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Abstract
Background: Massively parallel DNA sequencing technologies have enabled the sequencing of several individual 
human genomes. These technologies are also being used in novel ways for mRNA expression profiling, genome-wide 
discovery of transcription-factor binding sites, small RNA discovery, etc. The multitude of sequencing platforms, each 
with their unique characteristics, pose a number of design challenges, regarding the technology to be used and the 
depth of sequencing required for a particular sequencing application. Here we describe a number of analytical and 
empirical results to address design questions for two applications: detection of structural variations from paired-end 
sequencing and estimating mRNA transcript abundance.

Results: For structural variation, our results provide explicit trade-offs between the detection and resolution of 
rearrangement breakpoints, and the optimal mix of paired-read insert lengths. Specifically, we prove that optimal 
detection and resolution of breakpoints is achieved using a mix of exactly two insert library lengths. Furthermore, we 
derive explicit formulae to determine these insert length combinations, enabling a 15% improvement in breakpoint 
detection at the same experimental cost. On empirical short read data, these predictions show good concordance 
with Illumina 200 bp and 2 Kbp insert length libraries. For transcriptome sequencing, we determine the sequencing 
depth needed to detect rare transcripts from a small pilot study. With only 1 Million reads, we derive corrections that 
enable almost perfect prediction of the underlying expression probability distribution, and use this to predict the 
sequencing depth required to detect low expressed genes with greater than 95% probability.

Conclusions: Together, our results form a generic framework for many design considerations related to high-
throughput sequencing. We provide software tools http://bix.ucsd.edu/projects/NGS-DesignTools to derive platform 
independent guidelines for designing sequencing experiments (amount of sequencing, choice of insert length, mix of 
libraries) for novel applications of next generation sequencing.

Background
Massively parallel sequencing technologies provide pre-
cise digital readouts of both static (genomic) and dynamic
(expression) cellular information. In genetic variation,
whole genome sequencing uncovers a complete catalog of
all types of variants including SNPs [1] and structural
variations [2]. Transcript sequencing [3,4], small RNA
sequencing and CHip-Seq [5] allow a measurement of
dynamic cellular processes. These technologies provide
unprecedented opportunities for genomics research but
also pose significant new challenges in terms of making

the optimal use of the sequencing throughput. The indi-
vidual laboratory might not be equipped to provide cor-
rect, and cost-effective designs for the new experiments.
By 'design', we refer to questions such as "How much
sequencing needs to be done in order to reliably detect all
structural variations in the sample to a resolution of 400
bp?" Confounding this further is the proliferation of a
large number of sequencing technologies, including three
widely used platforms, Roche/454 [6], Illumina [1] and
ABI SOLiD [7], and others such as Pacific BioSciences [8]
and Helicos [9,10]. These technologies offer the end-user
a bewildering array of design-parameters, including cost
per base, read-length, sequencing error rates, clone/
insert lengths, etc. It is not straightforward to make a rea-
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soned choice of technology and design-parameters in
conducting a particular experiment. Likewise, the tech-
nology developers are faced with difficult choices on
which parameters to improve in future development.

For any particular application, the goal of the
researcher is to achieve the desired objective in a cost-
effective manner. For example, in genome resequencing,
the primary objective is the sensitive and accurate identi-
fication of various forms of sequence variants. Accurate
SNP detection can be achieved even using short 36 bp
Illumina reads [1]. However, for other applications such
as de novo assembly of genomes, longer reads are signifi-
cantly better than short reads [11]. RNA-seq is a novel
application of sequencing to determine the expression
levels of different mRNA transcripts in the cell [12].
However, the exponential variability in transcript expres-
sion levels poses new design questions regarding the
required depth of sequencing to sample low abundance
transcripts. Resolving such design questions can allow
one to expand the scope of next-generation sequencing in
novel directions. In this paper, we address and resolve
some of the common design questions relating to struc-
tural variation and transcript profiling.

Structural variation
Structural variations (SVs) refer to events that rearrange a
genome (query) relative to a reference genome [13] and
include deletions, insertions, inversions and transloca-
tions of genomic regions. Paired-end Sequence Mapping
(PEM) [14,15] represents a powerful approach to detect
such events. In PEM, the ends of a large number of ran-
domly selected inserts (clones) from the genome of an
individual (query) are sequenced, and mapped to a refer-
ence genome. Inserts which map aberrantly to the refer-
ence genome in distance or orientation form an "invalid
pair" and suggest an SV [14]. The general approach
underlying PEM is illustrated in Fig. 1a-d. A number of
recent informatics tools have been developed for the sys-
tematic detection of structural variation using the PEM
framework [16,17].
Modeling SV detection
As detailed below, and in Figures 1a-d, SVs often involve
the creation of breakpoints: a pair of coordinates (a, b) in
the reference genome, that are brought together to a sin-
gle location ζ in the query. Consider the deletion event in
Figure 1a. A reference segment of length l = b - a + 1 is
absent in the query, relative to the reference. For the
breakpoint (a, b) to be detected a paired-end insert must
span ζ. Note that the insert-size is not fixed, but distrib-
uted tightly around a mean (L ± σ). Deletion is confirmed
if the breakpoint is spanned and l >>σ. Typically, σ <<L so
we simply require that l >L, which is sufficient but not
strictly necessary.

This approximation illustrates an important difference
between 'algorithm design' for SV detection, and experi-
ment design. Using a clever algorithm based on higher
coverage, and variation in insert length (σ), it may be pos-
sible to detect smaller deletions (σ <l <L) as well. however,
in deciding how much sequencing is done, we simply
focus only on l >L. This simplification allows us to handle
many different types of SV using identical design criteria.
The similarity to other cases is described below.

The case of inversion is shown in Figure 1b. Here, two
breakpoints, (a1, b1), and (a2, b2) are fused together in the
query. Denote the length of the inversion SV as l = b1 - a1
= b2 - a2. The inversion is detected when both break-
points are detected. As in the case of deletions, either
breakpoint is detected when a shotgun insert of the query
spans the corresponding fusion point, and has exactly
one end-point inside the inversion. We enforce this by
requiring that L <l, even though the condition is sufficient
but not strictly necessary.

The case of insertion into a query sequence, relative to
the reference, is slightly more complex, and can be bro-

Figure 1 Applications of next-generation sequencing. Figure 1: (a) 
Structural variant (Deletion) detection using genomic PEM. The dele-
tion brings disparate points (a, b) together to a fusion point in the que-
ry. (b) An inversion event is detected by detecting the two breakpoints 
(a1, b1), and (a2, b2) (c) An insertion caused by a translocation is detect-
able and has > 2 breakpoints. (d) Insertion of novel DNA causes dan-
gling ends, and is harder to detect. (e) RNA-seq to detect gene 
expression. The number of reads mapped back to each gene indicate 
its relative abundance between and within a sample.
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ken into two sub-cases. In the first case (mediated by
transpositions, or chromosomal translocations), a distal
region b1, b2 of the reference genome is inserted at coor-
dinate a1, creating at least 2 breakpoints ((a1, b1), and (b2,
a2) in Figure 1c). Let l = b2 - b1 denote the length of the
insertion SV. Again, SV detection depends upon the
detection of 2 or more breakpoints. If on the other hand,
the inserted sequence is not in the reference genome (Fig-
ure 1d), then detection is challenging, often involving a de
novo assembly of the inserted region (see Bentley, 2009,
Figure S21 [1]). We do not consider this case further. The
case analysis above reveals the following common thread.
An SV is characterized by its length l, and a collection of
breakpoints. For an SV to be detected,

1. One or more of the SV breakpoints must be 
detected.
2. For each breakpoint:

(a) A shotgun insert must span the corresponding 
fusion point.
(b) The reads at the ends of the insert must map 
unambiguously to the ends.
(c) The insert-size must be dominated by the SV 
length (l >L).

This abstraction clarifies the design questions consider-
ably. While the algorithmic questions must still deal with
each SV separately, the design questions focus on break-
point detection. We consider 2(b, c) first. For any choice
of technology, and insert length, the distribution can be
empirically computed by looking at concordantly
mapped reads. Using this distribution, we can compute
the probability of a randomly picked insert having a spe-
cific size.

Consider a typical experiment for SV detection. The
researcher would like to detect a large fraction of all SVs
of length ≥ l, with high confidence (≥ 1 - ε). They must
choose (a) a specific instrument technology; (b) insert-
size(s) from the ones available; (c) read-length, and (d) the
amount of sequencing. First, the researcher must choose
a technology and insert-size constraint, where

The choice of a specific read-length is somewhat less
important, but the reads must be long and accurate
enough to map unambiguously. We model both points by
introducing a parameter f, referring to the fraction of
reads that map unambiguously. Therefore if N inserts
must map unambiguously to satisfy design constraints,
then N/f inserts need to be sequenced, on the average. In
the remainder, we limit the discussion to detecting break-
points, considering only the technologies and insert sizes
that satisfy the size-constraint (1); and, we assume a map-
ping parameter f to scale the answers. The issue now is to

choose from available insert-sizes, and second, to deter-
mine the amount of sequencing. In this paper, we formu-
late, and resolve design issue 2(a) as:

• Given a choice of insert-sizes, and parameter ε, com-
pute the amount of sequencing needed to detect 1 - ε of 
all breakpoints in the query genome.

We address the questions of breakpoint detection con-
junction with the related notion of breakpoint resolution.
With most technologies, a breakpoint detected as a pair
of regions ([a1, a2], [b1, b2]), such that a ∈ [a1, a2], and b ∈
[b1, b2]. The resolution, defined by |a2 - a1| + |b2 - b1|
refers to the uncertainty in determining (a, b). Good reso-
lution is critical elucidating the phenotypic impact of the
variation In an earlier work, we described the use of
tightly re solved breakpoints in detecting gene fusion
events cancer [18]. This framework was extended to form
general geometric approach for detecting structural vari-
ants [16]. We reformulate and resolve the question

• Given a choice of insert-sizes, and parameters ε, s, 
compute the amount of sequencing needed to detect 1 - 
ε of all breakpoints in the query genome to a resolution 
of ≤ s bp.

Intuitively, the likelihood of detection would be maxi-
mized by choosing the largest available insert-size. How-
ever, the longer insert-sizes increase the uncertainty in
resolving the breakpoint. One result of our paper is an
explicit trade-off between detection and resolution. We
also derive a formula that computes the probability of
resolving a breakpoint to within 's' base-pairs, given a
fixed number of shotgun reads from a specific paired-end
sequencing technology. Another result of our paper is
that it is advantageous to use a mix of insert-sizes. For
example, we can show that only 1.5× mapped sequence
coverage of the human genome using Illumina (Solexa)
can help resolve almost 90% of the breakpoints to within
200 bp using a mix of inserts. All other parameters being
equal, we show that the best resolution of a structural
variant comes from using exactly two possible insert-
lengths: one that is as close as possible to the desired res-
olution, and one that is as long as technologically possible
(with reasonable quality).

In summary, the researcher can use our formulae in
designing his experiment to (a) select appropriate insert-
sizes; (b), the optimum amount of sequencing for each
insert library. A web-based tool based on the above is
available.

Transcript sequencing
Transcript sequencing is a direct approach for measuring
abundance, and variations involving splicing, and SV
mediated gene disruptions, and fusions [3]. In most tran-
script sequencing methods, RNA is fragmented, and con-
verted into cDNA, which is subsequently sequenced and
mapped back to a reference [12]. This protocol has shown

Pr Length of arbitrary insert  >( ) ≤l e (1)
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great promise in detecting aberrant splice forms and SVs
that lead to gene disruptions, and fusions [4].

Often, transcript sequencing is used for gene expres-
sion profiling. See Figure 1e. The significant difference in
sampled reads (5 to 1) between Samples 1 and 2 suggests
that gene A's expression level has changed between the
two samples. In measuring relative abundance, RNAseq
mimics older technologies like microarrays. However,
sequencing stands alone in being able to compute relative
abundance between two distinct transcripts. In sample 1,
the difference in read coverage between genes A and B
suggest that A is more than twice as abundant as B
(assuming A and B are approximately the same length).

Let xt denote the true-expression of transcript t, defined
as the number of copies of t in the sample. Additionally,
the transcript is broken into a number of pieces, roughly
proportional to its length, lt. Therefore, we assume that
transcript t yields  ltxt copies in the sample [3]. This con-
trasts with earlier technologies like EST sequencing,
which were biased towards the 3' (or 5') end. Let at denote
the number of sequences sampled from xt. We denote the
normalized-expression for t (likelihood of a randomly
sampled read coming from t) by

A typical design question for transcript sequencing is to
determine the amount of sequencing required to sample
a given fraction (Say, 90%) of the expressed transcripts.
The question is particularly difficult to answer because
different transcripts have vastly different normalized-
expression values. Using empirical and analytical obser-
vations, we show that the p.d.f of the normalized-expres-
sion can be computed using a small sample. Therefore, a
researcher can start with an initial sequencing run (< 500
K reads), and use the mapping data to compute the addi-
tional amount of sequencing needed. Formally, we
resolve the following:

• Given transcript mappings from a small sample of 
sequences, and parameter ε, compute the amount of 
additional sequencing needed to detect 1 - ε of all 
expressed transcripts.

Our results are based on novel extrapolation for the low
abundance genes that are not accurately represented in
the sample. They allow the researchers to efficiently allo-
cate resources for large RNA sequencing studies. This is
particularly relevant when many related samples are
being sequenced and one needs to assess the trade-offs
between sequencing depth and sample coverage.

Results and Discussion
Structural Variation
As discussed in the introduction, we can limit the ques-
tion of SV detection to detection of SV breakpoints. Let
breakpoint (a, b) in the reference genome fuse to a single
point ζ in the query genome. Let Pζ, denote the probabil-
ity that an arbitrary breakpoint is detected. Our goal is to
derive an expression for Pζ, given a certain amount of
sequencing.

Direct application of breakpoint formulae requires that
one selects from insert-sizes that are smaller than the
desired SV length. In the following, we work with avail-
able inserts, where the mean insert-size ranges from L =
200 bp to L = 10 Kbp. Therefore, a result that says Pζ = 0.9
can be interpreted to mean that 90% of all breakpoints
from SVs of length significantly larger than L Kbp can be
detected. These specific values are chosen for illustration
purposes only. Identical results apply for smaller or larger
SVs, except that we would be limited to choosing from
appropriate insert-sizes. All analytical results are derived
assuming a fixed value for L. However, all results on real
data use the natural variation in insert-size, and show
excellent concordance with the analytical results.
Detection-Resolution trade-off
Consider N inserts with fixed insert-size L sampled at
random and end-sequenced. For a genome of length G,
the clonal coverage c = NL/G, describes the expected
number of inserts spanning ζ. A breakpoint is detected
exactly when at least one insert spans ζ. Therefore, Pζ, the
probability of detecting an arbitrary breakpoint, is given
by the Clarke-Carbon Formula [19,20].

Equation 2 demonstrates the effect of L and N. Larger
values L (among allowable insert-sizes), or the amount of
sequencing N improve the probability of detection. How-
ever, the greater insert length also creates a greater uncer-
tainty in the location of ζ. Define resolution-ambiguity as
the size of the region θ (denoted by |θ|) in which ζ is con-
strained to lie. Order the inserts spanning ζ by their right
endpoint. Let A be the distance of the right end point of
the leftmost insert to the right of ζ. Then,

We show (see METHODS) that
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Using symmetry arguments,

Equations 2, and 3 provide an SV detection versus reso-
lution trade-off. For a fixed number of sequences N,
increasing L increases the probability of detection, but
also increases the resolution-ambiguity. The effect
decreases for large N. To validate this using experimental
data, we used the publicly available Illumina generated
human reference sequence from NA18507, a Yoruban
male [1]. Using the complete data, we computed a set of
"true breakpoints" from SVs of length ≥ 2000 (see METH-
ODS).

Next, we collected all inserts with mean insert-size
either 200 bp, or 2000 bp. Choosing the number of
mapped reads as a parameter N, we collected random
sub-sets of N paired-reads, and computed the fraction of
true breakpoints detected as well as the expected resolu-
tion (see METHODS). Figure 2 illustrates the trade-off
between detection and resolution. The plotted-lines cor-
respond to theoretical predictions which do not use vari-
ance in insert-sizes. The dark ovals show the
experimentally observed values for detection and resolu-
tion, which can be compared against the corresponding
theoretical values (squares).

Nevertheless, current sequencing capability allows us
to detect and resolve a large fraction of breakpoints. For
example, with an Illumina run with 2 Kbp inserts and 25
× 106 mappable reads one could detect nearly 100% of
breakpoints with an average resolution-ambiguity of less
than 500 bp.
Mixing insert lengths
Many of the next generation sequencing technologies
offer a variety of insert lengths. For example, the ABI
SOLiD technology claims a variety of insert lengths rang-
ing from 600 bp to about 10000 bp [21]. Given the trade-
off between detection and resolution, we next asked if
using a mix of insert lengths could help with detection
and resolution. To address this, we first derived bounds
on the probability of resolving a breakpoint to a desired

level of resolution using a mix of two insert lengths. Sup-
pose we generate N1, N2 reads, respectively from insert
libraries of lengths L1, L2. Then, for an arbitrary s (see
METHODS)

Note that the resolution-ambiguity |Θ| ≤ L1, or |Θ| = L2
can be obtained using single insert libraries, but the likeli-
hood of resolving between L1 and L2 is optimized by using
an appropriate mix of the two libraries. Analogous equa-
tions can be derived when two overlapping inserts or
more are required to detect a breakpoint.

Figure 3 illustrates this principle using publicly avail-
able Illumina generated human reference sequence from
NA18507, a Yoruban male [1], assuming one had chosen
to split a single run (flow cell) between 2 insert-sizes. As
described earlier, we first used the complete data to com-
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Figure 2 Detection-resolution trade-off. Figure 2: The detection 
probability, Pζ (left-axis), increases with increased sequencing (N), as 
well as insert-length (L). The expected resolution-ambiguity, |E(Θζ)| 
(right-axis), increases with increasing insert-length L. The bottom x-axis 
shows total number of reads (N) while the top x-axis shows the corre-
sponding sequence coverage (with 50 bp paired reads relative to the 
human genome). h' and 'd' correspond to the expected and ob-
served values, respectively, for specific values of N and L.
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pute a set of "true breakpoints" from SVs of length ≥ 2000
(see METHODS).

Next, we collected all inserts with mean insert-size
either 200 bp, or 2000 bp. For a fixed amount of sequenc-
ing, we confirmed the theoretically predicted boost in
probability of detecting a breakpoint to within a resolu-
tion-ambiguity of 200 bp. The results are in Figure 3. The
probability is doubled from 0.15 to over 0.29 using a mix
of insert libraries. Similar results are obtained for other
sequencing studies, such as an ABI SOLiD sequencing
with 600 and 2700 length libraries (data not shown). In a
further extension of the analysis, we show that to maxi-
mize the likelihood of resolving breakpoints to sbp, we
need only two libraries-one with insert-length s, and the
other as large as possible (see METHODS). A restate-
ment of these results can be found in Additional file 1.
We note that only 1.5× mapped sequence coverage of the
human genome using Illumina (Solexa) can help resolve
almost 90% of the breakpoints to within 200 bp using a
mix of inserts. Similar results were obtained when
applied to runs from the ABI SOLiD system [21].

While our analytical results treat the insert sizes as
fixed, empirical data very closely approximates the theo-
retical curve (Figure 3, dotted lines). Though the theoret-
ical model performs better (mostly due to mapping
variation resulting from repeat-like genomic regions), the
magnitude of the 'boost' at 200 bp is maintained. The
concordance between theoretical and experimental
results shows the limited effect of insert-length variation.

It is useful to revisit the case of SVs with very small
lengths. Mechanisms such as non-homologous end-join-
ing (NHEJ), often gives rise to small insertions and dele-

tions [2], that are valuable as genetic markers. If the event
size is smaller than the variance in available insert-size,
the event will not be detected by paired end mapping (in
the case of deletions and insertions). In these situations,
detection is improved by longer reads (such as those
available in Roche-454). If single reads are used to detect
the fusion point, then there is no ambiguity in resolution.
In that case, the design question becomes simple, and the
desired number of reads can be computed using the
Clark-Carbon formula, and scaled using the mapping
parameter f.

Transcript sequencing
As transcripts have variable expression, the amount of
sequencing needed to detect a transcript is variable. A
key design issue is to determine if sufficient sequencing
has been performed to sample all transcripts at a certain
expression level. For example, in large patient surveys one
needs to identify the number of samples that can be
sequenced at minimal cost, while ensuring detection of
genes at a desired expression level. Similarly, when evalu-
ating a given sample it is important to know whether the
required sequencing depth has been reached, or if more
sequencing is necessary to detect a given transcript, iso-
form, or fusion gene. We show here that a relatively low
level of transcriptomic sequencing has sufficient infor-
mation regarding the variability of expression that it can
be used to compute the likelihood of a specific transcript
being sampled.

While deep sequencing is required to accurately esti-
mate the normalized expression, νt, for each transcript, t,
a more modest level of sequencing allows us to estimate
the distribution of ν values among all transcripts. For-
mally, define a p.d.f f(ν) for a randomly sampled transcript
to have normalized-expression ν. Consider a transcript
sequencing experiment with N reads. If we could estimate
νt, then

Instead, we propose to use the estimate of f to make
predictions about sampling transcripts.

We tested the predictive accuracy of Eq. 5 using data
from Marioni et al. [3]. An empirical p.d.f was derived
(see METHODS) from the total sequence used in each of
two tissue studies (kidney and liver, ~35 × 106 reads each).
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Additional file 2a shows the similarity between the
empirical distribution of normalized-expression values
between the two studies.

We next asked if f could be accurately estimated using a
lower sequencing depth. If so, this lower level of sequenc-
ing can be used to compute the depth of sequencing
required to adequately sample all of the transcripts. To
test this, smaller sequence-subsets (100 K, and 1 M) were
generated by sampling from the complete set. Expression
distributions were computed from each subset as shown
in Figure 4a. These were then used to compute the proba-
bility of transcript detection. Figure 4(b) plots a detection-
curve, described as the probability of detecting a tran-
script from the liver sample as a function of its normal-
ized abundance. While predictions made with smaller
samples (blue, red solid lines) roughly track the true
detection-curve (black line), there is significant bias as
low abundance reads are not accurately sampled (Addi-
tional file 3).

Previous work has indicated that gene expression dis-
tributions typically follow a power-law [22,23]. Nacher et
al. extended this idea, accounting for stochastic noise to
provide better fits for low expressed genes [24]. We cre-
ated a novel regression based strategy (METHODS) to
correct for the bias, by fitting a power-law to high-
expressed genes and using the simplified variant of mod-
els proposed by Nacher et al, to accurately approximate
genes with low expression levels. The corrected curves
(blue, red dotted lines) track the true estimates closely,
even when using a sparse set of 100 K reads. With 1 mil-
lion reads, > 90% of the total observed transcripts were
sampled. In this data f is well-conserved across samples
(as seen in kidney and liver, Additional file 2a). For exam-
ple, the expression p.d.f. for kidney can be used to
roughly predict the probability of detection for liver

(Additional file 2b). This implies that f may not need to be
re-estimated independently for related samples.

Conclusions
We present a number of analytic and empirical results on
the design of sequencing experiments for uncovering
genetic variation. Our study provides a systematic expla-
nation for empirical observations relating to the amount
of sequencing, and the choice of technologies. The theo-
retical analysis is not without caveats, which are dis-
cussed below. Nevertheless, the concordance with
empirical data illustrates the applicability of our methods.
Some of the results, while not counter-intuitive, provide
additional insight. For example, we show that the best
design for detecting SV to within 's' bp demands the
choice of exactly two insert-lengths, one close to s, and
the other as large as possible. We explicate the trade-offs
between detection and resolution, and provide a method
for computing the probability of SV detection as well as
the expected resolution-ambiguity for a variety of tech-
nology and parameter choices.

Many additional confounding design issues that can be
modeled in the context of structural variation. Different
technologies have different error rates. This is corrected
by introducing a mapping-rate parameter f, defined as the
fraction of reads that are mapped unambiguously to the
reference. Replacing the number of reads N by fN helps
correct somewhat for sequencing errors. New methods
have been suggested for dealing with complex scenarios
in which it is difficult or impossible to map reads
uniquely, such as within recent segmental duplications,
using hill climbing [25] or parsimony [26] based
approaches which try to minimize the number of
observed structural variants. Chimerisms in insert-
lengths can be controlled by demanding the use of multi-
ple overlapping inserts. We have extended most analyses
to requiring two or more inserts (see METHODS).

An important simplification in our analysis is to treat
insert-length as constant. However, choosing a distribu-
tion on the insert-length does not influence the expected
resolution-ambiguity, only its variance. The variance is
important for measuring smaller structural variations.
Therefore, experiments that aim to detect small struc-
tural variations are constrained to using technologies in
which the insert-length variation is significantly smaller
than the size of the SV itself. The available technologies
are constantly reducing the variance in insert-lengths
through better library preparation strategies, which
might allow the use of larger insert-lengths in the future.

For transcript sequencing, we address the important
question of depth of sequencing, given the large variation
in transcript abundance. Our results suggest that estimat-
ing the distribution of normalized expression values with
modest amounts of sequencing can help address design

Figure 4 Transcript abundance distribution predicted from sam-
pled reads. Figure 4: (a) Each point on a curve (solid-line) corresponds 
to the number of transcripts (Y-axis) that had a specific normalized 
count (X-axis). Note that the number of transcripts small counts rela-
tive to coverage drops sharply. For example, the curve for 100K drops 
at log(X) ≤ 5. This undersampling is corrected by the dotted lines. This 
correction enables the computation of (b), the probability of detecting 
an arbitrary transcript. The solid lines correspond to predictions made 
of the empirical (or simulated empirical) distribution. The dotted lines 
correspond to corrected values from regression (see METHODS). Note 
the high fit that is obtained after correction, with only 100,000 reads.
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questions for transcript sequencing, even when the tran-
script abundance varies over many orders of magnitude.
This approach has a number of caveats, for example, it
assumes unbiased sampling of transcripts. Current
library preparations have been shown to have biases
(such as 3' and 5' depletion) [12] as well as biases towards
specific RNAs (specifically small RNAs) within a plat-
form [27]. Additionally, though our results indicate a very
good empirical fit on human samples, the assumption of
a power-law, or other distribution, may not fit all samples.
A number of outstanding questions remain, such as the
detection of splicing events, and the resolution of break-
points. While transcript sequencing is a quick way to
detect breakpoints, the location of the breakpoint is con-
founded by trans-splicing. The issues relating to design
can be better resolved only after methods are discovered
to resolve breakpoints and predict splicing events based
on transcriptome sequencing.

We do not address some important applications of next
generation sequencing technologies: the detection of rare
(and common) sequence variants in re-sequencing stud-
ies. Given the relatively high error rates for some of these
technologies, reliable and accurate detection of sequence
variants (SNPs) is a challenging problem, and general
design principles that would be applicable to all technolo-
gies will be addressed in future study. The design of
sequencing for 'dark-region' identification (i.e. DNA
inserts on the sampled genome that are not in the refer-
ence) is not addressed. Lastly, there are practical sample
preparation issues which demand consideration. Longer
insert-lengths consume more sample for equivalent
amount of sequencing. Therefore, if the sample is limited
(as in tumors), the best design should also seek to opti-
mize a 'sample-cost' versus detection trade-off.

Technological developments all point to the rapid
deployment of personalized genomic sequencing. As
large populations of individuals are sequenced, and the
sequence is analyzed for a variety of applications, design
issues relating to the amount of sequencing, the choice of
technology, and the choice of technological parameters
become paramount. Our paper helps resolve some of
these questions. As current technologies mature and new
technologies arise it will be critical to further develop a
framework to maximize study efficacy.

Methods
Breakpoint Resolution
The insert coverage is given by c = N L/G where N is the
number of inserts. A breakpoint (a, b) in the reference
genome corresponds to a fusion point ζ in the query
genome where the coordinates a, b come together. Let ζ
be covered by at least one insert, and let A be the distance
of the right end point of the leftmost insert from ζ.

Therefore,

Using symmetry arguments,
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Simulation
A set of "true" breakpoints were chosen by mapping Illu-
mina reads for individual NA18507 (obtained from the
NCBI short read trace archive) to build 36.1 of the human
genome. ELAND alignment tool, where each end
mapped separately to detect SVs. Insert libraries were
mapped until > 100× insert coverage was reached, in
order to obtain a candidate set. To avoid systematic errors
within a library (and over-fitting of the test data) at least
three distinct libraries were required to span a breakpoint
for it to be considered a "true breakpoint". All SV events
greater than 2 Kbp were selected to be the final set is con-
sidered to be the TRUEBREAKPOINTSET.

To test the theoretical predictions, a 200 bp and a 2 Kbp
library were selected at random. For parameter N, we
randomly picked N paired-reads in which both ends
mapped uniquely to the genome. A true breakpoint was
considered to be detected if at least two inserts spanned
it. Thus, the fraction of true breakpoints detected was
empirically computed. These numbers were compared
against theoretical predictions, obtained using Eq. 2,3
respectively. The resolution |Θζ| for each detected break-
point was computed as follows: for each paired-read that
spanned a breakpoint, let xl denote the distance of its left
endpoint from the left end of the right-most clone; let xr
denote the distance of its right end-point from the left
most clone. Then, the resolution is given by L - (xl + xr).
|Θζ| was obtained by taking the mean (Θζ) of all overlap-
ping paired-reads. The fraction of "true" breakpoints
detected (at least 2 inserts spanning the event) and
resolved by these libraries is shown in Figure 3, as a func-
tion of N.

Mixing insert lengths
Consider the case where we have two different insert-
lengths L1 and L2 where L2 >L1 w.l.o.g. Denote the cover-
ages of the insert libraries as c1 and c2. Let c = c1 + c2L1/L2

Next, we compute the probability of resolving a
breakpoint to within 's' bp. We have 3 cases: i) s <L1;
ii) L1 ≤ s <L2; and, iii) s > = L2. For s <L1, we extend
the analysis of [18], where we showed that

. Denoting N = N1 +
N2,

Note that the results are independent of insert-lengths
(or, in fact, whether or not a mix of inserts is being used).
However, for the case L1 ≤ s <L2, we have to consider the

event of an L1 insert spanning the breakpoint or
the event of two L2 inserts spanning ζ with no L1 inserts
spanning ζ Therefore,

The case when s >L2 can be modeled by a single library
with c = (N1L1 + N2L2)/G.
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The equations can be modified to require that at least 2
inserts overlap a breakpoint. Case (i) is unchanged, as it
requires 2 inserts. Likewise for the second term in case
(ii). We constrain case (ii) to require 2 or more inserts for
the first term.

For case (iii), we can extend the generic cluster cover-
age case.

Proof of Optimality of Two Insert Design
We show that it is sufficient to consider exactly two insert
lengths for resolving a breakpoint to within 's' bp. We
show first that for a given s and N, and a collection of
insert-lengths, Pr(|Θζ| = s), is maximized using a mixture
of ≤ 2 insert lengths.

Assume to the contrary that an optimal mix requires ≥
3 distinct insert-lengths. This implies that for some insert
length L', L ≠ s, and L ≠ LM, where LM is the maximum
available insert-length. In other words, either a) L' <s, or,
b) s <L' <LM. We consider each case in turn.

L' <s: From earlier discussion, the contribution of the
inserts with length L' to Pr(|Θ| ≤ s) is proportional to cov-
erage (c1). Replacing inserts of length L' with inserts of
length s will increase coverage without changing N, con-
tradicting optimality.

s <L' <LM: Once again, for inserts larger than the desired
resolution-ambiguity s, their contribution to Pr(|Θ| ≤ s) is
completely dependent on coverage. Replacing by a insert
of length LM improves the resolution probability, a con-
tradiction.

An immediate corollary is that the optimal design con-
sists of a mix of two insert lengths, s and LM. The mix of
the two libraries (the ratio N1/N2 s.t. N1 + N2 = N is fixed)
only needs to be optimized for Case (ii).

We compute the optimal mix empirically by iterating
over N1  [0, N].

Simulation for mix of inserts
The set of breakpoints, and method for computing mean
size of Θζ, followed that of the previous simulation. A sin-
gle 2 Kbp and 200 Kbp library were analyzed, using 4
lanes from each corresponding flow cell. Clusters of
invalid pairs were generated by combining the two
reduced libraries.

Transcript Sequencing
Mapped RNA-seq data, generated by Marioni, et al. [3],
was obtained from http://giladlab.uchicago.edu/
data.html. The genomic mappings were converted to a
list of overlapping exons in Refseq. For each transcript, a
count of the number of reads sampling it was generated.
This enabled the estimation of νt which was calculated as
described earlier. To obtain smaller data sets, random
sampling of the reads was performed and νt was re-calcu-
lated.

The sample is used to estimate the p.d.f of normalized
abundance values, and is shown in Additional file 2. It can
be observed that each sample of r reads is accurate for
highly expressed genes (normalized expression > 1/r).
Below 1/r, the chance of sampling a gene is low, and so
the p.d.f cannot be estimated accurately. It has been
shown empirically that most tissues follow a power law
distribution [22,23].

Figure 4a shows a plot of log f(ν) vs. log(ν). Performing a
regression analysis on the line reveals the slope α, and the
intercept log(β).

Nacher et al. suggested a stochastic model of gene
expression which, in practice, provides a better fit to gene
expression data. They provide the equation:

Where δD is a noise parameter (relating to decay of
RNA molecules) and N is a normalization constant [24].
Note, that this equation is approximated by the power law

 at high values of ν.
Generating the fit requires two important steps: fitting

a power law at high gene expression and identification of
a "reliable point". Note that "high gene expression" can be
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maintained for all samples (in our simulations we used

 of overall expression). Performing a regres-

sion on gene expression values above this threshold pro-
vides δD. Intuitively, the reliable point can be identified
independently for each distribution by determining the
point of inflection of the graph log(f(ν)) vs log(ν); the set
of points immediately downstream of the inflection are
used to fit Equation 6. One can accurately determine a
"reliable point", νr, by computing the gene expression
value at which there is a 95% probability of detecting a

transcript, , where r is the number of

reads. The corrected p.d.f. utilizes the empirically gener-
ated p.d.f after this reliable point, and the theoretical p.d.f
before then. It is important to note that the empirical
p.d.f. derived using all reads implies that there is a drop
off in abundance for very low abundance genes, which the
fitting procedure would over-predict. However, this could
be an artifact of incomplete sampling and a regression of
the full data may provide a better estimate.

Additional material
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