changes correspond to SA/NI for the genes up-regulated during
the transition from terrestrial to marine life (represented above the x-axis)
and to NI/SA for the down-regulated genes (represented below the x-axis).
The white bars correspond to the fold changes assessed by microarray and
analyzed with GCOS, and the black bars correspond to the fold changes
assessed by quantitative PCR.
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Additional file 4 Mean intensity value and rank of each probe with an
intensity above background. This file provides, for each Affymetrix probe
above background, the mean intensity value and rank.

Additional file 5 Primer sequences used for qPCR. This file provides, for
each tested gene, the corresponding Affymetrix probe set ID, the primer
sequences used for gPCR and the fold changes and p-values from the
microarray and qPCR.
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