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Abstract
Background: Dinophysis is exceptional among dinoflagellates, possessing plastids derived from cryptophyte algae. 
Although Dinophysis can be maintained in pure culture for several months, the genus is mixotrophic and needs to feed 
either to acquire plastids (a process known as kleptoplastidy) or obtain growth factors necessary for plastid 
maintenance. Dinophysis does not feed directly on cryptophyte algae, but rather on a ciliate (Myrionecta rubra) that has 
consumed the cryptophytes and retained their plastids. Despite the apparent absence of cryptophyte nuclear genes 
required for plastid function, Dinophysis can retain cryptophyte plastids for months without feeding.

Results: To determine if this dinoflagellate has nuclear-encoded genes for plastid function, we sequenced cDNA from 
Dinophysis acuminata, its ciliate prey M. rubra, and the cryptophyte source of the plastid Geminigera cryophila. We 
identified five proteins complete with plastid-targeting peptides encoded in the nuclear genome of D. acuminata that 
function in photosystem stabilization and metabolite transport. Phylogenetic analyses show that the genes are derived 
from multiple algal sources indicating some were acquired through horizontal gene transfer.

Conclusions: These findings suggest that D. acuminata has some functional control of its plastid, and may be able to 
extend the useful life of the plastid by replacing damaged transporters and protecting components of the 
photosystem from stress. However, the dearth of plastid-related genes compared to other fully phototrophic algae 
suggests that D. acuminata does not have the nuclear repertoire necessary to maintain the plastid permanently.

Background
Endosymbiosis, the process through which a once free-
living organism becomes an organelle, is a major driver of
eukaryotic evolution, enabling hosts to acquire novel
characteristics. An excellent example of this process is
plastid endosymbiosis, which has distributed photosyn-
thesis across diverse eukaryotic lineages [1]. The primary
plastids of the Archaeplastida (green, red, and glau-
cophyte algae) arose through an endosymbiotic relation-
ship between a heterotrophic eukaryotic host and
cyanobacteria [2]. Through subsequent plastid acquisi-
tions, the plastids of both green and red algae were spread
to other eukaryotes (e.g., chromalveolates, euglenoids,
chlorarachniophytes). Most plastids are long-established
organelles, resulting from ancient events and are drasti-

cally different from their free-living ancestors, having lost
or transferred most genes to the host nucleus [3,4]. One
theory of plastid acquisition outlines several key steps in
this transition to permanent organelle [5-7]. First, a spe-
cific relationship develops between endosymbiont and
host. Most hypothetical examples of this process evoke a
predator-prey relationship such as a phagotrophic
eukaryote continually feeding on algae. The second step
is the establishment of a mechanism for controlled meta-
bolic exchange. Lastly, the endosymbiont is reduced to an
organelle through gene loss and gene transfer to the host
nucleus. In most permanent plastids, these steps were
accomplished long ago leaving little clues as to the mech-
anisms and timing of these events.

The discovery of several organisms that have under-
gone more recent endosymbioses may provide insights
into the first crucial steps of this process. The testate
amoeba Paulinella chromatophora has a novel primary
plastid derived from a Synechococcus-like cyanobacte-
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rium [8,9]. The endosymbiont genome has already been
reduced compared to free-living cyanobacteria, but not
as much as the primary plastids of the Archaeplastida
[10]. There are also several examples of more recent
endosymbioses in the dinoflagellates. Whereas most pho-
tosynthetic dinoflagellates have a plastid containing the
photopigment peridinin, some have replaced this plastid
with one acquired from haptophytes, diatoms or green
algae [11]. In these organisms, the early stages of endo-
symbiosis have been completed and the plastids are per-
manent organelles.

Plastid retention from prey, also known as kleptoplas-
tidy, is an example of a specific relationship between two
organisms that could represent an early stage of plastid
acquisition. The organelle is not yet under the complete
control of the host and these relationships could serve as
a model for understanding the early stages of endosymbi-
osis in microbial eukaryotes [11-13]. Plastid retention is a
form of mixotrophy whereby a feeding cell temporarily
sequesters the plastids of prey in order to benefit from
the photosynthesis occurring in the stolen organelle.
These transient plastids, called kleptoplasts, are found in
many eukaryotic lineages including dinoflagellates, cili-
ates, other unicellular eukaryotes, and even sea slugs [14-
17]. These organisms must reacquire their stolen plastids,
presumably because they lack necessary nuclear-encoded
genes required for plastid maintenance and replication.
Most kleptoplastidic organisms can maintain their tem-
porary plastid for several days, but some, such as dinofla-
gellates of the genus Dinophysis maintain their plastids
for months through unidentified mechanisms [18,19].

Plastids derived from the Geminigera/Teleaulax species
cluster of cryptophytes have been identified in two differ-
ent microbial eukaryotes, the ciliate Myrionecta and the
dinoflagellate Dinophysis. Molecular evidence suggests
that these ciliates and dinoflagellates temporarily acquire
their plastids through plastid retention. Co-isolated spe-
cies of Geminigera, Myrionecta, and Dinophysis have
been shown to have identical 16S plastid gene sequences
[20,21] and are distinguishable from other co-isolated
strains from different geographic localities [22]. However,
contrary to the molecular evidence, the modifications to
plastid ultrastructure in both the ciliate and dinoflagel-
late, compared to the original plastid in Geminigera are
suggestive of permanent plastid modifications (Figure 1).
In the cryptophyte, the plastid is surrounded by four
membranes and contains a centrally located pyrenoid
[22]. In addition, the plastid includes a nucleomorph, a
remnant red algal nuclear genome that encodes an addi-
tional 30 genes required for plastid function [23]. When
Myrionecta consumes the cryptophyte, the mitochondria
and complete plastid, including the nucleomorph, are
retained [24]. Myrionecta separately sequesters the cryp-
tophyte nucleus and expression of plastid genes from the

captured nucleus and nucleomorph has been demon-
strated [25]. This ability to replenish plastid proteins as
they age may explain why the organelles remain active for
more than 10 weeks in the ciliate. Dinophysis feeds on
Myrionecta rubra, but there is disagreement as to
whether these algae feed to acquire new plastids or sim-
ply growth factors needed to maintain the organelle [22].
The plastids found in Dinophysis acuminata are com-
posed of only the inner two membranes and the plastid
genome, and the cryptophyte nucleus and nucleomorph
are absent [26]. Additionally, the pyrenoid is terminally
located and the plastids are clustered together forming a
compound stellate structure. Despite lacking the crypto-
phyte nucleus and nucleomorph, Dinophysis is able to
maintain the plastid for a similar length of time as M.
rubra [19].

There is some debate as to whether the plastids in D.
acuminata are kleptoplasts or permanent plastids. The
dinoflagellate must feed on M. rubra to be grown in labo-
ratory culture, but it has not been definitively demon-
strated that the purpose of feeding is to acquire physical
plastids. We sequenced the transcriptomes of D. acumi-
nata, M. rubra and G. cryophila to determine if Dinophy-

Figure 1 Kleptoplast acquisition in M. rubra and D. acuminata. 
The cryptophyte nucleus (A) and complete cryptophyte plastid and 
mitochondria (B) are retained in M. rubra. When the plastid is acquired 
by D. acuminata the outer two membranes and nucleomorph are lost 
(C). 1, cryptophyte nucleus; 2, plastid; 3, nucleomorph; 4, cryptophyte 
mitochondrion; 5, cryptophyte nucleus and cytoplasm surrounded by 
host membrane; 6, ciliate nucleus; 7, plastid-mitochondrial complex 
surrounded by host membrane; 8, ciliate mitochondrion; 9, dinoflagel-
late nucleus; 10, kleptoplast; 11, dinoflagellate mitochondrion. Light 
photomicrographs of the cells are shown above the cartoon for each 
organism (scale bar = 10 μm).
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sis contains nuclear-encoded genes that aid in the
maintenance of its plastid. These data were analyzed for
the presence of plastid genes and were examined for their
evolutionary origins and plastid targeting peptides.

Results and Discussion
Transcriptome sequencing
We synthesized poly(A) primed cDNA using RNA
extracted from cultures of D. acuminata taking advan-
tage of the trans-spliced leader sequence present on
mature dinoflagellate transcripts. Dinoflagellate tran-
scripts are modified in vivo by the addition of the identi-
cal 22 bp trans-spliced leader sequences to the 5' end of
all mRNAs [27,28]. Use of this dinoflagellate-specific
leader sequence as a 5' primer site during the cDNA
amplification step significantly biased the D. acuminata
cDNA pool toward full-length, nuclear-encoded, dinofla-
gellate transcripts. The cDNA was randomly sheared and
sequenced using 454 FLX Titanium pyrosequencing.
Sequencing produced 10.8 megabases of data that assem-
bled into 5,991 unique contigs. There are no sequenced
dinoflagellate genomes available to aid in estimating the
number of genes in D. acuminata, however, transcrip-
tional profiling of the dinoflagellate Alexandrium tama-
rense identified 30,917 unique gene signatures, suggesting
that only a fraction of the total transcriptome of D. acum-
inata was sequenced [29]. From the finished assembly,
816 contigs were fully annotated by Blast2GO, and 16
contigs were identified as potentially plastid-related (i.e.,
cellular compartment GOslim term of plastid or thyla-
koid, see additional File 1). Of the 16 candidate contigs,
three were determined to be nuclear-encoded, plastid-
targeted genes: a photosystem II subunit (psbU), plastid
ferredoxin (petF), and a gene encoding an auxiliary light-
harvesting protein (LI818). The remaining 12 contigs
were either plastid-encoded and introduced into the
cDNA pool through mispriming of the oligo dT primer
(photosystem I subunit E), or only peripherally related to
plastid function (e.g., sec61 protein translocator). Two
additional contigs, a second photosytem II gene (psbM)
and a plastid phosphate transporter (TPT), were identi-
fied as plastid-targeted through sequence similarity
searches but were not annotated by Blast2GO because of
their high e-value scores. Full-length cDNA sequences
complete with the dinoflagellate-specific, trans-spliced
leader motif, 5' untranslated region (UTR), and 3' UTR
were obtained by PCR from D. acuminata for all five
genes and used for subsequent phylogenetic analyses and
targeting peptide predictions (Table 1).

In addition, we synthesized G. cryophila and M. rubra
poly(A) primed cDNA that was sequenced by the same
method, and the data assembled into 17,997 and 27,723
contigs, respectively. These contig numbers are likely
overestimates of the transcriptome sizes of these organ-

isms because multiple contigs can represent a single tran-
script due to gaps in the assembly. However, the 17,997
contigs are consistent with G. cryophila having a gene
number similar to other sequenced unicellular algae,
which have 5,000-15,000 genes [30]. Likewise, the M.
rubra contig number is also in agreement with gene num-
bers from the sequenced ciliate genomes [31,32].
BLASTN comparisons of the three assemblies showed
that none of the nuclear-encoded genes in G. cryophila or
M. rubra matched those in D. acuminata at the nucleotide
level, indicating that the D. acuminata dataset is not con-
taminated with ciliate or cryptophyte nuclear transcripts.
Cryptophyte homologs of all the nuclear-encoded, plas-
tid-related genes of D. acuminata were identified using
BLASTX, with the exception of ferredoxin because it is
plastid encoded in cryptophytes and therefore not ampli-
fied in the oligo-dT primed cDNA synthesis.

Nuclear-encoded plastid proteins in D. acuminata and their 
evolutionary origins
Of the five nuclear-encoded, plastid proteins identified in
D. acuminata, only photosystem II subunit M appears to
be of cryptophyte origin. The psbM protein is a low
molecular mass subunit (33-38 amino acids on average)
thought to be involved in photosystem dimer formation
[33]. Due to the short length of the alignment, the maxi-
mum likelihood phylogenetic analysis of this protein was
inconclusive (Figure 2a). However, the Bayesian analysis
supports the grouping of D. acuminata and G. cryophila,
and the neighbour-joining analysis weakly supports
grouping D. acuminata with crytophytes (Figure 2b). The
C-terminal end of psbM was also highly similar to the
cryptophyte homologs. This region was not included in
phylogenetic analyses because of poor conservation
among algal groups (for alignment see additional File 2).

Two of the plastid-related proteins, ferredoxin and the
triose-phosphate transporter (TPT), group with peridi-
nin dinoflagellates (i.e., containing the ancestral dinofla-
gellate plastid characterized by the photopigment
peridinin) in phylogenetic analyses. These genes have
either been retained from a peridinin-containing ances-
tor of Dinophysis or have been acquired from these dino-
flagellates through gene transfer (Figure 3). The plastid
TPT is involved in transport of fixed carbon out of the
plastid [34]. This protein may provide the mechanism by
which D. acuminata benefits from the photosynthesis
occurring within the plastid by exporting the products of
the Calvin cycle (e.g., glyceraldehyde-3-phosphate) to the
cytoplasm. Plastid ferredoxin (petF) is the second dino-
flagellate-derived plastid protein in D. acuminata and is
responsible for distributing the electrons generated by
photosystem I to various reactions in the plastid stroma
[35]. The petF gene is encoded on the plastid genome in
cryptophytes, and a copy is presumably present in the
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cryptophyte plastid genome of Dinophysis [36], however
plastid gene transcripts are not polyadenylated and there-
fore are not amplified in oligo dT cDNA synthesis.
Although the G. cryophila plastid petF sequence is
unknown, the nuclear-encoded copy in D. acuminata is
clearly distinct from petF in the cryptophytes G. theta
and Rhodomonas salina in our tree (Figure 3b). In addi-
tion, the D. acuminata petF cDNA sequence contains a 5'
spliced leader, a 3' UTR, and poly (A) tail strongly sug-
gesting it is expressed from the nucleus and not the
organelle.

The remaining two proteins, a light harvesting protein
(LHP) and psbU, appear to be derived from either hapto-
phytes or fucoxanthin dinoflagellates (i.e., dinoflagellates
that have replaced the peridinin plastid with one derived
from haptophytes and containing the photopigment
fucoxanthin). LHPs shuttle the light energy captured by
chlorophyll and accessory pigments to the photosystems,
and algal groups have different LHPs depending on their

combination of chlorophyll and accessory pigments [37].
We identified only one LHP in D. acuminata, a member
of the distinct LI818 LHP family involved in stabilizing
the photosystem in response to heat or photodamage [38-
40] and may, in some situations, act as a substitute for
other LHPs [39]. D. acuminata LI818 weakly groups with
homologues from fucoxanthin dinoflagellates, Karlodin-
ium micrum and Karenia brevis (Figure 4a). However,
despite large EST datasets for cryptophytes and peridinin
dinoflagellates, an LI818 family member has yet to be
found in either of these groups of organisms, excluding
them as a source of the LI818 gene in D. acuminata.
Transcriptome sequencing in G. cryophila produced nine
different LHPs, all of which grouped with other crypto-
phyte or red algal homologs within the Lhcz and Lhcc
protein families (for the phylogenetic tree see additional
File 3).

The last nuclear-encoded plastid protein identified in
D. acuminata is the photosystem II protein psbU. Phylo-

Table 1: Nuclear-encoded plastid proteins of D. acuminata

Accession Annotation 454 (bp) mRNA (bp) Phylogenetic grouping

HM125143 Photosystem II subunit M, PsbM 506 506 Cryptophytes

HM125145 Triose-phosphate transporter, TPT 406 1434 Peridinin dinoflagellates

HM125141 Plastid ferredoxin, PetF 155 754 Peridinin dinoflagellates

HM125142 Light harvesting protein LI818 911 1493 Fucoxanthin dinoflagellates

HM125144 Photosystem II subunit U, PsbU 689 938 Haptophytes

Figure 2 Protein trees of D. acuminata psbM. Phylogenetic trees of photosystem II subunit M protein. A) Maximum likelihood tree inferred using 
RAxML. B) Neighbour-joining tree inferred using PAUP*. Bold line indicates ≥ 0.95 Bayesian posterior probability for that branch. Numbers above and 
below branches represent bootstrap values > 50 from maximum likelihood and distance analyses, respectively. Letters in parentheses to the right of 
species names represent protist lineages: C, cryptophyte; D, dinoflagellate; H, haptophyte; R, red algae; S, stramenopile; V, Viridiplantae (green algae 
and land plants).
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genetic analyses moderately support the grouping of this
protein with haptophytes and the dinoflagellates K.
micrum and K. brevis (Figure 4b). PsbU, along with psbO
and psbV, is extrinsically associated with photosystem II
on the luminal side of the complex and enhances the oxy-
gen evolution activity and structural stability of the com-
plex [41,42]. PsbU is specifically involved in protecting
the photosystem from heat and photodamage and may

have an increased functional interaction with photosys-
tem II when PsbO is absent [43]. PsbO is nuclear-encoded
in eukaryotes and thus far missing from the D. acuminata
transcriptome dataset.

Dinophysis and Karenia/Karlodinium are not consid-
ered close relatives; therefore, it is likely that the genes
encoding LI818 and psbU were acquired through hori-
zontal gene transfer (HGT) [44]. Interestingly, another

Figure 3 Protein ML trees of D. acuminata A) TPT and B) ferredoxin. Letters in parentheses to the right of species names represent protist lineages: 
A, Apicomplexa, C, cryptophyte; D, dinoflagellate; H, haptophyte; R, red algae; S, stramenopile; V, Viridiplantae (green algae and land plants). Support 
values for branches are indicated as in Figure 2.
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member of this genus, Dinophysis mitra, is reported to
have haptophyte-like plastids, suggesting that these genes
could have been acquired during an earlier association
with a haptophyte in the ancestor of D. acuminata [45].
HGT of plastid-related genes has been shown to be wide-
spread in chromalveolates, particularly in heterotrophic
taxa [46,47].

Targeting peptides
If D. acuminata nuclear-encoded proteins function in the
cryptophyte plastid, they should contain targeting pep-
tides that facilitate their import into the organelle. Pri-
mary plastids, such as those in red algae and land plants,
are surrounded by two membranes, and these proteins
require an N-terminal transit peptide for plastid import.
Proteins targeted to secondary plastids with four (e.g.,
cryptophytes, haptophytes) or three membranes (e.g.,
peridinin dinoflagellates) possess a bipartite leader
sequence composed of a signal peptide, to target the pro-
tein to the endoplasmic reticulum, followed by a plastid
transit peptide [48-50]. Phylogenetic analyses show that
the plastid proteins of D. acuminata are derived from
algae with three- or four-membrane bound plastids, sug-
gesting they ancestrally contained both signal peptide
and transit peptide. However, only two membranes sur-
round the plastid in D. acuminata. Therefore, we expect
the targeting peptides of plastid genes in D. acuminata to
resemble the transit peptides found in organisms with
primary plastids.

All of the plastid genes in D. acuminata possess puta-
tive transit peptides (for sequences see additional File 4).
Only ferredoxin is predicted to contain a bipartite leader
composed of both a signal peptide and transit peptide.
The other four genes have simple transit peptides as pre-
dicted by plastid ultrastructure. PsbU, a protein that
functions within the plastid lumen, also contains a twin-
arginine signal peptide that directs it through the twin-
arginine translocase into the plastid lumen [51]. ChloroP
predicted transit peptide cleavage sites for all five pro-
teins, but only scored those of psbM and psbU as statisti-
cally significant (score > 0.5). WoLF PSORT, a second
tool for predicting protein subcellular localization, classi-
fied all five D. acuminata proteins as plastid-targeted.
The putative transit peptide of ferredoxin contains a phe-
nylalanine motif that is found in red algae and chromalve-
olates [49,52]. Plastid membrane proteins like TPT
possess transit peptides structurally different from those
for proteins targeted to the stroma or thylakoid mem-
brane and therefore are not identified by programs like
ChloroP [53].

The plastids of Dinophysis: plastids in transition?
The discovery of plastid-targeted TPT and ferredoxin
reveals a link between the metabolism of Dinophysis and

its cryptophyte plastid. Presumably, endogenous metabo-
lite transporters would be present in the plastid mem-
brane of newly-acquired plastids, but having a nuclear-
encoded transporter protein may allow Dinophysis to
extend the useful life of the plastid by replacing damaged
proteins. Likewise, proteins involved in stabilization of
the photosystem (LI818, psbU, psbM) also may explain
why the plastid can be maintained for a long period of
time by protecting components of the photosystem.

Although this study has found that Dinophysis does
have nuclear-encoded genes that presumably function in
the plastid, the results are not consistent with this organ-
ism having the ability to permanently maintain the plastid
with its native gene complement. We identified far fewer
nuclear-encoded plastid genes (only 16 by GO annotation
and only 5 when highly curated) than are typically found
when sequencing the transcriptome of a truly autotrophic
alga (Figure 5). In addition, unlike the transcriptomes of
dinoflagellates with permanent plastid replacements,
only one gene of the five identified potentially originated
from the source of the plastid. In K. brevis and K. micrum,
dinoflagellates that have plastids derived from hapto-
phytes, a large proportion of the nuclear-encoded plastid
genes were derived from the plastid donor [54,55].
Although our unigene dataset for Dinophysis is not com-
prehensive, the results of cDNA sequencing from dinofla-
gellates and other algae indicate that plastid related genes
are highly expressed in algae, and we would expect to
have discovered many more plastid genes if Dinophysis
possessed the full complement necessary for plastid
maintenance.

Early steps for establishing a permanent organelle may
have occurred in D. acuminata, including the develop-
ment of a mechanism for metabolite exchange under host
control, however, it may be difficult for another critical
step in plastid acquisition, massive transfer of genes from
the endosymbiont to host nucleus, to happen in Dinophy-
sis. Not only is the plastid not acquired directly from the
cryptophyte donor, but also the cryptophyte nucleus and
nucleomorph are not retained. Genes encoded on these
genomes would be needed to establish a permanent
organelle, but because of the indirect method of plastid
capture, Dinophysis may not experience the frequent
exposure to the cryptophyte genomes that would be nec-
essary for large-scale gene transfer. It is possible that
Dinophysis could acquire the necessary genes from other
sources, as they have done with four of the genes that we
identified. However, this would appear to be more diffi-
cult than obtaining a co-evolved set of genes from a single
source. The indirect mode of plastid acquisition in D.
acuminata may ultimately be a barrier to establishment
of a permanent plastid.
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Conclusions
The transcriptome analysis of D. acuminata has identi-
fied five nuclear-encoded plastid genes that appear to be
targeted to the dinoflagellate plastid and are derived from
multiple algal lineages. Only psbM appears to be derived
from a cryptophyte. Ferredoxin and TPT group with
peridinin dinoflagellates and have either been retained
from a peridinin plastid-containing ancestor or acquired
through HGT. The other genes (LI818 and psbU) are
derived from either fucoxanthin dinoflagellates (Karenia/
Karlodinium) or haptophytes. The light harvesting pro-
tein, LI818, and the two photosystem II subunits appear
to be involved in stabilizing and protecting the photosys-
tem, while ferredoxin and TPT function in exporting the
products of photosynthesis from the plastid. These find-
ings suggest that D. acuminata has some functional con-
trol of its plastid, but the minimal amount of plastid-
related genes compared to other fully phototrophic algae
suggests that D. acuminata does not have the ability to
permanently maintain the plastid.

Methods
Cultures
D. acuminata strain DAEP01 was established from Eel
Pond, Woods Hole, MA in September of 2006. Cells were
cultured using the two step feeding system described by
Park et al. [56] where D. acuminata (DAEP01) is fed the
ciliate, M. rubra (CCMP2563), which is fed the crypto-
phyte, G. cryophila (CCMP2564). The three algae are cul-
tured in modified f/2-Si medium [57] at 4°C on a 14:10 h

L:D cycle. G. cryophila is fed to M. rubra upon reaching a
cell density of 500,000 cells mL-1 (2 mL of G. cryophila is
added to 3 mL M. rubra in 20 mL f/2 medium). Once M.
rubra cultures are completely clear of G. cryophila, the
ciliate is fed to D. acuminata (3 mL M. rubra at ~14,000
cells mL-1 is added to 2 mL D. acuminata at ~1800 cells
mL-1 in 20 mL f/2 medium). Weekly cell counts of D.
acuminata fixed in Utermöhls solution [58] were per-
formed at 100× magnification in a Sedgewick rafter
counting chamber. Additional M. rubra cells were added
to D. acuminata cultures when the Myrionecta/Dinophy-
sis cell ratio fell below 1:1. Cultures of D. acuminata were
inspected for the presence of M. rubra prey by light
microscopy and harvested for RNA extraction at least
one week after M. rubra was no longer observed in the
cultures.

RNA extraction and cDNA synthesis
The dinoflagellate specific cDNA synthesis and amplifi-
cation was performed using the Clontech Super SMART
PCR cDNA Synthesis Kit. The first-strand synthesis reac-
tion included 1 μg of total RNA and 84 pmoles of modi-
fied 3' SMART CDS Primer IIA (5' AAG CAG TGG TAT
CAA CGC AGA GTT TGT TTT TTT TTC TTT TTT
TTT TVN 3'). The reaction was incubated at 42°C for 90
min. The first-strand cDNA was column purified using
the Clontech NucleoSpin Extract II Kit according to
Super SMART cDNA synthesis protocol. The cDNA
amplification was performed using the Clontech Advan-
tage 2 PCR kit. The amplification reaction included 40 μl
of purified first-strand cDNA, 20 pmoles 5' trans-spliced

Figure 5 Percent cellular compartment GOslim terms in D. acuminata compared to G. cryophila and five photosynthetic dinoflagellates. For 
each species, the amount of cellular compartment GOslim terms is expressed as a percentage of the total number of unigenes annotated. The total 
number of unigenes used in the comparative analysis is in bold. The number of unigenes annotated by Blast2GO is in parentheses.
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leader primer (5' TCC GTA GCC ATT TTG GCT CAA
G 3'), and 20 pmoles PIIA PCR primer (5' AAG CAG
TGG TAT CAA CGC AGA GT 3'). Cycling parameters
included an initial denaturation step at 95°C for 1 min fol-
lowed by 26-29 cycles of 95°C for 15 sec, 65°C for 30 sec,
68°C for 6 min. PCR products were visualized on an aga-
rose gel to confirm expected cDNA size range and
cleaned using the Clontech CHROMA SPIN -1000 size
selection columns.

First strand synthesis of M. rubra and G. cryophila
cDNA was performed using the Invitrogen Superscript
III First-Strand Synthesis System. The first-strand reac-
tion included 1 μg of total RNA and 50 pmoles modified
oligo dT primer with PIIA tag (see above). The reaction
was incubated at 50°C for 90 min. PCR amplification of
the first-strand cDNA was performed using the Clontech
Advantage 2 PCR kit. The reaction included 10 μl of first-
strand reaction and 10 pmoles PIIA PCR primer (5' AAG
CAG TGG TAT CAA CGC AGA GT 3'). Cycling parame-
ters included an initial denaturation step at 95°C for 1
min followed by 18 cycles of 95°C for 30 sec, 58°C for 30
sec, 68°C for 6 min. PCR products were visualized on an
agarose gel to confirm expected cDNA size range and
cleaned using the Clontech CHROMA SPIN -400 size
selection columns.

Sequencing, PCR and cloning
The cDNA was sequenced with a 454 FLX pyrosequenc-
ing machine at the Arizona Genomics Institute (Tucson,
AZ, USA) and data was assembled with SeqMan (DNAS-
TAR, Madison, WI, USA) or gsAssembler (Roche Nim-
bleGen, Inc., Madison, WI, USA). D. acuminata contigs
were queried against the M. rubra and G. cryophila
assemblies using BLASTN to determine if sequences
from these species were present in the D. acuminata
dataset. Contigs were annotated using Blast2GO [59],
and D. acuminata plastid gene fragments were identified
using those annotations as well as BLASTX searches
against the non-redundant protein database at NCBI.
Full-length transcripts were independently verified by
PCR from new and unamplified D. acuminata cDNA
generated using the SuperScript III First-Strand Synthesis
System (Invitrogen Co., Carlsbad, CA, USA). Gene spe-
cific internal primers were designed from 454 sequence
fragments and paired with either the 5' trans-spliced
leader primer or an anchored oligo dT primer for PCR
amplification of the 5' and 3' ends, respectively. PCR
products were sequenced directly or cloned into pGEM-
T Easy vectors (Promega, Madison, WI, USA) and
sequenced using BigDye dye terminator sequencing
(Applied Biosystems, FosterCity, CA USA) on an auto-
mated DNA sequencer (ABI 3730 × l, Applied Biosys-
tems). D. acuminata plastid protein sequences were
searched against the G. cryophila transcriptome assembly

using TBLASTN to identify G. cryophila homologs. The
plastid cDNA sequences have been deposited in Genbank
(Accession numbers HM125141-HM125145).

Phylogenetic analysis and targeting peptide determination
Amino acid sequences of D. acuminata and G. cryophila
were aligned with algal sequences from Genbank using
ProbCons with default parameter settings [60]. Gblocks
was used to remove poorly aligned regions of the align-
ments [61]. Distance analyses were performed in PAUP*
v4.0b10 [62] with 100 bootstrap replicates using a neigh-
bor-joining search with minimum evolution as the objec-
tive function and uncorrected distances. The best-fit
model for each alignment was identified by ProtTest v1.4
[63] using the AIC model selection criterion and a BIONJ
tree. The ProtTest best-fit evolutionary model for each
data set was applied to the maximum likelihood (ML) and
Bayesian analyses. ML trees were inferred using the
Cipres web portal RAxML rapid bootstrapping and ML
search [64,65]. Bayesian analyses were performed in
BEAST v1.4.7 [66] assuming an uncorrelated lognormal
relaxed molecular clock model using the substitution and
site heterogeneity models determined by ProtTest and
with a Yule process speciation tree prior. Two indepen-
dent runs (5 million - 10 million steps) were performed
for each analysis and terminated once examination of the
Markov chain Monte Carlo (MCMC) samples in Tracer
v1.4.1 http://beast.bio.ed.ac.uk/Tracer indicated conver-
gence of the chains with estimated sample sizes greater
than 200. The maximum clade credibility tree topology
was determined from resulting MCMC tree samples
using TreeAnnotator v1.4.7 [66]. Amino acid sequences
were screened for targeting peptides and associated
cleavage sites using SignalP v3.0, ChloroP v1.1, TatP v1.0,
and Wolf PSORT [67].

Additional material

Additional file 1 Table of all D. acuminata contigs called by Blast2GO. 
Blast2GO analysis identified 16 contigs as potentially plastid-related based 
on a cellular compartment GOslim category of plastid or thylakoid.
Additional file 2 Protein alignment of psbM. Alignment to the left of 
the black line was used for phylogenetic analyses. The C-terminal ends to 
the right of the line were trimmed by Gblocks due to poor sequence align-
ment. The C-terminal ends of Guillardia theta, G. cryophila, and D. acuminata 
are outlined in black.
Additional file 3 Full protein ML tree of plastid light harvesting pro-
teins (LHP). Trees were inferred using RAxML. Bold line indicates ≥ 0.95 
Bayesian posterior probability for that branch. Numbers above and below 
branches represent bootstrap values > 50 from maximum likelihood and 
distance analyses, respectively.

Additional file 4 Targeting peptides of D. acuminata. The petF (ferre-
doxin) peptide has both a putative signal and transit peptide. Only psbU 
possesses a twin-arginine signaling peptide. An N-terminal phenylalanine 
transit motif, found in red algae and chromalveolates, was detected in ferre-
doxin.

http://beast.bio.ed.ac.uk/Tracer
http://www.biomedcentral.com/content/supplementary/1471-2164-11-366-S1.PDF
http://www.biomedcentral.com/content/supplementary/1471-2164-11-366-S2.PDF
http://www.biomedcentral.com/content/supplementary/1471-2164-11-366-S3.PDF
http://www.biomedcentral.com/content/supplementary/1471-2164-11-366-S4.PDF
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